首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we evaluated the metabolic O-methylation of several catechol-containing tea polyphenols by human placental catechol-O-methyltransferase (COMT). (-)-Epicatechin, (+)-epicatechin, and (-)-epigallocatechin were good substrates for metabolic O-methylation by placental cytosolic COMT (150-500 pmol/mg of protein/min), but (-)-epicatechin gallate and (-)-epigallocatechin gallate were O-methylated at much lower rates (<50 pmol/mg of protein/min). When (-)-epicatechin was used as substrate, its O-methylation by human placental COMT showed dependence on incubation time, cytosolic protein concentration, incubation pH, and concentration of S-adenosyl-L-methionine (the methyl donor). Analysis of cytosolic COMT from six human term placentas showed that the O-methylation of increasing concentrations of (-)-epicatechin or (-)-epigallocatechin follows typical Michaelis-Menten kinetics, with K(m) and V(max) values of 2.2 to 8.2 microM and 132 to 495 pmol/mg of protein/min for (-)-epicatechin and 3.9 to 6.7 microM and 152 to 310 pmol/mg of protein/min for (-)-epigallocatechin, respectively. Additional analysis revealed that COMT-catalyzed O-methylation of (-)-epicatechin and (-)-epigallocatechin was strongly inhibited in a concentration-dependent manner by S-adenosyl-L-homocysteine (IC(50) = 3.2-5.7 microM), a demethylated product of S-adenosyl-L-methionine. This inhibition by S-adenosyl-L-homocysteine follows a mixed (competitive plus noncompetitive) mechanism of enzyme inhibition. In summary, several catechol-containing tea polyphenols are rapidly O-methylated by human placental cytosolic COMT. This metabolic O-methylation is subject to strong inhibitory regulation by S-adenosyl-L-homocysteine, which is formed in large quantities during the O-methylation of tea polyphenols.  相似文献   

2.
1. The metabolic O-methylation of several catechol-containing tea polyphenols by rat liver cytosolic catechol-O-methyltransferase (COMT) has been studied. 2. When (-)-epicatechin was used as substrate, its O-merthylation showed dependence on incubation time, cytosolic protein concentration, incubation pH and concentration of S-adenosyl-L-methionine. The O-methylation of increasing concentrations of (-)-epicatechin followed typical Michaelis-Menten kinetics, and the apparent Km and Vmax were 51 microM and 2882 pmol mg protein(-1) min(-1), respectively, at pH 7.4, and were 17 microM and 2093 pmol mg protein(-1) min(-1), respectively, at pH 10.0. 3. Under optimized conditions for in vitro O-methylation, (-)-epicatechin, (+)-epicatechin and (-)-epigallocatechin were rapidly O-methylated by rat liver cytosol. In comparison, (-)-epicatechin gallate and (-)-epigallocatechin gallate vere O-methylated at significantly lower rates under the same reaction conditions. catalysed O-methylation of (-)-epicatechin and (-)-epigallocatechin was inhibited in a concentration-dependent manner by S-adenosyl-L-homocysteine, a demethylated product of S-adenosyl-L-methionine. The IC50 was approximately 10 microM. 5. In summary, the results showed that several catechol-containing tea polyphenols were rapidly O-methylated by rat liver cytosolic COMT. These observations raise the possibility that some of the biological effects of tea polyphenols may be exerted by their O-methylated products or may result from their potential inhibition of the COMT-catalysed O-methylation of endogenous catecholamines and catechol oestrogens.  相似文献   

3.
1. The metabolic O -methylation of several catechol-containing tea polyphenols by rat liver cytosolic catechol- O -methyltransferase (COMT) has been studied. 2. When (-)-epicatechin was used as substrate, its O -methylation showed dependence on incubation time, cytosolic protein concentration, incubation pH and concentration of S -adenosyl-L-methionine. The O -methylation of increasing concentrations of (-)epicatechin followed typical Michaelis-Menten kinetics, and the apparent K m and V max were 51µM and 2882 pmol?mg protein -1?min -1, respectively, at pH 7.4, and were 17 µM and 2093 pmol?mg protein -1?min -1, respectively, at pH 10.0. 3. Under optimized conditions for in vitro O -methylation, (-)-epicatechin, (+)epicatechin and (-)-epigallocatechin were rapidly O -methylated by rat liver cytosol. In comparison, (-)-epicatechin gallate and (-)-epigallocatechin gallate were O -methylated at significantly lower rates under the same reaction conditions. 4. COMT-catalysed O-methylation of (-)-epicatechin and (-)-epigallocatechin was inhibited in a concentration-dependent manner by S -adenosyl-L-homocysteine, a demethylated product of S -adenosyl-L-methionine. The IC 50 was 10µM. 5. In summary, the results showed that several catechol-containing tea polyphenols were rapidly O -methylated by rat liver cytosolic COMT. These observations raise the possibility that some of the biological effects of tea polyphenols may be exerted by their O -methylated products or may result from their potential inhibition of the COMT-catalysed O -methylation of endogenous catecholamines and catechol oestrogens.  相似文献   

4.
(-)-Epigallocatechin-3-gallate (EGCG) is the major polyphenol present in green tea. We previously demonstrated that EGCG was both a substrate and potent inhibitor of human liver cytosolic catechol-O-methyltransferease (COMT). We now report the structure-activity relationship for the inhibition of COMT-catalyzed O-methylation of catecholestrogens in human liver cytosol by tea catechins and some of their metabolites. The most potent inhibitors were catechins with a galloyl-type D-ring, including EGCG (IC(50)=0.07 microM), 4'-O-methyl-EGCG (IC(50)=0.10 microM), 4',4'-di-O-methyl-EGCG (4',4'-DiMeEGCG) (IC(50)=0.15 microM), and (-)-epicatechin-3-gallate (ECG) (IC(50)=0.20 microM). Catechins without the D-ring showed two to three orders of magnitude less inhibitory potency. Enzyme kinetic analyses revealed that EGCG behaved as a mixed inhibitor, whereas 4',4'-di-O-methyl-EGCG exhibited competitive kinetics for the S-adenosylmethionine (SAM), and noncompetitive kinetics for the catechol binding site. These compounds may represent a new type of COMT inhibitor. In silico molecular-modeling studies using a homology model of human COMT were conducted to aid in the understanding the catalytic and inhibitory mechanisms. Either D-ring or B-ring of EGCG could be accommodated to the substrate binding pocket of human COMT. However, the close proximity (2.6A) of 4'-OH to the critical residue Lys144, the higher acidity of the hydroxyl groups of the D-ring, and the hydrophobic interactions between the D-ring and residues in the binding pocket greatly facilitated the interaction of the D-ring with the enzyme, and resulted in increased inhibitory potency. These results provide mechanistic insight into the inhibition of COMT by commonly consumed tea catechins.  相似文献   

5.
In the present investigation, we studied the modulating effects of several tea catechins and bioflavonoids on DNA methylation catalyzed by prokaryotic SssI DNA methyltransferase (DNMT) and human DNMT1. We found that each of the tea polyphenols [catechin, epicatechin, and (-)-epigallocatechin-3-O-gallate (EGCG)] and bioflavonoids (quercetin, fisetin, and myricetin) inhibited SssI DNMT- and DNMT1-mediated DNA methylation in a concentration-dependent manner. The IC(50) values for catechin, epicatechin, and various flavonoids ranged from 1.0 to 8.4 microM, but EGCG was a more potent inhibitor, with IC(50) values ranging from 0.21 to 0.47 microM. When epicatechin was used as a model inhibitor, kinetic analyses showed that this catechol-containing dietary polyphenol inhibited enzymatic DNA methylation in vitro largely by increasing the formation of S-adenosyl-L-homocysteine (a potent noncompetitive inhibitor of DNMTs) during the catechol-O-methyltransferase-mediated O-methylation of this dietary catechol. In comparison, the strong inhibitory effect of EGCG on DNMT-mediated DNA methylation was independent of its own methylation and was largely due to its direct inhibition of the DNMTs. This inhibition is strongly enhanced by Mg(2+). Computational modeling studies showed that the gallic acid moiety of EGCG plays a crucial role in its high-affinity, direct inhibitory interaction with the catalytic site of the human DNMT1, and its binding with the enzyme is stabilized by Mg(2+). The modeling data on the precise molecular mode of EGCG's inhibitory interaction with human DNMT1 agrees perfectly with our experimental finding.  相似文献   

6.
The major detoxification pathway of the carcinogenic catechol estrogens is methylation by catechol- -methyltransferase (COMT). It has been hypothesized that the enzyme encoded by the low-activity allele (COMT(L) ) has a lower catalytic activity for catechol estrogen methylation than that encoded by the high activity allele (COMT(H) ). We expressed and purified human soluble (S)-COMT(H) and S-COMT(L) in and characterized the methylation of 2- and 4-hydroxyestradiol (2- and 4-OH-E2). There were no differences between the kinetic parameters for COMT(H) and COMT(L). The kinetic parameters for S-adenosylmethionine (SAM), the methyl donor in these reactions, also did not differ for COMT(H) and COMT(L). S-adenosylhomocysteine, the demethylated SAM metabolite, inhibited methylation of the catechol estrogens in a non-competitive manner similarly for COMT(H) and COMT(L). Each COMT substrate tested inhibited the methylation of other substrates in a mixed competitive and non-competitive fashion similarly for COMT(H) and COMT(L). Furthermore, in cytosolic fractions of COMT(HH)(MCF-10A and ZR-75-1) and COMT(LL)(MCF-7 and T47D) human breast epithelial cell lines, no differences were detected between the kinetic parameters of COMT with respect to 2- and 4-OH-E2 methylation; nor were COMT protein levels associated with the COMT genotype. These data suggest that the decreased COMT enzymatic activity that has been detected in human tissue in association with the COMT(L) allele is not reflected by differences in the affinity or capacity of COMT(H) and COMT(L) for catechol estrogen methylation. These results raise the question of what accounts for the difference in COMT activity associated with the COMT(HH) and COMT(LL) genotypes in human tissue.  相似文献   

7.
Molecular mechanisms determining the turn-over rate and specificity of catechol O-methylation were studied by combining enzyme kinetic measurements, computational modeling of substrate properties and fitting ligands in a 3D model of the active site of the enzyme. Enzyme kinetic measurements were carried out for 46 compounds, including most clinically used catechol drugs, by using recombinant human soluble catechol O-methyltransferase (COMT). The most important mechanism decreasing the turnover rate and increasing affinity was the electron withdrawing effect of substituents. Several other mechanisms by which substituents affected reactivity and affinity were identified. Highest turnover rates were determined for unsubstituted catechol and pyrogallol. Pyrogallol derivatives generally seemed to be more specific substrates than catechols. Catecholestrogens were the most specific endogenous substrates, whereas catecholamines were rather poor substrates. Among the catechol drugs used in the L-DOPA treatment of Parkinson's disease, the COMT inhibitors entacapone and tolcapone were not methylated, whereas the DOPA decarboxylase inhibitor benserazide was 15 times more specific substrate than L-DOPA, the target of COMT inhibition. The structure-activity relationships found allow the prediction of reactivity, affinity, and specificity with useful accuracy for catechols with a wide range of structures and properties. The knowledge can be used in the evaluation of metabolic interactions of endogenous catechols, drugs and dietary catechols, and in the designing of drugs with the catechol pharmacophore.  相似文献   

8.
(-)-Epigallocatechin gallate (EGCG) and (-)-epigallocatechin (EGC) are the major polyphenolic constituents in green tea. In this study, we characterized the enzymology of cytosolic catechol-O-methyltransferase (COMT)-catalyzed methylation of EGCG and EGC in humans, mice, and rats. At 1 microM, EGCG was readily methylated by liver cytosolic COMT to 4"-O-methyl-EGCG and then to 4',4"-di-O-methyl-EGCG; EGC was methylated to 4'-O-methyl-EGC. The K(m) and V(max) values for EGC methylation were higher than EGCG; for example, with human liver cytosol, the K(m) were 4.0 versus 0.16 microM and V(max) were 1.28 versus 0.16 nmol/mg/min. Rat liver cytosol had higher COMT activity than that of humans or mice. The small intestine had lower specific activity than the liver in the methylation of EGCG and EGC. Glucuronidation on the B-ring or the D-ring of EGCG greatly inhibited the methylation on the same ring, but glucuronidation on the A-ring of EGCG or EGC did not affect their methylation. Using EGC and 3,4-dihydroxy-L-phenylalanine as substrates, EGCG, 4"-O-methyl-EGCG, and 4',4"-di-O-methyl-EGCG were all potent inhibitors (IC(50) approximately 0.2 microM) of COMT. The COMT-inhibiting activity of (-)-EGCG-3'-O-glucuronide was similar to EGCG, but (-)-EGCG-4"-O-glucuronide was less potent. The present work provides basic information on the methylation of EGCG and suggests that EGCG may inhibit COMT-catalyzed methylation of endogenous and exogenous compounds.  相似文献   

9.
Catechol-O-methyltransferase (COMT, EC 2.1.1.6) catalyzes the O-methylation of a wide array of catechol-containing substrates using s-adenosyl-L-methionine as the methyl donor. In the present study, we have cloned and expressed the human soluble and membrane-bound COMTs (S-COMT and MB-COMT, respectively) in Escherichia coli and have studied their biochemical characteristics for the O-methylation of representative classes of endogenous catechol substrates (catecholamines and catechol estrogens) as well as exogenous catechol substrates (bioflavonoids and tea catechins). Enzyme kinetic analyses showed that these two recombinant human COMTs are functionally active, with catalytic and kinetic properties nearly identical to those of crude or purified enzymes prepared from human tissues or cells. Kinetic parameters for the O-methylation of various substrates were characterized. In addition, computational modeling studies were conducted to better understand the molecular mechanisms for the different catalytic behaviors of human S- and MB-COMTs with respect to s-adenosyl-L-methionine, various substrates, and also the regioselectivity for the formation of mono-methyl ether products. Our modeling data showed that the binding energy values (Delta G) calculated for most substrates agreed well with the measured kinetic parameters. Also, our modeling data precisely predicted the regioselectivity for the O-methylation of these substrates at different hydroxyl groups, the predicted values matched nearly perfectly with the experimental data.  相似文献   

10.
Neuroprotective effects of the green tea components theanine and catechins   总被引:6,自引:0,他引:6  
The neuroprotective effects of theanine and catechins contained in green tea are discussed. Although the death of cultured rat cortical neurons was induced by the application of glutamic acid, this neuronal death was suppressed with exposure to theanine. The death of hippocampal CA1 pyramidal neurons caused by transient forebrain ischemia in the gerbil was inhibited with the ventricular preadministration of theanine. The neuronal death of the hippocampal CA3 region by kainate was also prevented by the administration of theanine. Theanine has a higher binding capacity for the AMPA/kainate receptors than for NMDA receptors, although the binding capacity in all cases is markedly less than that of glutamic acid. The results of the present study suggest that the mechanism of the neuroprotective effect of theanine is related not only to the glutamate receptor but also to other mechanisms such as the glutamate transporter, although further studies are needed. One of the onset mechanisms for arteriosclerosis, a major factor in ischemic cerebrovascular disease, is probably the oxidative alteration of low-density lipoprotein (LDL) by active oxygen species. The oxidative alterations of LDL were shown to be prevented by tea catechins. Scavenging of *O(2)(-) was also exhibited by tea catechins. The neuroprotective effects of theanine and catechins contained in green tea are a focus of considerable attention, and further studies are warranted.  相似文献   

11.
Enhancement of both excitatory and inhibitory responses to adrenaline, noradrenaline and isoprenaline was demonstrated with bretylium both in vivo and in vitro. Excitatory responses studied included rise of blood pressure and contraction of the nictitating membrane in cats and the contraction of aortic strip in rabbits; the inhibitory responses studied were fall of cat blood pressure and relaxation of rat uterus and rabbit tracheal chain. Possible mechanisms of potentiation of the effects of catechol amines by bretylium are discussed. A sensitization of the peripheral effector cells is suggested as a likely mechanism of potentiation.  相似文献   

12.
Catechins and procyanidins are major polyphenols in plant-derived foods. Despite intensive studies in recent years, neither their biochemical nor their toxicological properties have been clarified sufficiently. This study aimed to compare the methylation of catechins and procyanidins by the enzyme catechol-O-methyltransferase (COMT) in vitro. We conducted incubations with rat liver cytosol and human placental cytosol including S-adenosyl-l-methionine. The set of substrates comprised the catechins (-)-epicatechin (EC) and (+)-catechin (CAT), the procyanidin dimers B1, B2, B3, B4, B5, and B7 as well as procyanidin trimer C1. After extraction, metabolites were analyzed by means of liquid chromatography-electrospray ionization-mass spectrometry and liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. EC and CAT were converted to two monomethylated metabolites each by human and rat COMT, with the 3'-O-methyl derivatives being consistently the main metabolites. Furthermore, the flavanyl units of procyanidins were methylated consecutively, leading to monomethylated and dimethylated dimeric metabolites as well as monomethylated, dimethylated, and trimethylated C1 metabolites. The methylation status of each flavanyl unit was determined by means of mass spectrometric quinone-methide fragmentation patterns. In addition, molecular modeling studies were performed with the aim to predict the preferred site of methylation and to verify the experimental data. In conclusion, our results indicate that the degree and position of methylation depend clearly on the three-dimensional structure of the entire substrate molecule.  相似文献   

13.
In the present study we investigated the O-methylation of catechol oestrogens by intact rabbit thoracic aorta and subcellular fractions thereof. The O-methylation of 2-hydroxyoestradiol (2OHE2) and 2-hydroxyoestriol (2OHE3) displayed saturation kinetics in the intact tissue. The apparent Km and Vmax values for the O-methylation of 2OHE2 were determined to be 0.91 mumol/l and 104 pmol g-1 min-1, respectively, when 2OHE2 was used as substrate; and 1.14 mumol/l and 188 pmol g-1 min-1 when 2OHE3 was used as substrate. The inhibitors of the extraneuronal uptake process (viz; phenoxybenzamine 33 mumol/l; normetanephrine, 46 mumol/l; and deoxycorticosterone acetate 27 mumol/l) failed to inhibit the O-methylation of either 2OHE2 (3.4 mumol/l) or 2OHE3 (3.4 mumol/l) in intact segments of the rabbit thoracic aorta. (-)-Isoprenaline (40 mumol/l) abolished the O-methylation of 2OHE2 (3.4 mumol/l) and markedly reduced that of 2OHE3 (3.4 mumol/l). Pretreatment of tissues with phenoxybenzamine (33 mumol/l) partially restored the O-methylation of 2OHE2 and 2OHE3 in the presence of (-)-isoprenaline (40 mumol/l). The O-methylation of 2OHE2 (5 mumol/l) was significantly reduced in segments of aorta in which the endothelium was removed. The latter reduction could not be attributed to damage to components of the vessel media. The O-methylation of 2OHE2 and (-)-isoprenaline by subcellular fractions of the rabbit aorta also was examined. Both the microsomal and cytosolic fractions were shown to O-methylate 2OHE2 and (-)-isoprenaline, providing evidence for the existence of membrane-bound and soluble forms of COMT in the rabbit aorta. The O-methylation of 2OHE2 by cytosolic and microsomal fractions of the aorta was determined and compared to that of (-)-isoprenaline. The kinetic constants for the O-methylation of 2OHE2 by cytosolic (Km: 0.27 mumol/l; V max: 112 pmol g-1 min-1) and microsomal (Km: 0.15 mumol/l; Vmax: 161 pmol g-1 min-1) fractions were similar. In contrast, the kinetic constants for the O-methylation of isoprenaline by cytosolic (Km: 121 mumol/l; Vmax: 174 pmol g-1 min-1) and membranal (Km: 0.91 mumol/l; Vmax: 105 pmol g-1 min-1) fractions were very different. It is concluded that catechol oestrogens are excellent substrates for catechol-O-methyltransferase (COMT) in the rabbit aorta. Their O-methylation can occur in endothelial structures as well as in the smooth muscle-containing medial sections of the vessel.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
We orally administered polyphenone-60 (P-60), green tea extract catechins, in the diet (0, 1.25 and 5%) to male rats for 2, 4 and 8 weeks initiated at 5 weeks old. It was found that a 5% dose to male rats for 2-8 weeks induced goiters and decreased weights of the body, testis and prostate gland. Endocrinologically, elevating plasma thyroid stimulating hormone (TSH), luteinizing hormone (LH) and testosterone levels and decreasing tri-iodothyronine (T(3)) and thyroxine (T(4)) levels were induced by this treatment. We also found that P-60 as a whole and some of its constituents exhibited inhibitory effects on human placental aromatase activity by in vitro assay. The concentration of P-60 that required producing 50% inhibition of the aromatase activity (IC(50) value) was 28 microg/ml. The IC(50) values of (-)-catechin gallate (Cg), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCg) and (-)-gallocatechin gallate (GCg) were 5.5 x 10(-6), 1.0 x 10(-4), 6.0 x 10(-5) and 1.5 x 10(-5) M, respectively. (-)- Epicatechin gallate (ECg) at 1.0 x 10(-4) M produced 20% inhibition. (-)-Epicatechin (EC) and (+)-catechin (CT) exhibited no effects on aromatase activity. The endocrinological changes observed in vivo were in conformity with antithyroid effects and aromatase inhibition effects of P-60 and its constituents.  相似文献   

15.
16.
The hypothesis was that green tea catechins (GTCs) formulated with vitamin C and xylitol followed by enteric coating with hydroxypropyl methyl cellulose phthalate (HPMCP) or encapsulated into γ-cyclodextrin (γ-CD) could enhance intestinal absorption of GTCs. Surface morphology and size obtained by SEM were different. Digestive stability of GTCs encapsulated into γ-CD or coated with HPMCP was enhanced up to 65.56% or 57.63%, respectively. When GTCs were formulated, the digestive stability was greater than the one not formulated. Formulated GTCs followed by encapsulation into γ-CD significantly increased intestinal transport. Absorption of GTCs was 2.8%, 9.64%, 11.97%, 8.41% and 14.36% for only GTCs, GTCs encapsulated into γ-CD, formulated GTCs encapsulated into γ-CD, GTCs coated with HPMCP and formulated GTCs coated with HPMCP, respectively. This study suggests that GTCs, formulated with vitamin C and xylitol followed by γ-CD encapsulation or HPMCP enteric coating, provide combinational effect to increase bioavailability of GTCs.  相似文献   

17.
Abstract

1.?Sophocarpine is a biologically active component isolated from the foxtail-like sophora herb and seed that is often orally administered for the treatment of cancer and chronic bronchial asthma. However, whether sophocarpine affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

2.?In this study, the inhibitory effects of sophocarpine on the eight human liver CYP isoforms (CYP1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs).

3.?The results indicate that sophocarpine could inhibit the activity of CYP3A4 and 2C9, with the IC50 values of 12.22 and 15.96?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that sophocarpine is not only a noncompetitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2C9, with Ki values of 6.74 and 9.19?μM, respectively. Also, sophocarpine is a time-dependent inhibitor of CYP3A4 with Kinact/KI value of 0.082/21.54?μM?1?min?1.

4.?The in vitro studies of sophocarpine with CYP isoforms suggested that sophocarpine has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

18.
Context: Friedelin is a triterpenoid with several biological activities. However, the affects of Friedelin on the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

Objective: This study investigates the inhibitory effects of Friedelin on the major human liver CYP isoforms (CYP3A4, 1A2, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8).

Materials and methods: First, the inhibitory effects of Friedelin (100?μM) on the eight human liver CYP isoforms were investigated in vitro using human liver microsomes (HLMs), and then enzyme inhibition, kinetic studies, and time-dependent inhibition studies were conducted to investigate the IC50, Ki and Kinact/KI values of Friedelin.

Results: The results indicate that Friedelin inhibited the activity of CYP3A4 and 2E1, with the IC50 values of 10.79 and 22.54?μM, respectively, but other CYP isoforms were not affected. Enzyme kinetic studies showed that Friedelin is not only a noncompetitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP2E1, with Ki values of 6.16 and 18.02?μM, respectively. In addition, Friedelin is a time-dependent inhibitor of CYP3A4 with Kinact/Ki value of 4.84?nM/min.

Discussion and conclusion: The in vitro studies of Friedelin with CYP isoforms suggested that Friedelin has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2E1. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

19.
Context: Dihydromyricetin (DHM) is the most abundant and active flavonoid component isolated from Ampelopsis grossedentata (Hand-Mazz) W.T. Wang (Vitaceae) and it possesses numerous pharmacological activities. However, whether DHM affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

Materials and methods: The inhibitory effects of DHM on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro using human liver microsomes (HLMs).

Results: The results showed that DHM could inhibit the activity of CYP3A4, CYP2E1 and CYP2D6, with IC50 values of 14.75, 25.74 and 22.69?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that DHM was not only a non-competitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2E1 and CYP2D6, with Ki values of 6.06, 9.24 and 10.52?μM, respectively. In addition, DHM is a time-dependent inhibitor for CYP3A4 with KI/Kinact value of 12.17/0.057?min?1?μM?1.

Discussion and conclusion: The in vitro studies of DHM with CYP isoforms indicate that DHM has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4, CYP2E1 and CYP2D6. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

20.
BACKGROUND: The human cytochrome P450 enzyme CYP3A4 is involved in the metabolism of many anticancer drugs. Since these drugs are usually administered in a polychemotherapy regimen, the objective of this study was to examine their inhibitory potency on CYP3A4 with regard to possible mutual drug interactions. METHOD: CYP3A4 activities in human liver microsomes from 2 donors were determined using the oxidation of the dihydropyridine denitronifedipine, a specific CYP3A4 substrate, at a concentration of 50 microM (= KM). Formation of the pyridine metabolite was measured using HPLC. Inhibitor concentrations used were 0.5, 5 and 50 microg/ml, except for cyclophosphamide and ifosfamide (0.5, 2.5 and 5 mg/ml) and for paclitaxel (0.05, 0.15, 0.5, 1.5 and 5 microg/ml). RESULTS: The following substances showed an inhibitory effect on CYP3A4 (IC50 values for the 2 microsome samples are parenthesized): cyclophosphamide (12.3/9.2 mmol/l), mafosfamide generated 4-OH-cyclophosphamide (152/163 [micromol/l), ifosfamide (3.6/2.5 mmol/l), vinblastine sulfate (20/44 micromol/l), vincristine sulfate (67/176 micromol/l), daunorubicin hydrochloride (206/200 micromol/l), doxorubicin hydrochloride (160/215 micromol/l), teniposide (64/84 micromol/l) and docetaxel (6.4/12.7 micromol/l). No inhibitory effect on CYP3A4 was observed with epirubicin, etoposide, paclitaxel, cytarabine, 5-FU, 6-mercaptopurine, methotrexate, cisplatin, carboplatin, bleomycin, busulfan, chlorambucil and mitomycin. CONCLUSION: Comparing IC50 values with plasma concentrations present during antineoplastic therapy, the agents cyclophosphamide, ifosfamide, vinblastine, teniposide and docetaxel could possibly cause clinical drug interactions by inhibition of CYP3A4. Some recently described clinical interactions with antineoplastic agents may be explained by these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号