首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K+ channels play indispensable roles in establishing the membrane potential and in regulating the contractile tone of arterial smooth muscle cells. There are four types of K+ channels in arterial smooth muscle: voltage-dependent K+ (KV), Ca2+-dependent K+ (BKCa), ATP-dependent K+ (KATP), and inward rectifier K+ (Kir2) channels. Comparatively few physiological studies have focused on Kir2 channels because they are present only in certain small-diameter cerebral and submucosal arterioles and in coronary arterial smooth muscle. Here, we review the characteristics and regulation of Kir2 channels in vascular arterial smooth muscle. Current knowledge of the predominant Kir2 channel subtype is Kir2.1, not Kir2.2 and 2.3. Electrophysiological measurements to determine the current–voltage relationship in arterial smooth muscle revealed inward rectification with a single-channel conductance of 21 pS. Kir2 channels were found to influence the resting tone of cerebral and coronary arteries based on the fact that barium (Ba2+) induces the constriction of these arteries at resting tone. Kir2 channels are also highly responsive to vasoconstrictors and vasodilators. For example, the vasoconstrictors endothelin-1 and angiotensin II inhibit Kir2 channel function by activating protein kinase C (PKC), and the vasodilator adenosine stimulates Kir2 channel function by increasing the level of cAMP, which subsequently activates protein kinase A (PKA). Certain pathological conditions such as left ventricular hypertrophy are associated with a decrease in Kir2 channel expression. Although our understanding of the physiological role and regulation of Kir2 channels is incomplete, it is believed that Kir2 channels contribute to the control of vascular tone in small-diameter vessels via various intracellular signalling pathways that regulate cell membrane potential.  相似文献   

2.
PURPOSE: This study examined the expression and function of inward rectifier K(+) channels in cultured rat hepatic stellate cells (HSC). MATERIALS AND METHODS: The expression of inward rectifier K(+) channels was measured using real-time RT-PCR, and electrophysiological properties were determined using the gramicidin-perforated patch-clamp technique. RESULTS: The dominant inward rectifier K(+) channel subtypes were K(ir)2.1 and K(ir)6.1. These dominant K(+) channel subtypes decreased significantly during the primary culture throughout activation process. HSC can be classified into two subgroups: one with an inward-rectifying K(+) current (type 1) and the other without (type 2). The inward current was blocked by Ba(2+) (100 microM) and enhanced by high K(+) (140 mM), more prominently in type 1 HSC. There was a correlation between the amplitude of the Ba(2+)-sensitive current and the membrane potential. In addition, Ba(2+) (300 microM) depolarized the membrane potential. After the culture period, the amplitude of the inward current decreased and the membrane potential became depolarized. CONCLUSION: HSC express inward rectifier K(+) channels, which physiologically regulate membrane potential and decrease during the activation process. These results will potentially help determine properties of the inward rectifier K(+) channels in HSC as well as their roles in the activation process.  相似文献   

3.
The increase in blood flow in the cerebral cortex of the anaesthetized rat during hypoxia and hypercapnia was investigated. Cerebral blood flow (CBF) was measured using the hydrogen clearance method with acutely implanted platinum electrodes. Hypoxia (PaO2 35.3±2.4 Torr) and hypercapnia (PaCO2 68.1±5.1 Torr) increased basal CBF from 76.3±9.0 ml/100g/min to 168.1±20.1 ml/100g/min and 162.4±31.9 ml/100g/min respectively. The sulphonylurea tolbutamide (1mM in 1%DMSO) had no significant effect on CBF in hyperoxia or in hypercapnia. However, it attenuated the increase of CBF during hypoxia by 66 ±11% (P<0.01). This suggests that opening of tolbutamide-sensitive potassium channels may be involved in the process of hypoxic vasodilation in the rat cerebral cortex.  相似文献   

4.
Song MK  Liu H  Jiang HL  Yue JM  Hu GY  Chen HZ 《Neuroscience》2008,155(2):469-475
Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.  相似文献   

5.
Chronic hypoxia (CH)-induced pulmonary hypertension (PHT) is well known to alter K+ channels in pulmonary myocytes. PHT induces right ventricle hypertrophy that increases oxygen demand; however, coronary blood flow and K+ channel adaptations of coronary myocytes during PHT remain unknown. We determined whether CH and PHT altered K+ currents and coronary reactivity and what impact they might have on right myocardial perfusion. Right ventricle perfusion, as attested by microspheres, was redistributed toward hypertrophied right ventricle [RV/LV (%)=0.59+/-0.07% in CH rats vs. 0.29+/-0.03 in control rats, P<0.05]. Whole-cell patch clamping showed a reduction of global outward current in hypoxic right coronary artery myocytes (H-RCA), whereas hypoxic left coronary artery myocytes exhibited an increase. K+ channel blockers revealed that a 4-aminopyridine (4AP)-sensitive current (Kv current) was decreased in H-RCA (14.3+/-1.1 vs. 23.4+/-2.5 pA/pF at 60 mV in control RCA, P<0.05) and increased in hypoxic left coronary artery myocytes (H-LCA; 26.4+/-3.8 vs. 11.8+/-1.6 pA/pF at 60 mV in control LCA, P<0.05). Constriction to 4AP was decreased in H-RCA when compared to normoxic control and increased in H-LCA when compared to LCA. Finally, we observed that the expression of Kv1.2 and Kv1.5 were lower in H-RCA than that in H-LCA. This study reveals that CH differentially regulates Kv channels in coronary myocytes. Hypoxia decreases Kv currents and therefore reduces vasoreactivity that contributes to an adaptative response leading to right hypertrophied ventricle perfusion enhancement at rest.  相似文献   

6.
By using a patch clamp technique, we examined the effect of cyclic guanosine monophosphate (cGMP)-dependent protein kinase (G kinase) on Ca2+-activated maxi K+ channels in canine coronary artery smooth muscle cells. Maxi K+ channels (274±4 pS in symmetrical 140 mM KCl at 24–26°C) were activated by cytoplasmic Ca2+ and were completely blocked by 100 nM charybdotoxin (CTX). G kinase (300 U/ml) added to the cytoplasmic face of the membrane patch shifted the voltage dependence of these channels by about 25 mV in the negative direction in the presence of 1 M Ca2+, 50 M cGMP and 1 mM magnesium adenosine triphosphate. At –50 mV and 1 M Ca2+, G kinase treatment increased the mean number of open channels 4.5-fold compared with the control. -Human atrial natriuretic peptide (ANP, 100 nM) reduced the isometric tension of coronary arterial rings elicited by 14 or 24 mM KCl, but failed to relax the artery contracted by 34 mM KCl. Addition of 100 nM CTX augmented tension development elicited by 24 mM KCl and totally prevented ANP from relaxing the arterial rings. These results indicate that G kinase-dependent protein phosphorylation activates maxi K+ channels in canine coronary smooth muscle, and further suggest that the G kinase-induced activation of maxi K+ channels may cause hyperpolarization and relaxation of coronary artery.  相似文献   

7.
The cellular mechanisms mediating hypoxia-induced dilation of cerebral arteries have remained unknown, but may involve modulation of membrane ionic channels. The present study was designed to determine the effect of reduced partial pressure of O2, PO 2, on the predominant K+ channel type recorded in cat cerebral arterial muscle cells, and on the diameter of pressurized cat cerebral arteries. A K+-selective single-channel current with a unitary slope conductance of 215 pS was recorded from excised inside-out patches of cat cerebral arterial muscle cells using symmetrical KCl (145 mM) solution. The open state probability (NP o) of this channel displayed a strong voltage dependence, was not affected by varying intracellular ATP concentration [(ATP]i) between 0 and 100 M, but was significantly increased upon elevation of intracellular free Ca2+ concentration ([Ca2+]i). Low concentrations of external tetraethylammonium (0.1–3 mM) produced a concentration-dependent reduction of the unitary current amplitude of this channel. In cell-attached patches, where the resting membrane potential was set to zero with a high KCl solution, reduction of O2 from 21% to < 2% reversibly increased the NP o, mean open time, and event frequency of the Ca2+-sensitive, high-conductance single-channel K+ current recorded at a patch potential of + 20 mV. A similar reduction in PO2 also produced a transient increase in the activity of the 215-pS K+ channel measured in excised inside-out patches bathed in symmetrical 145 mM KCl, an effect which was diminished, or not seen, during a second application of hypoxic superfusion. Hypoxia had no effect on [Ca2+]i or intracellular pH (pHi) of cat cerebral arterial muscle cells, as measured using Ca2+- or pH-sensitive fluorescent probes. Reduced PO2 caused a significant dilation of pressurized cerebral arterial segments, which was attenuated by pre-treatment with 1 mM tetraethylammonium. These results suggest that reduced PO2 increases the activity of a high-conductance, Ca2+-sensitive K+ channel in cat cerebral arterial muscle cells, and that these effects are mediated by cytosolic events independent of changes in [Ca2+]i and pHi.  相似文献   

8.
The effects of intracellular pH on an inwardly rectifying K+ channel (Kin channel) in opossum kidney (OK) cells were examined using the patch-clamp technique. Experiments with inside-out patches were first carried out in Mg2+-and adenosine triphosphate (ATP)-free conditions, where Mg2+-induced inactivation and ATP-induced reactivation of Kin channels were suppressed. When the bath (cytoplasmic side) pH was decreased from 7.3 to either 6.8 or 6.3, Kin channels were markedly inhibited. The effect of acid pH was not fully reversible. When the bath pH was increased from 7.3 to 7.8, 8.3 or 8.8, the channels were activated reversibly. The channel activity exhibited a sigmoidal pH dependence with a maximum sensitivity at pH 7.5. Inside-out experiments were also carried out with a solution containing 3 mM Mg-ATP and a similar pH sensitivity was observed. However, in contrast with the results obtained in the absence of Mg2+ and ATP, the effect of acid pH was fully reversible. Experiments with cell-attached patches demonstrated that changes in intracellular pH, which were induced by changing extracellular pH in the presence of an H+ ionophore, could influence the channel activity reversibly. It is concluded that the activity of Kin channels can be controlled by the intracellular pH under physiological conditions.  相似文献   

9.
The sensitivity of carotid body chemoreceptors to hypoxia is low just after birth and increases over the first few weeks of the postnatal period. At present, it is believed that the hypoxia-induced excitation of carotid body glomus cells begins with the inhibition of the outward K+ current via one or more O2 sensors. Although the nature of the O2 sensors and their signals that inhibit the K+ current are not well defined, studies suggest that the postnatal maturation of the glomus cell response to hypoxia is largely due to the increased sensitivity of K+ channels to hypoxia. As KV, BK and TASK channels that are O2-sensitive contribute to the K+ current, it is important to identify the O2 sensor and the signaling molecule for each of these K+ channels. Various O2 sensors (mitochondrial hemeprotein, hemeoxygenase-2, NADPH oxidase) and associated signals have been proposed to mediate the inhibition of K+ channels by hypoxia. Studies suggest that a mitochondrial hemeprotein is likely to serve as an O2 sensor for K+ channels, particularly for TASK, and that multiple signals may be involved. Thus, changes in the sensitivity of the mitochondrial O2 sensor to hypoxia, the sensitivity of K+ channels to signals generated by mitochondria, and/or the expression levels of K+ channels are likely to account for the postnatal maturation of O2 sensing by glomus cells.  相似文献   

10.
The effect of forskolin on voltage-activated Na+ and K+ currents in nodes of Ranvier from the toad, Bufo marinus, has been examined using the vaseline-gap voltageclamp technique. Peak Na+ currents (I Na) were reduced by 35% and the rate of decline of Na+ current during continuous depolarization was accelerated following treatment with 450 M forskolin. However, the voltage-dependence of steady-state inactivation as well as the rate of recovery from fast inactivation remained unchanged. Upon repetitive depolarization at 1–10 Hz, a further inhibition of I Na (60%) was observed. This use-dependent or phasic inhibition recovers slowly at -80 mV ( 13 s) and had a voltage-dependence like that of activation of the Na conductance. Near maximal steady-state phasic inhibition occurred with depolarizing pulse durations of only 4 ms, consistent with a direct involvement of the open Na+ channel in the blocking process. Inhibition of the delayed K+ current (I K) was characterized by a concentration-dependent reduction in steady-state current amplitude (IC50 80 M) and a concentration-independent acceleration of current inactivation. A similar inhibition of I K was obtained with 1,9-dideoxyforskolin, a homolog which does not activate adenylate cyclase (AC). The results suggest that the inhibition of I K and perhaps I Na follows directly from drug binding and is not a consequence of AC activation.  相似文献   

11.
The involvement of large-conductance, voltage- and Ca2+-activated K+ channels (maxi-K+ channels) in basolateral Ca2+-dependent K+-efflux pathways and fluid secretion by the rat submandibular gland was investigated. Basolateral K+ efflux was monitored by measuring the change in K+ concentration in the perfusate collected from the vein of the isolated, perfused rat submandibular gland every 30 s. Under conditions in which the Na+/K+-ATPase and Na+-K+-2Cl cotransporter were inhibited by ouabain (1 mmol/l) and bumeta-nide (50 mol/l) respectively, continuous stimulation with acetylcholine (ACh) (1 mol/l) caused a transient large net K+ efflux, followed by a smaller K+ efflux, which gradually returned to the basal level within 10 min. These two components of the K+ efflux appear to be dependent on an increase in cytosolic Ca2+ concentration. The initial transient K+ efflux was not affected by charybdotoxin (100 nmol/l) or tetraethylammonium (TEA) (5 mmol/l) but the smaller second component was strongly and reversibly inhibited by charybdotoxin (100 nmol/l) and TEA (0.1 and 5 mmol/l). The initial K+ efflux transient induced by ACh was inhibited by quinine (0.1–3 mmol/l), quinidine (1–3 mmol/l) and Ba2+ (5 mmol/l), but not by verapamil (0.1 mmol/l), lidocaine (1 mmol/l), 4-aminopyridine (1 mmol/l) or apamin (1 mol/l). Ca2+-dependent transient large K+ effluxes induced by substance P (0.01 mol/l) and A23187 (3 mol/l) were not inhibited by TEA (5 mmol/l or 10 mmol/l). A23187 (3 mol/l) evoked a biphasic fluid-secretory response, which was not inhibited by TEA (5 mmol/l). Patch-clamp studies confirmed that the whole-cell outward K+ current attributable to maxi-K+ channels obtained from rat submandibular endpiece cells was strongly inhibited by the addition of TEA (1–10 mmol/l) to the bath. It is concluded that maxi-K+ channels are not responsible for the major part of the Ca2+-dependent basolateral K+ efflux and fluid secretion by the rat submandibular gland.  相似文献   

12.
Deactivation of brain macrophages (microglia) by transforming growth factor- (TGF-) is characterized by enhanced Kv1.3 K+ channel expression. The intracellular mechanisms by which TGF- causes K+ channel upregulation in microglia have remained unclear. We show here that the protein kinase inhibitor H7 abolishes TGF--induced increases in delayed rectifier K+ current density. However, this effect cannot be related to inhibition of protein kinase C (PKC) or protein kinase A (PKA) activity, because specific PKC and PKA inhibitors did not exhibit effects identical to H7. TGF--induced Kv1.3 channel expression was also unaffected by inhibitors of tyrosine kinase, Ca2+/calmodulin kinase II and mitogen-activated protein (MAP) kinase ERK. In contrast, delayed rectifier K+ current density was larger in TGF--stimulated cells pretreated with the p38 MAP kinase inhibitor SB203580 or the phosphatidylinositol 3-OH (PI3) kinase inhibitor wortmannin, suggesting that both p38 MAP kinase and PI3 kinase regulate negatively the upregulation of Kv1.3 K+ channels in TGF--treated microglial cells.  相似文献   

13.
Ca2+-activated K+ [K(Ca)] channels were studied in excised patches of resting and activated human peripheral blood T lymphocytes. The K(Ca) channel had a single-channel conductance of 50±6 pS in symmetrical high-K+ solutions in the potential range of –100 to –10 mV and was inwardly rectifying at more depolarized potentials. The channel was sensitive to block by charybdotoxin (10 nM) and insensitive to apamin (3 nM). Half-maximum activation occurred at an internal free Ca2+ concentration of 360±110 nM. The concentration-effect curve had a slope factor of 0.83±0.12, suggesting a 11 interaction of Ca2+ ions with the channel. Ca2+ affects the open time probability of the K(Ca) channels, mainly by modulating the frequency of channel opening. The open probability did not show voltage dependence. The kinetics of the channel could be described assuming one open state and two closed states. The time constant of the exponential describing the open time distribution amounted to 2.8±1.2 ms, whereas the closed time distribution could be described with two exponentials with time constants of 0.2±0.05 ms and 8.0±2.1 ms, respectively. Resting T lymphocytes expressed a low number of channels but the density of channels increased dramatically during chronic phytohaemagglutinin stimulation.  相似文献   

14.
In dissociated MDCK cells, activators of the cyclic AMP system cause depolarization detectable by changes in fluorescence of the membrane potential sensitive dye bisoxonol. Addition of forskolin (60 M), vasopressin (2 M), 8-bromo-cyclic AMP (0.5 mM) or l-epinephrine (10 M) depolarized the cells substantially in low Cl (5 mM) but had little effect in high Cl (140 mM) solution. These results are consistent with cyclic AMP activation of Cl channels. The Ca2+-ionophore ionomycin (1 M) produced a rapid hyperpolarization in low and high Cl solutions, consistent with K+ channel opening. Using a clonal subline, MDCK-14, the magnitude of the ionomycin hyperpolarization was roughly proportional to the concomitant rise in [Ca2+]i as measured with the intracellular Ca2+ probe indo-I. Both l-epinephrine and isoproterenol appeared to activate the Cl channels. However only l-epinephrine produced a [Ca2+]i rise and a transient hyperpolarization (due to K+ channel opening), which preceeded the depolarization due to Cl channel opening. The l-epinephrine-induced [Ca2+]i response of the heterogeneous MDCK cell population but not of the clonal subline MDCK-14 was inhibited by removal of extracellular Ca2+. In the latter only the slow secondary phase of the [Ca2+]i rise was affected by Ca2+ removal. It is concluded that l-epinephrine activates K+ and Cl channels in a sequential manner in MDCK cells by Ca2+ and cAMP signals, presumably via - and -adrenergic receptors located on the same cell.Abbreviations MDCK cells Madin Darby Canine Kidney cells - [Ca2+]i intracellular calcium concentration - [Cl]i intracellular chloride concentration - [Cl]o extracellular chloride concentration - [Na++K+]i intracellular concentration of Na+ and K+ - [Na++K+]o extracellular concentration of Na+ and K+ - EM transmembrane potential - ECl chloride equilibrium potential - EK potassium equilibrium potential - bis-oxonol [bis(1,3-diethylthio-barbiturate)] trimethine oxonol - DMSO dimethylsulfoxide - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol bis (-aminoethyl ether) N,N-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1 piperazineethanesulfonic acid - NMG+ N-methylglucamine - RPMI medium Rosewell Park Memorial Institute medium  相似文献   

15.
Clinical doses of ketamine typically increase blood pressure, heart rate, and cardiac output. However, the precise mechanism by which ketamine produces these cardiovascular effects remains unclear. The voltage-gated K+ (KV) channel is the major regulator of resting membrane potential (E m) and vascular tone in many arteries. Therefore, we sought to evaluate the effects of ketamine on KV currents using the standard whole-cell patch clamp recordings in single myocytes, enzymatically dispersed from rat mesenteric arteries. Ketamine [(±)-racemic mixture] inhibited KV currents reversibly and concentration dependently with a K d of 566.7 ± 32.3 μM and Hill coefficient of 0.75 ± 0.03. The inhibition of KV currents by ketamine was voltage independent, and the time courses of channel activation and inactivation were little affected. The effects of ketamine on steady-state activation and inactivation curves were also minimal. Use-dependent inhibition was not observed either. S(+)-ketamine inhibited KV currents with similar potency and efficacy as the racemic mixture. The average resting E m in rat mesenteric artery myocytes was −44.1 ± 4.2 mV, and both racemic and S(+)-ketamine induced depolarization of E m (15.8 ± 3.6 and 24.3 ± 5.0 mV at 100 μM, respectively). We conclude that ketamine induces E m depolarization in vascular myocytes by blocking KV channels in a state-independent manner, which may contribute to the increased vascular tone and blood pressure produced by this drug under a clinical setting.  相似文献   

16.
K+ depletion exerts dramatically variable effects on different potassium channels. Here we report that Shab channels are rather stable in the absence of either internal or external K+ alone; however, its stability is greater with K+ outside the cell. In contrast, with 0 K+ (non-added) solutions on both sides of the membrane, the conductance (GK) is rapidly and irreversibly lost. GK is lost with the channels closed and regardless of the composition of the 0 K+ solutions. In comparison, it is known that the Shaker B GK collapses only if the channels are gated in 0 K+, Na+-containing solutions. In order to compare the behavior of Shab to that of Shaker, we show that after extensively gating the channels in 0 K+ N-methyl-D-glucamine solutions, most Shaker channels remain stable, and in a conformation where GK collapses as soon as there is Na+ in the solutions. Regarding ion conduction, in contrast to Kv2.1 and Shaker A463C that have a sizable GNa in 0 K+, Shab, which shares a 463-cysteine and an identical signature sequence with these channels, does not appreciably conduct Na+, although it presents a significant Cs+ conductance. The observations suggest that there are at least two sites where K+ binds and thus maintains Shab GK stable, one internal and the other(s) most likely located outside the selectivity filter.  相似文献   

17.
The properties of the Ca2+-activated K+ channel in unfertilized hamster oocytes were investigated at the single-channel level using inside-out excised membrane patches. The results indicate a new type of Ca2+-activated K+ channel which has the following characteristics: (1) single-channel conductance of 40–85 pS for outward currents in symmetrical K+ (150 mM) solutions, (2) inward currents of smaller conductance (10–50 pS) than outward currents, i.e. the channel is outwardly rectified in symmetrical K+ solutions, (3) channel activity dependent on the internal concentration of free Ca+ and the membrane potential, (4) modification of the channel activity by internal adenosine 5 diphosphate (0.1 mM) producing a high open probability regardless of membrane potential.  相似文献   

18.
K+ conductance species in a human intestinal epithelial cell line (Intestine 407) were studied in connection with their sensitivities to an intestinal secretagogue, histamine, using the tight-seal whole-cell patch-clamp technique. Applications of positive command pulses rapidly induced outward K+ currents. The conductance became progressively larger with increasing command voltages, exhibiting an outwardly rectifying current voltage relation. Inward K+ currents were also rapidly activated upon applications of hyperpolarizing pulses at potentials negative to the equilibrium potential of K+ (E K), and the conductance inwardly rectified. Application of a Ca2+ ionophore, ionomycin, brought about activation of additional K+ currents. An inhibitor of protein kinase C, polymyxin B, did not affect the ionomycin-induced response. Histamine (10–200 μM) also activated a similar K+ current which was abolished by cytosolic Ca2+ chelation. Under conditions where Ca2+ mobilization was minimized, histamine was found to significantly augment inwardly rectifying K+, but suppress outwardly rectifying K+, currents. Polymyxin B blocked these effects of histamine. An activator of protein kinase C, 1-oleoyl-2-acetylglycerol, mimicked the histamine effects. It is concluded that the intestinal epithelial cell has three distinct types of K+ conductance and that histamine modulates not only Ca2+-activated K+ conductance via Ca2+ mobilization, but also inward- and outward-rectifier K+ conductances via activation of protein kinase C.  相似文献   

19.
Effects of G protein subunits from rat brain on cardiac K+ channel was examined in single atrial cells of guinea-pig, using patch clamp techniques. We found that 10 pM concentration of rat brain subunits preparation could activate the atrial muscarine receptor-gated K+ channel (IK.ACh). Neither the detergent, CHAPS, used to suspend nor the boiled preparation activated IK.ACh. Furthermore, preincubation of subunits preparation in Mg2+-free solution, which easily inactivated -GTP-S, did not affect -activation of IK.ACh. We concluded, therefore, that subunits themselves can activate IK.ACh.Supported by the grants from the Ministry of Education, Culture and Science of Japan and from the Calcium Signal Workshop on Cardiovascular Systems  相似文献   

20.
Insights into how sugar can turn off cell activity are emerging from studies of hypothalamic neurons. Brain states are coordinated by hypothalamic orexin/hypocretin neurons, whose loss leads to narcoleptic instability of consciousness and inability to rouse when hungry. Recent studies indicate that glucose blocks the electrical activity of orexin cells by opening K+ channels in their membrane. This new energy-sensing mechanism is so sensitive that even small changes in glucose levels, of the type occurring between meals, can turn orexin cells on and off. Glucose-stimulated K+ channels share biophysical properties with “leak” (two-pore domain) K+ channels, the newest and least understood K+ channel family. A hypothesis is outlined whereby the stimulation of brain K+ channels by sugar could relieve stress and enhance reward, although probably at a cost of increased sleepiness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号