首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Inhibition of virus replication by means of RNA interference has been reported for several important human pathogens, including human immunodeficiency virus type 1 (HIV-1). RNA interference against these pathogens has been accomplished by introduction of virus-specific synthetic small interfering RNAs (siRNAs) or DNA constructs encoding short-hairpin RNAs (shRNAs). Their use as therapeutic antiviral against HIV-1 is limited, because of the emergence of viral escape mutants. In order to solve this durability problem, we tested DNA constructs encoding virus-specific long-hairpin RNAs (lhRNAs) for their ability to inhibit HIV-1 production. Expression of lhRNAs in mammalian cells may result in the synthesis of many siRNAs targeting different viral sequences, thus providing more potent inhibition and reducing the chance of viral escape. The lhRNA constructs were compared with in vitro diced double-stranded RNA and a DNA construct encoding an effective nef-specific shRNA for their ability to inhibit HIV-1 production in cells. Our results show that DNA constructs encoding virus-specific lhRNAs are capable of inhibiting HIV-1 production in a sequence-specific manner, without inducing the class I interferon genes.  相似文献   

2.
3.
Chang LJ  Liu X  He J 《Gene therapy》2005,12(14):1133-1144
The high mutation rate of the human immunodeficiency virus (HIV) makes it difficult for any therapy employing a single anti-HIV targeting mechanism to sustain prolonged effect. In an attempt to explore novel therapy for AIDS, we developed and tested lentiviral small interfering RNA (siRNA) vectors targeting multiple highly conserved regions in the HIV type 1 (HIV-1) genome. The siRNA expression cassette was cloned into an extensively deleted HIV-1-derived lentiviral self-inactivating insulator (SIN) insulator [corrected] vector. Although some of the siRNAs targeting sites were also present in the helper construct of the vector system, the production of these lentiviral siRNA vectors were not significantly affected. When tested against different HIV-1 strains including pNL4-3 (subtype B), p89.6 (subtype B) and p90CF402.1.8 (subtype A/E recombinant), the siRNAs targeting conserved gag, pol, int and vpu, but not U3, nef or U5 regions, efficiently inhibited replication of all three viral strains. These lentiviral siRNA vectors also protected host cells from syncytium-forming macrophage- and T-cell-tropic HIV-1-induced cytotoxicity. Transduction of a long-term chronically infected human lymphoma cell line with lentiviral siRNAs resulted in stable inhibition of HIV-1 replication. Northern analysis showed that both genomic and subgenomic viral RNA species were downregulated. In addition, the viral RNA was inhibited in both the nuclear and cytoplasmic compartments of [corrected] chronically infected cells after prolonged passage, suggesting that [corrected] lentiviral siRNAs have a nuclear effect [corrected] Using these lentiviral siRNA [corrected] vectors, we further demonstrated reduced replication kinetics of HIV-1 in primary human peripheral blood lymphocytes. These results suggest that lentiviral siRNAs targeting multiple conserved HIV-1 sequences holds significant promise for the treatment of HIV-1 infections.  相似文献   

4.
RNA interference (RNAi) is a widely used gene suppression tool that holds great promise as a novel antiviral approach. However, for error-prone viruses including human immunodeficiency virus type 1(HIV-1), a combinatorial approach against multiple conserved sequences is required to prevent the emergence of RNAi-resistant escape viruses. Previously, we constructed extended short hairpin RNAs (e-shRNAs) that encode two potent small interfering RNAs (siRNAs) (e2-shRNAs). We showed that a minimal hairpin stem length of 43 base pairs (bp) is needed to obtain two functional siRNAs. In this study, we elaborated on the e2-shRNA design to make e-shRNAs encoding three or four antiviral siRNAs. We demonstrate that siRNA production and the antiviral effect is optimal for e3-shRNA of 66 bp. Further extension of the hairpin stem results in a loss of RNAi activity. The same was observed for long hairpin RNAs (lhRNAs) that target consecutive HIV-1 sequences. Importantly, we show that HIV-1 replication is durably inhibited in T cells stably transduced with a lentiviral vector containing the e3-shRNA expression cassette. These results show that e-shRNAs can be used as a combinatorial RNAi approach to target error-prone viruses.  相似文献   

5.
RNA interference (RNAi) provides a powerful new means to inhibit viral infection specifically. However, the selection of siRNA-resistant viruses is a major concern in the use of RNAi as antiviral therapeutics. In this study, we conducted a lentiviral vector with a H1-short hairpin RNA (shRNA) expression cassette to deliver small interfering RNAs (siRNAs) into mammalian cells. Using this vector that also expresses enhanced green fluorescence protein (EGFP) as surrogate marker, stable shRNA-expressing cell lines were successfully established and the inhibition efficiencies of rationally designed siRNAs targeting to conserved regions of influenza A virus genome were assessed. The results showed that a siRNA targeting influenza M2 gene (siM2) potently inhibited viral replication. The siM2 was not only effective for H1N1 virus but also for highly pathogenic avian influenza virus H5N1. In addition to its M2 inhibition, the siM2 also inhibited NP mRNA accumulation and protein expression. A long term inhibition effect of the siM2 was demonstrated and the emergence of siRNA-resistant mutants in influenza quasispecies was not observed. Taken together, our study suggested that M2 gene might be an optimal RNAi target for antiviral therapy. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for human influenza virus infection.  相似文献   

6.
RNA interference (RNAi) gene therapy against HIV-1 by stable expression of antiviral short hairpin RNAs (shRNAs) can potently inhibit viral replication in T cells. Recently, a mouse model with a human immune system (HIS) was developed that can be productively infected with HIV-1. In this in vivo model, in which Rag-2(-/-)gamma(c)(-/-) mice are engrafted with human CD34(+)CD38(-) hematopoietic precursor cells, we evaluated an anti-HIV RNAi gene therapy. Human hematopoietic stem cells were transduced with a lentiviral vector expressing an shRNA against the HIV-1 nef gene (shNef) or the control vector. We observed normal development of the different cell subsets of the immune system. However, although initial transduction efficiencies were similar for both vectors, a reduced percentage of transduced human immune cells was observed for the shNef vector after establishment of the HIS in vivo. Further studies are required to fully evaluate the safety implications. When we infected the mature human CD4(+) T cells from the HIS mouse ex vivo with HIV-1, potent inhibition of viral replication was scored in shNef-expressing cells, confirming efficacy. When challenged with an shNef-resistant HIV-1 variant, equal replication was scored in control and shNef-expressing cells, confirming sequence-specificity of the RNAi therapy. We thus demonstrated that an antiviral RNAi-based gene therapy on blood stem cells leads to HIV-1-resistant T cells in vivo, an important proof of concept in the clinical development of RNAi against HIV-1.  相似文献   

7.
Silencing of HIV-1 with RNA interference: a multiple shRNA approach.   总被引:11,自引:0,他引:11  
Double-stranded RNA can induce gene silencing via a process known as RNA interference (RNAi). Previously, we have shown that stable expression of a single shRNA targeting the HIV-1 Nef gene strongly inhibits HIV-1 replication. However, this was not sufficient to maintain inhibition. One of the hallmarks of RNAi, its sequence specificity, presented a way out for the virus, as single nucleotide substitutions in the target region abolished inhibition. For the development of a durable gene therapy that prevents viral escape, we proposed to combine multiple shRNAs against conserved HIV-1 regions. Therefore, we screened 86 different shRNAs targeting highly conserved regions. We identified multiple shRNAs that act as potent inhibitors of virus replication. We show, for the first time, that expression of three different shRNAs from a single lentiviral vector results in similar levels of inhibition per shRNA compared to single shRNA vectors. Thus, their combined expression results in a much stronger inhibition of virus production. Moreover, when we infected cells transduced with a double shRNA viral vector, virus escape was delayed. These results confirm that RNAi has great potential as an antiviral gene therapy approach and support our efforts to develop this strategy for treatment of HIV-1-infected individuals.  相似文献   

8.
Several vectors for the induction of RNA interference in mammalian cells have been described,based mainly on polIII-dependent promoters. They transcribe short hairpin RNAs (shRNA) that,after being processed into short interfering RNAs (siRNAs), mediate the degradation of the target mRNA. Here, we describe the construction of a new siRNA-expressing vector (psiUx) based on the strong and ubiquitous polII-dependent promoter of the human U1 small nuclear RNA (snRNA)gene. In psiUx, the only constraint for the shRNA sequence is a purine at position +1, since specific 3'-end formation is achieved by a box element located downstream of the transcribed region. Several constructs were designed against the lamin A/C target. Depending on the structure of the shRNA transcribed, a preferential or exclusive accumulation of the antisense strand is obtained, thus avoiding possible nonspecific targeting by the sense strand. In all cases tested, very effective siRNAs were produced, thus providing a proof-of-principle that a snRNA-type polII promoter can be used for the expression of siRNAs. We show that psiUx ensures high levels of expression and efficient knock down of the target gene also in stable cell lines.  相似文献   

9.
RNA interference (RNAi) is highly effective in inhibiting human immunodeficiency virus type 1 (HIV-1) replication by the expression of antiviral short hairpin RNA (shRNA) in stably transduced T-cell lines. For the development of a durable gene therapy that prevents viral escape, we proposed to combine multiple shRNAs against highly conserved regions of the HIV-1 RNA genome. The future in vivo application of such a gene therapy protocol will reach only a fraction of the T cells, such that HIV-1 replication will continue in the unmodified T cells, thereby possibly frustrating the therapy by generation of HIV-1 variants that escape from the inhibition imposed by the protected cells. We studied virus inhibition and evolution in pure cultures of shRNA-expressing cells versus mixed cell cultures of protected and unprotected T cells. The addition of the unprotected T cells indeed seems to accelerate HIV-1 evolution and escape from a single shRNA inhibitor. However, expression of three antiviral shRNAs from a single lentiviral vector prevents virus escape even in the presence of unprotected cells. These results support the idea to validate the therapeutic potential of this anti-HIV approach in appropriate in vivo models.  相似文献   

10.
We have previously identified a target site in HIV-1 RNA that was particularly accessible to a ribozyme and a short hairpin RNA (shRNA). To design small interfering RNAs (siRNAs) targeting this site, we evaluated the effects of siRNAs with different lengths on HIV-1 production. The potency and efficacy of these siRNAs were dependent on the length of their intended sense strand with trends for symmetrical and asymmetrical formats that were similar. Although a typical canonical format with a 21-nucleotide (nt) sense strand was effective at inhibiting HIV-1 production, Dicer substrate siRNAs (dsiRNAs) with the longest lengths (27 to 29 nucleotides) were the most effective. Induction of double-stranded RNA immune responses and effects on cell viability were not detected in cells transfected with different siRNAs, suggesting that the differences observed were not related to indirect effects on HIV-1 production. For the corresponding shRNA designs, a different trend in potency and efficacy against HIV-1 production was observed, with the most effective shRNAs having stem lengths from 20 to 27 bp. Our results highlight the importance of evaluating different designs to identify the best siRNA and shRNA formats for any particular target site and provide a set of highly effective molecules for further development as drug and gene therapies for HIV-1 infection.  相似文献   

11.
12.
The cellular introduction of short, interfering RNA leads to sequence-specific degradation of homologous mRNA, a process termed RNA interference (RNAi). Here, we report that recombinant adeno-associated virus 2 (rAAV-2) can be used to transfer short hairpin (sh) RNA expression cassettes genetically into human cells. HIV-1 replication was suppressed by >95% in H9 cells and primary human lymphocytes that expressed shRNA targeting the first exon of the viral transactivator protein tat compared to control cells. rAAV-2 integrated stably into the host genome, leading to long-term expression of tat shRNA. Our findings demonstrate the utility of rAAV-2 for the genetic transfer of shRNA expression cassettes into human cells, providing an alternative to using retroviral vectors as RNAi delivery systems.  相似文献   

13.
Short interfering RNAs (siRNAs) are as effective at targeting and silencing genes by RNA interference (RNAi) as long double-stranded RNAs (dsRNAs). siRNAs are widely used for assessing gene function in cultured mammalian cells or early developing vertebrate embryos. siRNAs are also promising reagents for developing gene-specific therapeutics. Specifically, the inhibition of HIV-1 replication is particularly well-suited to RNAi, as several stages of the viral life cycle and many viral and cellular genes can be targeted. The future success of this approach will depend on recent advances in siRNA-based silencing technologies.  相似文献   

14.
15.
RNA interference (RNAi) is triggered by the presence of a double-stranded RNA (dsRNA) in the cell, and results in the silencing of homologous gene expression by the specific degradation of an mRNA containing the same sequence. dsRNA-mediated RNAi can be used in a wide variety of eucaryotes to induce the sequence-specific inhibition of gene expression. Synthetic 21-23 nucleotide (nt) small interfering RNAs (siRNAs) with 2-nt 3' overhangs were recently found to mediate efficient sequence-specific mRNA degradation in mammalian cells. Here, we show that synthetic siRNAs targeted against the viral structural Env proteins encoded by HIV-1 can specifically suppress the expression of HIV-1 genes. The siRNA-mediated RNAi also had advantages over antisense RNA-mediated inhibition, in terms of both the ease of designing effective antiviral agents and their potency. Especially, our best env-specific siRNAs, E7145 targeted to the central region of the V3 loop and E7490 targeted to the CD4 binding site of conserved regions on gp120, significantly inhibited the HIV-1 gene expression. Furthermore, E7145 and E7490 were effective against HIV-1(NL4-3) replication in PBMCs for a relatively long time (14 days). Therefore, the use of synthetic siRNAs provides a simple, rapid, and cost-effective tool for new anti-HIV-1 gene therapeutics.  相似文献   

16.
17.
Lentiviral-mediated delivery of siRNAs for antiviral therapy   总被引:20,自引:0,他引:20  
Morris KV  Rossi JJ 《Gene therapy》2006,13(6):553-558
  相似文献   

18.
Identification of sequences within a target mRNA that are susceptible to potent siRNA knockdown often requires testing several independent siRNAs or shRNA expression cassettes. Using RNAi against HIV RNAs is further complicated by the length of the viral genome, the complexity of splicing patterns, and the propensity for genetic heterogeneity; consequently, it is most important to identify a number of siRNA targets that potently block viral replication. We previously described a facile PCR-based strategy for rapid synthesis of si/shRNA expression units and their testing in mammalian cells. Using this approach, which is rapid and inexpensive, it is possible to screen a number of potential RNAi targets in HIV to identify those that are most susceptible to RNAi. We report that shRNA expression cassettes constructed by PCR and cotransfected directly into mammalian cells with HIV proviral DNA express shRNAs that are inhibitory to HIV-1 replication. Our results also demonstrate that there is a wide range of efficacies among shRNAs targeting different sites throughout the HIV genome. By screening several different targets we were able to identify a sequence in a common tat/rev exon that is exquisitely sensitive to RNAi. Furthermore we relate the efficacies of our PCR product expressed shRNAs to the relative stabilities of the siRNA duplexes and the accessibilities of the target sites to antisense base pairing in cell extracts.  相似文献   

19.
近年来发展了一些质粒载体介导shRNA的转录,然后在细胞酶的作用下加工成功能性的siRNAs。虽然这些载体较化学合成的siRNA有更多的优点,但仍存在相当多的缺点,如转染效率低和不能在体内使用。本研究建立一种没有上述缺点的腺病毒递送BmihRNAs系统,设计靶向人Bmi—1的载体。以pAdTrackCMV质粒为模板扩增CMV—GFP表达盒,从pGE1BMIhRNA质粒上酶切下U6-BMI-1shRNA表达盒,克隆它们入穿梭质粒pShuttle中,然后与pAdEasy-1质粒基因重组产生腺病毒质粒pAd—BMIhRNA—CVM—GFP,转染293A包装细胞,收获病毒。病毒感染K562细胞后,在mRNA和蛋白水平上分别用RealTime—PCR和Western blot检测BMI的表达水平。结果表明:成功构建了pGE1BMIhRNA腺病毒质粒并有效包装出病毒。感染BmmRNA腺病毒的K562细胞在mRNA和蛋白水平上均显著下调了Bmi-1的表达,而对照病毒没有明显的效果。结论:腺病毒是一种有效递送siRNA入哺乳动物细胞的载体。腺病毒递送siRNA载体可能成为siRNA药物的基因治疗载体。  相似文献   

20.
RNA interference: from gene silencing to gene-specific therapeutics   总被引:51,自引:0,他引:51  
In the past 4 years, RNA interference (RNAi) has become widely used as an experimental tool to analyse the function of mammalian genes, both in vitro and in vivo. By harnessing an evolutionary conserved endogenous biological pathway, first identified in plants and lower organisms, double-stranded RNA (dsRNA) reagents are used to bind to and promote the degradation of target RNAs, resulting in knockdown of the expression of specific genes. RNAi can be induced in mammalian cells by the introduction of synthetic double-stranded small interfering RNAs (siRNAs) 21-23 base pairs (bp) in length or by plasmid and viral vector systems that express double-stranded short hairpin RNAs (shRNAs) that are subsequently processed to siRNAs by the cellular machinery. RNAi has been widely used in mammalian cells to define the functional roles of individual genes, particularly in disease. In addition, siRNA and shRNA libraries have been developed to allow the systematic analysis of genes required for disease processes such as cancer using high throughput RNAi screens. RNAi has been used for the knockdown of gene expression in experimental animals, with the development of shRNA systems that allow tissue-specific and inducible knockdown of genes promising to provide a quicker and cheaper way to generate transgenic animals than conventional approaches. Finally, because of the ability of RNAi to silence disease-associated genes in tissue culture and animal models, the development of RNAi-based reagents for clinical applications is gathering pace, as technological enhancements that improve siRNA stability and delivery in vivo, while minimising off-target and nonspecific effects, are developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号