首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.

Purpose

The goal of the study was to evaluate a miniaturized dissolution-permeation apparatus (μFLUX? apparatus) for its ability to benchmark several itraconazole (ITZ) formulations for which in vivo PK data was available in the literature.

Method

Untreated and micronized powders of ITZ and various enabling formulations of ITZ (commercial Sporanox® solid dispersion, a Soluplus®-based solid dispersion and a nanosuspension) were introduced to the donor compartment of μFLUX? apparatus. Donor and acceptor chambers were divided from each other by a lipophilic membrane. In addition to the flux evaluations, changes in solid state as a function of time were investigated to gain further insight into the flux changes observed over time for the solid dispersion formulations.

Results

Initial flux values from Sporanox®, the nanosuspension and the micronized ITZ showed ratios of 52/4/1 with a decreasing flux from nanosuspension and both solid dispersions after 2.5–3 h. Although the initial flux from the Soluplus® formulation was 2.2 times lower than the one observed for Sporanox®, the decrease in flux observed was milder and became ~ 2 times higher than Sporanox® after approximately 2.5 h. The total amounts of ITZ in the receiver compartment after 240 min showed the same rank order as the rodent AUCs of these formulations reported in literature.

Conclusions

It was demonstrated that in vitro flux measurements using lipophilic artificial membranes could correctly reproduce the rank order of PK results for ITZ formulations. The drop in flux over time for solid dispersions could be backed by experimental indications of crystallization.
  相似文献   

2.

Purpose

This study aimed to investigate the physicochemical factors contributing to stable co-amorphous formations and to design a co-former selection strategy.

Methods

Non-steroidal inflammatory drugs were used as main components and/or co-formers. Physical mixtures of the materials were melted. Co-amorphization was characterized by the inhibition effect of the co-former on crystallization of the main component from the undercooled melt. The contribution of physicochemical factors to the co-amorphous formation was analyzed by multivariate analysis. Co-amorphous samples prepared by melting were subjected to thermal and spectroscopic analyses and the isothermal crystallization test.

Results

Naproxen (NAP) was employed as the main component having a rapid crystallization tendency. Some materials used as the co-former inhibited the crystallization of amorphous NAP; decreasing melting temperatures of the components was an indicator of co-amorphization. The contribution of some physicochemical features (e.g., crystallization tendency, glass transition temperature (Tg)/melting temperature and molecular flexibility) of the co-formers to a co-amorphous formation was suggested by multivariate analysis. Deviation of the glass transition temperature from the theoretical value and changes in the infrared spectra of the co-amorphous samples were correlated with intermolecular interaction. The crystallization behaviors of the co-amorphous samples depended on their Tg.

Conclusions

The results showed a relationship between stable co-amorphous formation and the physicochemical features of the components, which should inform efficient co-former selection to design stable co-amorphous formations.
  相似文献   

3.

Purpose

Imaging methods were used as tools to provide an understanding of phenomena that occur during dissolution experiments, and ultimately to select the best ratio of two polymers in a matrix in terms of enhancement of the dissolution rate and prevention of crystallization during dissolution.

Methods

Magnetic resonance imaging, ATR-FTIR spectroscopic imaging and Raman mapping have been used to study the release mechanism of a poorly water soluble drug, aprepitant, from multicomponent amorphous solid dispersions. Solid dispersions were prepared based on the combination of two selected polymers - Soluplus, as a solubilizer, and PVP, as a dissolution enhancer. Formulations were prepared in a ratio of Soluplus:PVP 1:10, 1:5, 1:3, and 1:1, in order to obtain favorable properties of the polymer carrier.

Results

The crystallization of aprepitant during dissolution has occurred to a varying degree in the polymer ratios 1:10, 1:5, and 1:3, but the increasing presence of Soluplus in the formulation delayed the onset of crystallization. The Soluplus:PVP 1:1 solid dispersion proved to be the best matrix studied, combining the abilities of both polymers in a synergistic manner.

Conclusions

Aprepitant dissolution rate has been significantly enhanced. This study highlights the benefits of combining imaging methods in order to understand the release process.
  相似文献   

4.

Purpose

The first objective is to evaluate the feasibility of melt-extruding polyvinyl alcohol-based amorphous solid dispersions for oral drug delivery. The second objective is to investigate the miscibility between polyvinyl alcohol 4-88 and copovidone, and to characterize the properties of ternary itraconazole amorphous solid dispersions comprising both polymers.

Methods

Samples were prepared using a co-rotating, twin-screw extruder. A solution precipitation study was conducted to compare the precipitation inhibition of polyvinyl alcohol against other commonly used polymers for amorphous solid dispersions. Miscibility between polyvinyl alcohol 4-88 and copovidone was determined using DSC and XRD analyses. All extrudates were characterized using DSC, XRD, and non-sink dissolution.

Results

Polyvinyl alcohol demonstrated the highest capacity for inhibiting the precipitation of itraconazole. Itraconazole was found to be more soluble in copovidone (>30%) than in polyvinyl alcohol 4-88 (<5%) in binary extrudates. Polyvinyl alcohol and copovidone are miscible when the proportion of polyvinyl alcohol 4-88 does not exceed 30% (w/w). Compared to binary extrudates, the ternary extrudate demonstrated a higher degree of supersaturation and more sustained supersaturation of itraconazole in purified water and phosphate buffer pH 6.8 solution.

Conclusion

As a surface-active material, polyvinyl alcohol was effective in inhibiting precipitation of itraconazole in aqueous media. Solubility of itraconazole in polyvinyl alcohol in solid state was limited because of the high polarity of the polymer. Ternary systems comprising a mixture of polyvinyl alcohol and copovidone demonstrated better supersaturation in aqueous media than binary systems. Ternary systems benefited from both the high solubilizing capacity of copovidone and high precipitation inhibition capacity of polyvinyl alcohol.
  相似文献   

5.

Purpose

The aims of this study were twofold. First, to evaluate the effectiveness of selected polymers in inhibiting solution crystallization of celecoxib. Second, to compare the release rate and crystallization tendency of celecoxib amorphous solid dispersions (ASDs) formulated with a single polymer, or binary polymer combinations.

Methods

The effectiveness of polymers, polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS), in maintaining supersaturation of celecoxib solutions was evaluated by performing nucleation induction time measurements. Crystallization kinetics of ASD suspensions were monitored using Raman spectroscopy. Dissolution experiments were carried out under non-sink conditions.

Results

Pure amorphous celecoxib crystallized rapidly through both matrix and solution pathways. Matrix and solution crystallization was inhibited when celecoxib was molecularly mixed with a polymer, resulting in release of the drug to form supersaturated solutions. Cellulosic polymers were more effective than PVP in maintaining supersaturation. Combining a cellulosic polymer and PVP enabled improved drug release and stability to crystallization.

Conclusions

Inclusion of an effective solution crystallization inhibitor as a minor component in ternary dispersions resulted in prolonged supersaturation following dissolution. This study shows the feasibility of formulation strategies for ASDs where a major polymer component is used to achieve one key property e.g. release, while a minor polymer component is added to prevent crystallization.
  相似文献   

6.

Purpose

Amorphous solid dispersions (ASDs) have been widely used in the pharmaceutical industry for solubility enhancementof poorly water-soluble drugs. The physical stability, however, remainsone of the most challenging issues for the formulation development.Many factors can affect the physical stability via different mechanisms, and therefore an in-depth understanding on these factors isrequired.

Methods

In this review, we intend to summarize the physical stability of ASDsfrom a physicochemical perspective whereby factors that can influence the physical stability areclassified into thermodynamic, kinetic and environmental aspects.

Results

The drug-polymer miscibility and solubility are consideredas the main thermodynamicfactors which may determine the spontaneity of the occurrence of the physical instabilityof ASDs. Glass-transition temperature,molecular mobility, manufacturing process,physical stabilityof amorphous drugs, and drug-polymerinteractionsareconsideredas the kinetic factors which areassociated with the kinetic stability of ASDs on aging. Storage conditions including temperature and humidity could significantly affect the thermodynamicand kineticstabilityof ASDs.

Conclusion

When designing amorphous solid dispersions, it isrecommended that these thermodynamic, kinetic and environmental aspects should be completely investigatedand compared to establish rationale formulations for amorphous solid dispersions with high physical stability.
  相似文献   

7.

Purpose

Solid dispersions (SDs) of a poorly water-soluble drug were prepared, and their physicochemical properties were compared to those of control physical mixtures (PMs). Among the multiple techniques used to characterize the solid state of preparations, confocal micro Raman spectroscopy (CMRS) was used as a non-destructive tool to qualitatively probe content uniformity and distribution of drug and carrier.

Methods

SDs and PMs of drug (fenbendazole, FBZ) were prepared containing two different carriers (poloxamer P188 or P407) with different drug polymer ratios. The preparations were characterized by powder X-ray diffractometry, Fourier transform infrared spectroscopy, thermal analysis, scanning electron microscopy, and in vitro dissolution assay. In addition, CMRS technique and principal component analysis (PCA) were used in order to statistically define the content uniformity and distribution of the drug within the polymeric matrix.

Results

In vitro dissolution results exhibited a marked improvement when the drug was formulated as SD compared to control PM and to pure drug. The solid state of these preparations characterized by X-ray powder diffraction and Fourier transform infrared spectroscopy showed no changes in the crystalline state of the drug and no chemical interactions between the components. Raman studies showed a better content uniformity of the drug within the polymeric matrix when subjected to SD process, correlating with the improved dissolution profile.

Conclusion

This study provides evidence of the potential of the confocal Raman imaging technique, providing a fast and powerful method to characterize solid dispersions which could be incorporated towards the use of quality by design (QbD) approaches in pharmaceutical development.
  相似文献   

8.

Purpose

This study investigated the effect of drug-excipient miscibility on the heterogeneity and spatial distribution of phase separation in pharmaceutical solid dispersions at a micron-scale using two novel and complementary characterization techniques, thermal analysis by structural characterization (TASC) and X-ray micro-computed tomography (XμCT) in conjunction with conventional characterization methods.

Method

Complex dispersions containing felodipine, TPGS, PEG and PEO were prepared using hot melt extrusion-injection moulding. The phase separation behavior of the samples was characterized using TASC and XμCT in conjunction with conventional thermal, microscopic and spectroscopic techniques. The in vitro drug release study was performed to demonstrate the impact of phase separation on dissolution of the dispersions.

Results

The conventional characterization results indicated the phase separating nature of the carrier materials in the patches and the presence of crystalline drug in the patches with the highest drug loading (30% w/w). TASC and XμCT where used to provide insight into the spatial configuration of the separate phases. TASC enabled assessment of the increased heterogeneity of the dispersions with increasing the drug loading. XμCT allowed the visualization of the accumulation of phase separated (crystalline) drug clusters at the interface of air pockets in the patches with highest drug loading which led to poor dissolution performance. Semi-quantitative assessment of the phase separated drug clusters in the patches were attempted using XμCT.

Conclusion

TASC and XμCT can provide unique information regarding the phase separation behavior of solid dispersions which can be closely associated with important product quality indicators such as heterogeneity and microstructure.
  相似文献   

9.

Purpose

The objective of present study was to increase solubility and dissolution performance of a poorly water soluble antidiabetic drug, Nateglinide (NAT), through formation of inclusion complexes with hydroxypropyl-beta-cyclodextrin (HP–β–CD). The effect of L-arginine (ARG), an amino acid, on the complexation efficiency and solubility enhancing power of HP–β–CD was investigated by preparing ternary inclusion complexes.

Methods

The binary and ternary inclusion complexes were prepared by physical mixing, kneading, co-evaporation, and spray drying methods containing NAT, HP–β–CD, and ARG. The complexes were characterized by FTIR, DSC, PXRD, and 1H–NMR. Molecular modeling study revealed that introduction of ternary agent ARG have improved the interactions of NAT and HP–β–CD.

Results

The complex prepared by spray drying method showed the highest increase in solubility and dissolution rate compared to other methods. Molecular docking study revealed that ARG interactions plays an essential role in increasing the stability and solubility of the complex.

Conclusions

The present study demonstrated increase in solubility and dissolution of NAT. Hence, ternary complexes of NAT can be used as an efficient tool for the delivery of insoluble drug, NAT.
  相似文献   

10.

Purpose

Many future drug products will be based on innovative manufacturing solutions, which will increase the need for a thorough understanding of the interplay between drug material properties and processability. In this study, hot melt extrusion of a drug-drug mixture with minimal amount of polymeric excipient was investigated.

Methods

Using indomethacin-cimetidine as a model drug-drug system, processability of physical mixtures with and without 5% (w/w) of polyethylene oxide (PEO) were studied using Differential Scanning Calorimetry (DSC) and Small Amplitude Oscillatory Shear (SAOS) rheometry. Extrudates containing a co-amorphous glass solution were produced and the solid-state composition of these was studied with DSC.

Results

Rheological analysis indicated that the studied systems display viscosities higher than expected for small molecule melts and addition of PEO decreased the viscosity of the melt. Extrudates of indomethacin-cimetidine alone displayed amorphous-amorphous phase separation after 4 weeks of storage, whereas no phase separation was observed during the 16 week storage of the indomethacin-cimetidine extrudates containing 5% (w/w) PEO.

Conclusions

Melt extrusion of co-amorphous extrudates with low amounts of polymer was found to be a feasible manufacturing technique. Addition of 5% (w/w) polymer reduced melt viscosity and prevented phase separation.
  相似文献   

11.

Purpose

To improve the pharmaceutical properties of amorphous ciprofloxacin (CIP) succinate salts via formulation as polymer/amorphous salt solid dispersions (ASSDs).

Methods

ASSDs consisting of an amorphous CIP/succinic acid 1:1 or 2:1 salt dispersed in PVP or Soluplus were produced by spray drying and ball milling. The solid state characteristics, miscibility, stability, solubility and passive transmembrane permeability of the ASSDs were then examined.

Results

The ASSDs had higher glass transition and crystallization temperatures than the corresponding amorphous succinate salts, and were also more stable during long-term stability studies. The results of inverse gas chromatography and thermal analysis indicated that the salts and polymers form a miscible mixture. The solubility of the pure drug in water and biorelevant media was significantly increased by all of the formulations. The permeability of the ASSDs did not differ significantly from that of the amorphous CIP succinate salts, however all samples were less permeable than the pure crystalline drug.

Conclusions

The formulation of amorphous CIP succinate salts as ASSDs with polymer improved their long-term stability, but did not significantly affect their solubility or permeability.
  相似文献   

12.

Purpose

The oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs) can be improved by the preparation of amorphous solid dispersions (ASDs) where the API is dissolved in polymeric excipients. Desired properties of such ASDs like storage stability, dissolution behavior, and processability can be optimized by additional excipients. In this work, the influence of so-called low-molecular-weight excipients (LMWEs) on the phase behavior of ASDs was investigated.

Method

Binary ASDs of an amorphous API, naproxen (NAP) or acetaminophen (APAP), embedded in poly-(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) were chosen as reference systems. Polyethylene glycol 1500 (PEG1500), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS1000), propylene glycol monocaprylate type II (Capryol? 90), and propylene glycol monolaurate type I (Lauroglycol? FCC) were used as LMWEs. The API solubility in the excipients and the glass-transition temperature of the ASDs were modeled using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and the Kwei equation, respectively, and compared to corresponding experimental data.

Results

The API solubility curves in ternary systems with 90/10 wt%/wt% PVPVA64/LMWE ratios were very close to those in pure PVPVA64. However, the glass-transition temperatures of API/PVPVA64/LMWE ASDs were much lower than those of API/PVPVA64 ASDs. These effects were determined experimentally and agreed with the predictions using the PC-SAFT and Kwei models.

Conclusion

The impact of the LMWEs on the thermodynamic stability of the ASDs is quite small while the kinetic stability is significantly decreased even by small LMWE amounts. PC-SAFT and the Kwei equation are suitable tools for predicting the influence of LMWEs on the ASD phase behavior.
  相似文献   

13.

Purpose

Although the bonding area (BA) and bonding strength (BS) interplay is used to explain complex tableting behaviors, it has never been experimentally proven. The purpose of this study is to unambiguously establish the distinct contributions of each by decoupling the contributions from BA and BS.

Methods

To modulate BA, a Soluplus® powder was compressed into tablets at different temperatures and then broken following equilibration at 25°C. To modulate BS, tablets were equilibrated at different temperatures. To simultaneously modulate BA and BS, both powder compression and tablet breaking test were carried out at different temperatures.

Results

Lower tablet tensile strength is observed when the powder is compressed at a lower temperature but broken at 25°C. This is consistent with the increased resistance to polymer deformation at lower temperatures. When equilibrated at different temperatures, the tensile strength of tablets prepared under identical conditions increases with decreasing storage temperature, indicating that BS is higher at a lower temperature. When powder compression and tablet breaking are carried out at the same temperature, the profile with a maximum tensile strength at 4°C is observed due to the BA-BS interplay.

Conclusion

By systematically varying temperature during tablet compression and breaking, we have experimentally demonstrated the phenomenon of BA-BS interplay in tableting.
  相似文献   

14.

Purpose

To clarify the effects of pump pulsation and flow-through cell (FTC) dissolution system settings on the hydrodynamic properties and dissolution profiles of model formulations.

Methods

Two FTC systems with different cell temperature control mechanisms were used. Particle image velocimetry (PIV) was used to analyze the hydrodynamic properties of test solutions in the flow-through dissolution test cell. Two pulsation pumps (semi-sine, full-sine) and a non-pulsatile pump were used to study the effects of varied flows on the dissolution profiles of United States Pharmacopeia standard tablets.

Results

PIV analysis showed periodic changes in the aligned upward fluid flow throughout the dissolution cell that was designed to reduce the temperature gradient during pump pulsation (0.5 s/pulse). The maximum instantaneous flow from the semi-sine pump was higher than that of the full-sine pump under all conditions. The flow from the semi-sine wave pump showed faster dissolution of salicylic acid and prednisone tablets than those from other pumps. The semi-sine wave pump flow showed similar dissolution profiles in the two FTC systems.

Conclusions

Variations in instantaneous fluid flow caused by pump pulsation that meets the requirements of pharmacopoeias are a factor that affects the dissolution profiles of tablets in FTC systems.
  相似文献   

15.

Purpose

The impact of granule densification in high-shear wet granulation on tabletting and product performance was investigated, at pharmaceutical production scale. Product performance criteria need to be balanced with the need to deliver manufacturability criteria to assure robust industrial scale tablet manufacturing processes. A Quality by Design approach was used to determine in-process control specifications for tabletting, propose a design space for disintegration and dissolution, and to understand the permitted operating limits and required controls for an industrial tabletting process.

Methods

Granules of varying density (filling density) were made by varying water amount added, spray rate, and wet massing time in a design of experiment (DoE) approach. Granules were compressed into tablets to a range of thicknesses to obtain tablets of varying breaking force. Disintegration and dissolution performance was evaluated for the tablets made. The impact of granule filling density on tabletting was rationalised with compressibility, tabletability and compactibility.

Results

Tabletting and product performance criteria provided competing requirements for porosity. An increase in granule filling density impacted tabletability and compactability and limited the ability to achieve tablets of adequate mechanical strength. An increase in tablet solid fraction (decreased porosity) impacted disintegration and dissolution. An attribute-based design space for disintegration and dissolution was specified to achieve both product performance and manufacturability.

Conclusion

The method of granulation and resulting granule filling density is a key design consideration to achieve both product performance and manufacturability required for modern industrial scale pharmaceutical product manufacture and distribution.
  相似文献   

16.

Purpose

To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems.

Methods

Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (Tg). 13C and 15N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1H T1 and T relaxation measurements were used to probe miscibility and phase behavior of the dispersions.

Results

Tg values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40–90%, indicating a relatively strong drug-excipient interaction. 15N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at ?360.7 ppm (unprotonated) and ?344.4 ppm (protonated). Additionally, 1H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years.

Conclusions

15N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.
  相似文献   

17.

Purpose

The ability of two semi-mechanistic simulation approaches to predict the systemic pharmacokinetics (PK) of inhaled corticosteroids (ICSs) delivered via dry powder inhalers (DPIs) was assessed for mometasone furoate, budesonide and fluticasone propionate.

Methods

Both approaches derived the total lung doses and the central to peripheral lung deposition ratios from clinically relevant cascade impactor studies, but differed in the way the pulmonary absorption rate was derived. In approach 1, the rate of in vivo drug dissolution/absorption was predicted for the included ICSs from in vitro aerodynamic particle size distribution and in vitro drug solubility estimates measured in an in vivo predictive dissolution medium. Approach 2 derived a first order absorption rate from the mean dissolution time (MDT), determined for the test formulations in an in vitro Transwell® based dissolution system.

Results

Approach 1 suggested PK profiles which agreed well with the published pharmacokinetic profiles. Similarly, within approach 2, input parameters for the pulmonary absorption rate constant derived from dissolution rate experiments were able to reasonably predict the pharmacokinetic profiles published in literature.

Conclusion

Approach 1 utilizes more complex strategies for predicting the dissolution/absorption process without providing a significant advantage over approach 2 with regard to accuracy of in vivo predictions.
  相似文献   

18.

Purpose

The spray drying process is widely applied for pharmaceutical particle engineering. The purpose of this study was to investigate advantages and disadvantages of two-fluid nozzle and three-fluid nozzle spray drying processes to formulate inhalable dry powders.

Methods

Budesonide nanocomposite microparticles (BNMs) were prepared by co-spray drying of budesonide nanocrystals suspended in an aqueous mannitol solution by using a two-fluid nozzle spray drying process. Budesonide-mannitol microparticles (BMMs) were prepared by concomitant spray drying of a budesonide solution and an aqueous mannitol solution using a spray drier equipped with a three-fluid nozzle. The resulting dry powders were characterized by using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and Raman microscopy. A Next Generation Impactor was used to evaluate the aerodynamic performance of the dry powders.

Results

XRPD and DMA results showed that budesonide remained crystalline in the BNMs, whereas budesonide was amorphous in the BMMs. Spray drying of mannitol into microparticles resulted in a crystalline transformation of mannitol, evident from XRPD, DSC and Raman spectroscopy analyses. Both BMMs and BNMs displayed a faster dissolution rate than bulk budesonide. The yield of BNMs was higher than that of BMMs. The mass ratio between budesonide and mannitol was preserved in the BNMs, whereas the mass ratio in the BMMs was higher than the theoretical ratio.

Conclusions

Spray drying is an enabling technique for preparation of budesonide amorphous solid dispersions and nanocrystal-embedded microparticles. Two-fluid nozzle spray drying is superior to three-fluid nozzle spray drying in terms of yield.
  相似文献   

19.

Purpose

Amorphous solid dispersions (ASDs) formulated with acid-insoluble (enteric) polymers form suspensions in acidic media where the polymer is largely insoluble. However, a small amount of drug can dissolve and a supersaturated solution may be generated. The goal of this study was to gain insight into the leaching mechanisms of both drug and polymer from the suspended particles, studying the impact of solution additives such as surfactants.

Methods

ASDs were prepared by spray drying lopinavir (LPV) with an enteric polymer, either hydroxypropylmethylcellulose acetate succinate (HPMCAS) or hydroxypropylmethylcellulose phthalate (HPMCP). Four surfactants and a suspending agent were added to the liquid media to evaluate the effect of these excipients on leaching. pH 3 and pH 5 buffers were used to investigate the effect of pH.

Results

The extent of drug leaching from the amorphous formulation was proportional to the crystalline solubility of the drug in the same medium. All surfactants promoted solubilization of LPV with the exception of poloxamer and sodium dodecyl sulfate-HPMCP combinations. A small amount of polymer ionization significantly enhanced LPV leaching in solutions containing an ionic surfactant.

Conclusions

The mechanism of enhanced leaching appeared to be solubilization, with the apparent supersaturation remaining the same for systems containing the same polymer.
  相似文献   

20.

Purpose

To establish an in vitro-in vivo correlation (IVIVC) model for Sporanox and SUBA-itraconazole formulations and to understand the impact of gastrointestinal (GI) pH and transit times on itraconazole dissolution and absorption.

Methods

IVIVC was developed based on fed/fasted pharmacokinetic data from randomized cross-over trials, in vitro dissolution studies, and prior information about typical and between subject variability of GI pH and transit times. Data were analysed using the population modelling approach as implemented in NONMEM.

Results

Dissolution kinetics were described using first order models. The in vivo pharmacokinetics of itraconazole was described with a 2-compartment model with 4-transit absorption compartments. Pharmacokinetic profiles for fasted itraconazole periods were described based on the in vitro dissolution model, in vivo disposition model, and the prior information on GI pH and transit times. The IVIVC model indicated that drug dissolution in the fed state required an additional pH-independent dissolution pathway. The IVIVC models were presented in a ‘Shiny’ application.

Conclusion

An IVIVC model was established and internally evaluated for the two itraconazole formulations. The IVIVC model provides more insight into the observed variability of itraconazole pharmacokinetics and indicated that GI pH and transit times influence in vivo dissolution and exposure.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号