首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friedreich ataxia (FRDA) is a progressive neurological disorder affecting approximately 1 in 29,000 individuals of European descent. At present, there is no approved pharmacological treatment for this condition however research into treatment of FRDA has advanced considerably over the last two decades since the genetic cause was identified. Current proposed treatment strategies include decreasing oxidative stress, increasing cellular frataxin, improving mitochondrial function as well as modulating frataxin controlled metabolic pathways. Genetic and cell based therapies also hold great promise. Finally, physical therapies are being explored as a means of maximising function in those affected by FRDA.  相似文献   

2.
Friedreich's ataxia (FRDA), an autosomal recessive disorder, is characterized by spinocerebellar degeneration and cardiomyopathy. Here we explore some of the putative mechanisms underlying the cardiomyopathy in FRDA that have been elucidated using different experimental models. FRDA is characterized by a deficiency in frataxin, a protein vital in iron handling. Iron accumulation, lack of functional iron-sulphur clusters, and oxidative stress seem to be among the most important consequences of frataxin deficiency explaining the cardiac abnormalities in FRDA.  相似文献   

3.
Friedreich ataxia (FRDA) is an autosomal recessive, multi-systemic degenerative disease that results from reduced synthesis of the mitochondrial protein frataxin. Frataxin has been intensely studied since its deficiency was linked to FRDA in 1996. The defining properties of frataxin – (i) the ability to bind iron, (ii) the ability to interact with, and donate iron to, other iron-binding proteins, and (iii) the ability to oligomerize, store iron and control iron redox chemistry – have been extensively characterized with different frataxin orthologs and their interacting protein partners. This very large body of biochemical and structural data [reviewed in (Bencze et al., 2006)] supports equally extensive biological evidence that frataxin is critical for mitochondrial iron metabolism and overall cellular iron homeostasis and antioxidant protection [reviewed in (Wilson, 2006)]. However, the precise biological role of frataxin remains a matter of debate. Here, we review seminal and recent data that strongly link frataxin to the synthesis of iron–sulfur cluster cofactors (ISC), as well as controversial data that nevertheless link frataxin to additional iron-related processes. Finally, we discuss how defects in ISC synthesis could be a major (although likely not unique) contributor to the pathophysiology of FRDA via (i) loss of ISC-dependent enzymes, (ii) mitochondrial and cellular iron dysregulation, and (iii) enhanced iron-mediated oxidative stress. This article is part of a Special Issue entitled ‘Mitochondrial function and dysfunction in neurodegeneration’.  相似文献   

4.
Understanding the role of frataxin in mitochondria is key to an understanding of the pathogenesis of Friedreich ataxia. Frataxins are small essential proteins whose deficiency causes a range of metabolic disturbances, which include oxidative stress, deficit of iron-sulphur clusters, and defects in heme synthesis, sulfur amino acid and energy metabolism, stress response, and mitochondrial function. Structural studies carried out on different orthologues have shown that the frataxin fold consists of a flexible N-terminal region present only in eukaryotes and in a highly conserved C-terminal globular domain. Frataxins bind iron directly but with very unusual properties: iron coordination is achieved solely by glutamates and aspartates exposed on the protein surface. It has been suggested that frataxin function is that of a ferritin-like protein, an iron chaperone of the ironsulphur cluster machinery and heme metabolism and/or a controller of cellular oxidative stress. To understand FRDA pathogenesis and to design novel therapeutic strategies, we must first precisely identify the cellular role of frataxin.  相似文献   

5.
Friedreich ataxia (FRDA) is the most common hereditary autosomal recessive ataxia, but is also a multisystemic condition with frequent presence of cardiomyopathy or diabetes. It has been linked to expansion of a GAA-triplet repeat in the first intron of the FXN gene, leading to a reduced level of frataxin, a mitochondrial protein which, by controlling both iron entry and/or sulfide production, is essential to properly assemble and protect the Fe-S cluster during the initial stage of biogenesis. Several data emphasize the role of oxidative damage in FRDA, but better understanding of pathophysiological consequences of FXN mutations has led to develop animal models. Conditional knockout models recapitulate important features of the human disease but lack the genetic context, GAA repeat expansion-based knock-in and transgenic models carry a GAA repeat expansion but they only show a very mild phenotype. Cells derived from FRDA patients constitute the most relevant frataxin-deficient cell model as they carry the complete frataxin locus together with GAA repeat expansions and regulatory sequences. Induced pluripotent stem cell (iPSC)-derived neurons present a maturation delay and lower mitochondrial membrane potential, while cardiomyocytes exhibit progressive mitochondrial degeneration, with frequent dark mitochondria and proliferation/accumulation of normal mitochondria. Efforts in developing therapeutic strategies can be divided into three categories: iron chelators, antioxidants and/or stimulants of mitochondrial biogenesis, and frataxin level modifiers. A promising therapeutic strategy that is currently the subject of intense research is to directly target the heterochromatin state of the GAA repeat expansion with histone deacytelase inhibitors (HDACi) to restore frataxin levels.  相似文献   

6.
Friedreich ataxia is an inherited, severe, progressive neuro- and cardiodegenerative disorder for which there currently is no approved therapy. Friedreich ataxia is caused by the decreased expression and/or function of frataxin, a mitochondrial matrix protein that binds iron and is involved in the formation of iron-sulfur clusters. Decreased frataxin function leads to decreased iron-sulfur cluster formation, mitochondrial iron accumulation, cytosolic iron depletion, oxidative stress, and mitochondrial dysfunction. Cloning of the disease gene for Friedreich ataxia and elucidation of many aspects of the biochemical defects underlying the disorder have led to several major therapeutic initiatives aimed at increasing frataxin expression, reversing mitochondrial iron accumulation, and alleviating oxidative stress. These initiatives are in preclinical and clinical development and are reviewed herein.  相似文献   

7.
Friedreich??s ataxia (FRDA) is a progressive neurodegenerative disorder which is, at present, incurable. Oxidative damage and inhibition of mitochondrial function are key determinants of cellular damage in FRDA, since there is greater sensitivity to oxidative stress in cells with frataxin deficiency. In addition, frataxin-deficient cells have an impaired ability to recruit antioxidant defences against endogenous oxidative stress. We have recently shown that factors derived from bone marrow-derived mesenchymal stem cells (MSCs) increase hydrogen peroxide scavenging enzymes and offer protection against hydrogen peroxide-mediated injury in cells derived from patients with FRDA. Here we extend these studies and have performed a series of experiments showing that expression of superoxide dismutase (1 and 2) enzymes is reduced in FRDA cells but can be restored by treatment with conditioned medium from human MSCs. Furthermore, we have demonstrated that exposure to factors secreted by MSCs increases resistance to nitric oxide-induced oxidative stress in FRDA fibroblasts through, at least in part, restoring the expression of the superoxide dismuting enzymes and via modulation of PI3 kinase/Akt pathways. These findings suggest that MSCs secrete factors that improve the cellular homeostasis of cells derived from FRDA patients and provide suitable support for their enhanced survival. This study further suggests the potential therapeutic use of MSCs in patients with FRDA.  相似文献   

8.
Friedreich ataxia (FRDA) is an autosomal recessive inherited neurodegenerative disorder leading to reduced expression of the mitochondrial protein frataxin. Previous studies showed frataxin upregulation in FRDA following treatment with recombinant human erythropoietin (rhuEPO). Dose-response interactions between frataxin and rhuEPO have not been studied until to date. We administered escalating rhuEPO single doses (5,000, 10,000 and 30,000?IU) in monthly intervals to five adult FRDA patients. Measurements of frataxin, serum erythropoietin levels, iron metabolism and mitochondrial function were carried out. Clinical outcome was assessed using the "Scale for the assessment and rating of ataxia". We found maximal erythropoietin serum concentrations 24?h after rhuEPO application which is comparable to healthy subjects. Frataxin levels increased significantly over 3?months, while ataxia rating did not reveal clinical improvement. All FRDA patients had considerable ferritin decrease. NADH/NAD ratio, an indicator of mitochondrial function, increased following rhuEPO treatment. In addition to frataxin upregulation in response to continuous low-dose rhuEPO application shown in previous studies, our results indicate for a long-lasting frataxin increase after single high-dose rhuEPO administration. To detect frataxin-derived neuroprotective effects resulting in clinically relevant improvement, well-designed studies with extended time frame are required.  相似文献   

9.
Two patients with a progressive ataxia are presented with clinical features consistent with classic Friedreich's ataxia (FRDA), but also with features unusual for FRDA. Analysis of DNA showed that each patient is heterozygous for the expanded GAA repeat of FRDA, but carries a base change on his other frataxin allele. For one patient a non-conservative arginine to cysteine amino acid change is predicted at amino acid 165 whereas the other mutation is found at the junction of exon one and intron one. Muscle biopsy showed an absence of frataxin immunoreactivity in the patient harbouring the intronic mutation, confirming the pathological nature of the base change. These mutations extend the range of point mutations seen in FRDA, and agree with recent reports suggesting phenotypic variation in patients with FRDA harbouring point mutations in conjunction with an expanded GAA repeat.  相似文献   

10.
Patients with Friedreich ataxia (FRDA) have severely reduced levels of the mitochondrial protein frataxin, which results from a large GAA triplet-repeat expansion within the frataxin gene (FXN). High evolutionary conservation of frataxin across species has enabled the development of disease models of FRDA in various unicellular and multicellular organisms. Mouse models include classical knockout models, in which the Fxn gene is constitutively inactivated, and knock-in models, in which a GAA repeat mutation or the conditional allele is inserted into the genome. Recently, “humanised” GAA repeat expansion mouse models were obtained by combining the constitutive knockout with the transgenic expression of a yeast artificial chromosome carrying the human FRDA locus. In lower organisms such as Caenorhabditis elegans and Drosophila, straight-forward and conditional RNA interference technology has provided an easy way to knock down frataxin expression. Conditional mouse models have been used for pre-clinical trials of potential therapeutic agents, including idebenone, MnTBAP (a superoxide dismutase mimetic), and iron chelators. Various models of FRDA have shown that different, even opposite, phenotypes can be observed, depending on the level of frataxin expression. Additional studies with animal models will be essential for an enhanced understanding of the disease pathophysiology and for the development of better therapies.  相似文献   

11.
12.
Rescue of the Friedreich's ataxia knockout mouse by human YAC transgenesis   总被引:3,自引:0,他引:3  
We have generated and characterised transgenic mice that contain the entire Friedreich's ataxia gene (FRDA) within a human YAC clone of 370 kb. In an effort to overcome the embryonic lethality of homozygous Frda knockout mice and to study the behaviour of human frataxin in a mouse cellular environment, we bred the FRDA YAC transgene onto the null mouse background. Phenotypically normal offspring that express only YAC-derived human frataxin were identified. The human frataxin was expressed in the appropriate tissues at levels comparable to the endogenous mouse frataxin, and it was correctly processed and localised to mitochondria. Biochemical analysis of heart tissue demonstrated preservation of mitochondrial respiratory chain function, together with some increase in citrate synthase and aconitase activities. Thus, we have demonstrated that human frataxin can effectively substitute for endogenous murine frataxin in the null mutant. Our studies are of immediate consequence for the generation of Friedreich's ataxia transgenic mouse models, and further contribute to the accumulating knowledge of human-mouse functional gene replacement systems. Electronic Publication  相似文献   

13.
Friedreich’s ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich’s ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich’s ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich’s ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich’s ataxia.  相似文献   

14.
Friedreich ataxia is the most common hereditary ataxia. The signs and symptoms of the disorder derive from decreased expression of the protein frataxin, which is involved in iron metabolism. Frataxin chaperones iron for iron-sulfur cluster biogenesis and detoxifies iron in the mitochondrial matrix. Decreased expression of frataxin is associated with impairments of iron-sulfur cluster biogenesis and heme synthesis, as well as with mitochondrial dysfunction and oxidative stress. Compounds currently in clinical trials are directed toward improving mitochondrial function and lessening oxidative stress. Iron chelators and compounds that increase frataxin expression are under evaluation. Further elucidation of frataxin's function should lead to additional therapeutic approaches.  相似文献   

15.
16.
A number of neurodegenerative diseases are associated with iron dyshomeostasis and mitochondrial dysfunction. However, the pathomechanistic interplay between iron and mitochondria varies. This review summarises the physiological role of iron in mitochondria and subsequently exemplifies two neurodegenerative diseases with disturbed iron function in mitochondria: inherited Friedreich ataxia (FRDA) and idiopathic Parkinson disease (PD). In eukaryotes, mitochondria are main consumers of iron. The respiratory chain relies on iron-containing redox systems in the form of complexes I–III with iron–sulphur clusters and cytochromes with haem as prosthetic groups. The bifunctional enzyme aconitase is not only important in the citric acid cycle, but also functions as a key regulator of cell iron metabolism. Haem biosynthesis occurs partially in mitochondria as well as the biogenesis of iron–sulphur clusters that are co-factors in numerous iron–sulphur proteins. FRDA is characterised by a mutation of the frataxin gene, the protein of which serves as an iron chaperone in iron–sulphur cluster assembly. The lack of frataxin expression leads to defective iron–sulphur cluster biogenesis with decreased respiratory and aconitase activity. The resulting mitochondrial iron overload might fuel reactive oxygen species formation and contribute to clinical signs of oxidative stress. PD is typically associated with an increased iron content of the substantia nigra, the causes of which are largely unknown. Recent research demonstrated raised iron levels in individual dopaminergic neurons of the substantia nigra. Moreover, transferrin/transferrin receptor 2 mediated transport of iron into the mitochondria of these neurons was identified together with increased transferrin immunoreactivity. Resulting accumulation of iron into mitochondria might lead to oxidative stress damaging iron–sulphur cluster-containing proteins.  相似文献   

17.
Friedreich ataxia, the most frequent cause of recessive ataxia is due in most cases to a homozygous intronic expansion resulting in the loss of function of frataxin. Frataxin is a mitochondrial protein conserved through evolution. Yeast knock-out models and histological data from patients heart autopsies have shown that frataxin defect causes mitochondrial iron accumulation. Biochemical data from patients heart biopsies or autopsies have revealed a specific deficiency in the activities of aconitases and of mitochondrial iron–sulfur proteins. These results suggest that frataxin may play a role either in mitochondrial iron transport or in iron–sulfur cluster assembly or transport. Iron abnormalities suggest a pathogenic mechanism involving free radicals production and oxidative stress, a process that might be sensitive to anti-oxidant therapies.  相似文献   

18.
Friedreich's ataxia (FRDA) is caused by point mutations or trinucleotide repeat expansions in both alleles of the gene encoding frataxin. Studies of frataxin homologues in lower eukaryotes suggest that mitochondrial iron accumulation may underlie the pathophysiology of FRDA. To evaluate the possible role of iron-chelation therapy for FRDA, we measured serum iron and ferritin concentration in 10 FRDA patients. The measurements were within normal limits, suggesting that iron-chelation therapy for FRDA may be problematic.  相似文献   

19.
In a “proof‐of‐concept” study, we demonstrated that recombinant human erythropoietin (rhuEPO) increases frataxin levels in Friedreich's ataxia (FRDA) patients. We now report a 6‐month open‐label clinical pilot study of safety and efficacy of rhuEPO treatment in FRDA. Eight adult FRDA patients received 2.000 IU rhuEPO thrice a week subcutaneously. Clinical outcome measures included Ataxia Rating Scales. Frataxin levels and indicators for oxidative stress were assessed. Hematological parameters were monitored biweekly. Scores in Ataxia Rating Scales such as FARS (P = 0.0063) and SARA (P = 0.0045) improved significantly. Frataxin levels increased (P = 0.017) while indicators of oxidative stress such as urine 8‐OHdG (P = 0.012) and peroxide levels decreased (P = 0.028). Increases in hematocrit requiring phlebotomies occurred in 4 of 8 patients. In this explorative open‐label clinical pilot study, we found an evidence for clinical improvement together with a persistent increase of frataxin levels and a reduction of oxidative stress parameters in patients with FRDA receiving chronic treatment with rhuEPO. Safety monitoring with regular blood cell counts and parameters of iron metabolism is a potential limitation of this approach. © 2008 Movement Disorder Society  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号