首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The aim of this work was to investigate the functional role of newly synthesised palm oil-based polyesteramide (POPEA) and stearic acid-based polyesteramide (SAPEA) in mefenamic acid (MA) solid dispersion (SD).

Methods

Solid dispersions of MA were prepared by hot melt method, using a combination of POPEA/SAPEA as a polymer carrier. The effects of POPEA/SAPEA mixture ratio, drug loading percentage and influence of different Mw of POPEA (4000–17,000 Da) in SD were investigated. The SDs were characterised for drug content, solubility, dissolution behaviour and physico-chemical characteristics by DSC and FTIR. Comparisons were made with pure drug, physical mixture and a marketed MA formulation.

Results

All SDs demonstrated faster dissolution rate than pure MA and SD 6 formulated with SAPEA/POPEA 4000 Da, 8:2 showed the highest T 50 release rate (45 min) with no significant difference (P?>?0.05) compared to marketed formulation. All SDs showed improved drug release (85.48?±?1.17 to 90.66?±?1.53%) against marketed formulation (81.30?±?1.26%) and MA (56.27?±?1.08%) after 6 h of dissolution. DSC endothermic peak for MA in SD 6 was broadened and shifted to lower temperature (194 °C). FTIR spectroscopy confirmed no chemical changes in MA SD, but establishment of hydrogen bonding between hydroxyl groups of PEA with amine groups of MA was observed by the red shift of OH band in SD samples. The SD was stable (P?>?0.05) at ambient condition for up to 90 days, reflecting by the drug content, dissolution profiles and solubility of the formulation.

Conclusions

POPEA demonstrated surface lowering and wettability effects in improving the aqueous solubility and dissolution rate of MA in SD. The crystalline drug was transformed to amorphous formulation, via solubilisation and crystallisation inhibition effect of the PEA.
  相似文献   

2.

Purpose

The objective of present study was to increase solubility and dissolution performance of a poorly water soluble antidiabetic drug, Nateglinide (NAT), through formation of inclusion complexes with hydroxypropyl-beta-cyclodextrin (HP–β–CD). The effect of L-arginine (ARG), an amino acid, on the complexation efficiency and solubility enhancing power of HP–β–CD was investigated by preparing ternary inclusion complexes.

Methods

The binary and ternary inclusion complexes were prepared by physical mixing, kneading, co-evaporation, and spray drying methods containing NAT, HP–β–CD, and ARG. The complexes were characterized by FTIR, DSC, PXRD, and 1H–NMR. Molecular modeling study revealed that introduction of ternary agent ARG have improved the interactions of NAT and HP–β–CD.

Results

The complex prepared by spray drying method showed the highest increase in solubility and dissolution rate compared to other methods. Molecular docking study revealed that ARG interactions plays an essential role in increasing the stability and solubility of the complex.

Conclusions

The present study demonstrated increase in solubility and dissolution of NAT. Hence, ternary complexes of NAT can be used as an efficient tool for the delivery of insoluble drug, NAT.
  相似文献   

3.

Purpose

Excipients are essential for solubility enhancing formulations. Hence it is important to understand how additives impact key solution properties, particularly when supersaturated solutions are generated by dissolution of the solubility enhancing formulation. Herein, the impact of different concentrations of dissolved polymers on the thermodynamic and kinetic properties of supersaturated solutions of danazol were investigated.

Methods

A variety of experimental techniques was used, including nanoparticle tracking analysis, fluorescence and ultraviolet spectroscopy and flux measurements to characterize the solution phase behavior.

Results

Neither the crystalline nor amorphous solubility of danazol was impacted by common amorphous solid dispersion polymers, polyvinylpyrrolidone, hydroxypropylmethyl cellulose (HPMC) or HPMC-acetate succinate. Consequently, the maximum membrane transport rate was limited only by the amorphous solubility, and not by the presence of the polymers. The polymers were able to inhibit crystallization to some extent at concentrations as low as 1 μg/mL, with the maximum effectiveness being reached at 10 μg/mL. Aqueous danazol solutions formed a drug-rich phase with a mean size of 250 nm when the concentration exceeded the amorphous solubility, and the polymers modified the surface properties of this drug-rich phase.

Conclusions

The phase behavior of supersaturated solutions is complex and the kinetics of phase transformations can be substantially modified by polymeric additives present at low concentrations. However, fortunately, these additives do not appear to impact the bulk thermodynamic properties of the solution, thus enabling supersaturated solutions, which provide enhanced membrane transport relative to saturated solutions to be generated.
  相似文献   

4.

Purpose

The objective of the current work was to investigate the influence of electrospray technology using various solvents on polymorphic transformations of carbamazepine (CBZ). CBZ was taken as a model drug for electrospray crystallization owing to its well investigated polymorphic forms.

Methods

Saturated CBZ solutions (methanol, ethanol, and 2-propanol) were electrosprayed at 20 kV to obtain CBZ crystals. The electrosprayed crystals from methanol (MCBZ), ethanol (ECBZ), and 2-propanol (PCBZ) were characterized by powder X-ray diffractometry, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, equilibrium solubility, intrinsic dissolution rate, and stability study.

Results

MCBZ exhibited mixture of form I and II of CBZ, whereas mixture of form I, II, and III of CBZ was observed in case of ECBZ. Further, PCBZ contained mixture of form II, III, and IV of CBZ. The order in which reduction in saturation solubility and intrinsic dissolution rate was observed, it can be represented as MCBZ > PCBZ > ECBZ > unprocessed CBZ. Electrospray technology induced polymorphic transformations in CBZ crystals. The said polymorphic transformations were influenced by solvent properties along with an electric charge.

Conclusion

Thus electrospray crystallization, a continuous pharmaceutical manufacturing technique, can serve as an alternative for crystallization of API with an ability to modify their physicochemical properties.
  相似文献   

5.

Purpose

To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems.

Methods

Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (Tg). 13C and 15N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1H T1 and T relaxation measurements were used to probe miscibility and phase behavior of the dispersions.

Results

Tg values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40–90%, indicating a relatively strong drug-excipient interaction. 15N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at ?360.7 ppm (unprotonated) and ?344.4 ppm (protonated). Additionally, 1H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years.

Conclusions

15N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.
  相似文献   

6.

Purpose

A novel drug delivery platform, mesoporous phospholipid particle (MPP), is introduced. Its physicochemical properties and ability as a carrier for enhancing oral absorption of poorly soluble drugs are discussed.

Methods

MPP was prepared through freeze-drying a cyclohexane/t-butyl alcohol solution of phosphatidylcholine. Its basic properties were revealed using scanning electron microscopy, x-ray diffraction, thermal analysis, hygroscopicity measurement, and so on. Fenofibrate was loaded to MPP as a poorly soluble model drug, and effect of MPP on the oral absorption behavior was observed.

Results

MPP is spherical in shape with a diameter typically in the range of 10–15 μm and a wide surface area that exceeds 10 m2/g. It has a bilayer structure that may accommodate hydrophobic drugs in the acyl chain region. When fenofibrate was loaded in MPP as a model drug, it existed partially in a crystalline state and improvement in the dissolution behavior was achieved in the presence of a surfactant, because of the formation of mixed micelles composed of phospholipids and surfactants in the dissolution media. MPP greatly improved the oral absorption of fenofibrate compared to that of the crystalline drug and its efficacy was almost equivalent to that of an amorphous drug dispersion.

Conclusion

MPP is a promising option for improving the oral absorption of poorly soluble drugs based on the novel mechanism of dissolution improvement.
  相似文献   

7.

Purpose

Miscibility between the drug and the polymer in an amorphous solid dispersion (ASD) is considered to be one of the most important factors impacting the solid state stability and dissolution performance of the active pharmaceutical ingredient (API). The research described herein utilizes emerging fluorescence-based methodologies to probe (im)miscibility of itraconazole (ITZ)-hydroxypropyl methylcellulose (HPMC) ASDs.

Methods

The ASDs were prepared by solvent evaporation with varying evaporation rates and were characterized by steady-state fluorescence spectroscopy, confocal imaging, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (ssNMR) spectroscopy.

Results

The size of the phase separated domains for the ITZ-HPMC ASDs was affected by the solvent evaporation rate. Smaller domains (<10 nm) were observed in spray-dried ASDs, whereas larger domains (>30 nm) were found in ASDs prepared using slower evaporation rates. Confocal imaging provided visual confirmation of phase separation along with chemical specificity, achieved by selectively staining drug-rich and polymer-rich phases. ssNMR confirmed the results of fluorescence-based techniques and provided information on the size of phase separated domains.

Conclusions

The fluorescence-based methodologies proved to be sensitive and rapid in detecting phase separation, even at the nanoscale, in the ITZ-HPMC ASDs. Fluorescence-based methods thus show promise for miscibility evaluation of spray-dried ASDs.
  相似文献   

8.

Purpose

The overall purpose of this study was to understand the impact of different biorelevant media types on solubility and crystallization from supersaturated solutions of model compounds (atazanavir, ritonavir, tacrolimus and cilnidipine). The first aim was to understand the influence of the lecithin content in FaSSIF. As the human intestinal fluids (HIFs) contain a variety of bile salts in addition to sodium taurocholate (STC), the second aim was to understand the role of these bile salts (in the presence of lecithin) on solubility and crystallization from supersaturated solutions,

Methods

To study the impact of lecithin, media with 3 mM STC concentration but varying lecithin concentration were prepared. To test the impact of different bile salts, a new biorelevant medium (Composite-SIF) with a composition simulating that found in the fasted HIF was prepared. The crystalline and amorphous solubility was determined in these media. Diffusive flux measurements were performed to determine the true supersaturation ratio at the amorphous solubility of the compounds in various media. Nucleation induction times from supersaturated solutions were measured at an initial concentration equal to the amorphous solubility (equivalent supersaturation) of the compound in the given medium.

Results

It was observed that, with an increase in lecithin content at constant STC concentration (3 mM), the amorphous solubility of atazanavir increased and crystallization was accelerated. However, the crystalline solubility remained fairly constant. Solubility values were higher in FaSSIF compared to Composite-SIF. Longer nucleation induction times were observed for atazanavir, ritonavir and tacrolimus in Composite-SIF compared to FaSSIF at equivalent supersaturation ratios.

Conclusions

This study shows that variations in the composition of SIF can lead to differences in the solubility and crystallization tendency of drug molecules, both of which are critical when evaluating supersaturating systems.
  相似文献   

9.

Background

The search for a simple and scalable approach that can improve the two key biopharmaceutical processes (solubility and permeability) for BCS Class II and BCS Class IV has still been unmet need.

Purpose

In this study, L-lysine was investigated as a potential excipient to tackle problems with solubility and permeability. Bendazac (Class II); quercetin and rutin (Class IV) were employed.

Methods

Drugs-lysine complexes in 1:1 M ratios were prepared by co-precipitation and co-grinding; characterized for solubility, partition coefficient, DSC, FTIR, SEM, dissolution rate and permeability. Chemical stability of quercetin-lysine and rutin-lysine was studied by assessing antioxidant capacity using Trolox and CUPRAC assays.

Results and Conclusion

Drugs-lysine salt/complexes were confirmed. Solubility enhancement factors ranged from 68- to 433-fold increases and dissolution rates were also significantly enhanced by up to 6-times, compared with drugs alone. With the exception of rutin-lysine, Papp for bendazac-lysine and quercetin-lysine enhanced by 2.3- to 4-fold. Papp for quercetin (Class IV) benefited more than bendazac (Class II) when complexed with lysine. This study warrants the use of L-lysine as a promising excipient for enhanced solubility and permeability of Class II and Class IV, providing that the solubility of the drug is ensured at ‘the door step’ of absorption sites.
  相似文献   

10.

Purpose

To improve the pharmaceutical properties of amorphous ciprofloxacin (CIP) succinate salts via formulation as polymer/amorphous salt solid dispersions (ASSDs).

Methods

ASSDs consisting of an amorphous CIP/succinic acid 1:1 or 2:1 salt dispersed in PVP or Soluplus were produced by spray drying and ball milling. The solid state characteristics, miscibility, stability, solubility and passive transmembrane permeability of the ASSDs were then examined.

Results

The ASSDs had higher glass transition and crystallization temperatures than the corresponding amorphous succinate salts, and were also more stable during long-term stability studies. The results of inverse gas chromatography and thermal analysis indicated that the salts and polymers form a miscible mixture. The solubility of the pure drug in water and biorelevant media was significantly increased by all of the formulations. The permeability of the ASSDs did not differ significantly from that of the amorphous CIP succinate salts, however all samples were less permeable than the pure crystalline drug.

Conclusions

The formulation of amorphous CIP succinate salts as ASSDs with polymer improved their long-term stability, but did not significantly affect their solubility or permeability.
  相似文献   

11.

Purpose

The goal of the study was to evaluate a miniaturized dissolution-permeation apparatus (μFLUX? apparatus) for its ability to benchmark several itraconazole (ITZ) formulations for which in vivo PK data was available in the literature.

Method

Untreated and micronized powders of ITZ and various enabling formulations of ITZ (commercial Sporanox® solid dispersion, a Soluplus®-based solid dispersion and a nanosuspension) were introduced to the donor compartment of μFLUX? apparatus. Donor and acceptor chambers were divided from each other by a lipophilic membrane. In addition to the flux evaluations, changes in solid state as a function of time were investigated to gain further insight into the flux changes observed over time for the solid dispersion formulations.

Results

Initial flux values from Sporanox®, the nanosuspension and the micronized ITZ showed ratios of 52/4/1 with a decreasing flux from nanosuspension and both solid dispersions after 2.5–3 h. Although the initial flux from the Soluplus® formulation was 2.2 times lower than the one observed for Sporanox®, the decrease in flux observed was milder and became ~ 2 times higher than Sporanox® after approximately 2.5 h. The total amounts of ITZ in the receiver compartment after 240 min showed the same rank order as the rodent AUCs of these formulations reported in literature.

Conclusions

It was demonstrated that in vitro flux measurements using lipophilic artificial membranes could correctly reproduce the rank order of PK results for ITZ formulations. The drop in flux over time for solid dispersions could be backed by experimental indications of crystallization.
  相似文献   

12.

Purpose

The aim of the present study was to prepare a patient friendly long acting donepezil (D) nanocrystals (NCs) formulation, with a high payload for i.m administration. As the native D hydrochloride salt has high aqueous solubility it is necessary to increase its hydrophobicity prior to the NCs formation.

Methods

D was ionically paired with embonic acid (E) in aqueous media and was successfully characterized using techniques like DSC, PXRD, FT-IR, NMR etc. Later, we converted the bulk ion pair into NCs using high pressure homogenization technique to study further in-vitro and in-vivo.

Results

The bulk ion pair has a drug content of 66% w/w and an 11,000 reduced solubility in comparison to native D hydrochloride. Also, its crystalline nature was confirmed by DSC and PXRD. The possible interaction sites responsible for the ion pair formation were identified though NMR. The prepared NCs has mean particle size 677.5 ± 72.5 nm and PDI 0.152 ± 0.061. In-vitro release showed a slow dissolution of NCs. Further, excellent bio compatibility of NCs were demonstrated in 3T3 cells. Following i.m administration of single dose of NCs, the D plasma level was found to be detectable up to 18 days. In vivo pharmacodynamic studies revealed that the single dose NCs i.m injection improved spatial memory learning and retention in ICV STZ model.

Conclusion

Our results suggest that the developed formulation has a potential to replace the current daily dosing regimen to a less frequent dosing schedule.
Graphical Abstract Improved pharmacokinetic and pharmacodynamic profile after administration of single dose donpezil embonate nanocrystals in Rats
  相似文献   

13.

Purpose

To prepare the supramolecular cocrystals of gliclazide (GL, a BCS class II drug molecule) via mechanochemical route, with the goal of improving physicochemical and biopharmaceutical properties.

Methods

Two cocrystals of GL with GRAS status coformers, sebacic acid (GL-SB; 1:1) and α-hydroxyacetic acid (GL-HA; 1:1) were screened out using liquid assisted grinding. The prepared cocrystals were characterized using thermal and analytical techniques followed by evaluation of antidiabetic activity and pharmacokinetic parameters.

Results

The generation of new, single and pure crystal forms was characterized by DSC and PXRD. The crystal structure determination from PXRD revealed the existence of both cocrystals in triclinic (P-1) crystal system. The hydrogen bonded network, determined by material studio was well supported by shifts in FTIR and SSNMR. Both the new solid forms displayed improved solubility, IDR, antidiabetic activity and pharmacokinetic parameters as compared to GL.

Conclusions

The improvement in these physicochemical and biopharmaceutical properties corroborated the fact that the supramolecular cocrystallization may be useful in the development of pharmaceutical crystalline materials with interesting network and properties.
  相似文献   

14.

Purpose

This study was conducted to characterize UV imaging as a platform for performing in vitro release studies using Nicorette® nicotine patches as a model drug delivery system.

Methods

The rate of nicotine release from 2 mm diameter patch samples (Nicorette®) into 0.067 M phosphate buffer, pH 7.40, was studied by UV imaging (Actipix SDI300 dissolution imaging system) at 254 nm. The release rates were compared to those obtained using the paddle-over-disk method.

Results

Calibration curves were successfully established which allowed temporally and spatially resolved quantification of nicotine. Release profiles obtained from UV imaging were in qualitative agreement with results from the paddle-over-disk release method.

Conclusion

Visualization as well as quantification of nicotine concentration gradients was achieved by UV imaging in real time. UV imaging has the potential to become an important technology platform for conducting in vitro drug release studies.
  相似文献   

15.

Purpose

Aiming to improve the dissolution rate of ezetimibe (EZE) and lovastatin (LOV) in a fixed dose combination (FDC), co-amorphous systems and ternary solid dispersions were prepared by quench cooling and spray drying, respectively.

Methods

Formulations were characterized through X-ray diffraction, modulated differential scanning calorimetry, infrared spectroscopy, scanning electron microscopy and laser diffraction, and evaluated by ‘in vitro’ dissolution. Stability studies were conducted at different conditions during 30 days with the ternary solid dispersion composed of 75% of Soluplus® (ELS 1:1 75%).

Results

Single phase co-amorphous systems made up of the pure drugs were not able to increase the dissolution rate of EZE and LOV. However, ternary solid dispersions achieved high dissolution for both compounds, especially when Soluplus® was used as carrier. The dissolution efficiency increased up to 18 (EZE) and 6 (LOV) times in ternary solid dispersions, compared to the crystalline drugs. ELS 1:1 75% preserved its amorphous state during 30 days, in different stability conditions.

Conclusions

A spray dried ternary solid dispersion able to enhance the dissolution rate of two poorly soluble, therapeutically complementary drugs, is reported for the first time. These promising results open new perspectives for the development of more advanced FDCs.
  相似文献   

16.

Purpose

The effectiveness of Tenofovir based HIV pre-exposure prophylaxis (PrEP) is proven, but hinges on correct and consistent use. User compliance and therapeutic effectiveness can be improved by long acting drug delivery systems. Here we describe a thin-film polymer device (TFPD) as a biodegradable subcutaneous implant for PrEP.

Methods

A thin-film polycaprolactone (PCL) membrane controls drug release from a reservoir. To achieve membrane controlled release, TAF requires a formulation excipient such as PEG300 to increase the dissolution rate and reservoir solubility. Short-term In vitro release studies are used to develop an empirical design model, which is applied to the production of in vitro prototype devices demonstrating up to 90-days of linear release and TAF chemical stability.

Results

The size and shape of the TFPD are tunable, achieving release rates ranging from 0.5 to 4.4 mg/day in devices no larger than a contraceptive implant. Based on published data for oral TAF, subcutaneous constant-rate release for HIV PrEP is estimated at <2.8 mg/day. Prototype devices demonstrated linear release at 1.2 mg/day for up to 90 days and at 2.2 mg/day for up to 60 days.

Conclusions

We present a biodegradable TFPD for subcutaneous delivery of TAF for HIV PrEP. The size, shape and release rate of the device are tunable over a >8-fold range.
  相似文献   

17.

Purpose

To investigate the use of Carbopol® 974P as a stabilizing agent for supersaturated levels of itraconazole (ITZ) in neutral pH aqueous media and the resultant effects on oral absorption of ITZ.

Methods

Carbopol® 974P was incorporated into an EUDRAGIT® L 100-55 carrier matrix at concentrations of 20% and 40% based on polymer weight with the aim of prolonging supersaturated ITZ release from the enteric matrix. Amorphous solid dispersions of ITZ in EUDRAGIT® L 100-55 containing either 20% or 40% Carbopol® 974P were produced by hot-melt extrusion (HME). Solid state analysis of these compositions was performed using differential scanning calorimetry and qualitative energy dispersive X-ray spectroscopy. Dissolution analysis was conducted using a pH change method. Oral absorption of ITZ was evaluated in male Sprague–Dawley rats.

Results

Solid state analysis demonstrated that the extruded compositions were entirely amorphous and homogenous with respect to drug distribution in the polymer matrix. Dissolution analysis revealed that the addition of Carbopol® 974P to the EUDRAGIT® L 100-55 carrier system functioned to prolong the release of supersaturated levels of ITZ from the EUDRAGIT® L 100-55 matrix following an acidic-to-neutral pH transition. In vivo evaluation of ITZ absorption revealed that the addition of Carbopol® 974P substantially reduced the absorption variability seen with the EUDRAGIT® L 100-55 carrier system. In addition, the 20% Carbopol® 974P formulation exhibited a five-fold improvement in absorption over our initially reported ITZ particulate dispersion compositions that limited supersaturation of ITZ primarily to the stomach.

Conclusions

The results of this study strongly suggest that substantial improvements in oral antifungal therapy with ITZ can be achieved via intestinal targeting and polymeric stabilization of supersaturation.
  相似文献   

18.

Purpose

We describe here a novel lyophilized nanosuspension technology in order to improve the dissolution rate and oral bioavailability of the insoluble drug P2X7 receptor antagonist (PRA), which is an effective antagonist to P2X7 receptor for non-steroidal anti-inflammatory.

Methods

PRA-lyophilized nanosuspension (PRA-LNS) was fabricated by anti-solvent precipitation in combination with high pressure homogenization, and then lyophilized for prolonged storage. After preparations, various characterization experiments were performed including particle size, zeta potential, surface morphology, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), in vitro dissolution study, and in vivo pharmacokinetic study.

Results

The re-dissolved particle size of PRA-LNS was about 180~250 nm with uniform distribution, confirmed by TEM image. The drug PRA in nanosuspensions possessed crystalline form evaluated via XRPD and DSC analysis. The solubility of PRA-LNS in water was 1.52 times larger than PRA raw drug; in vitro dissolution tests showed that PRA-LNS could dissolve completely within 5 min, which is a significant improvement compared to the raw drug. The relative bioavailability of PRA-LNS is 290.70% compared to the raw drug and 177.94% compared to the physical mixture.

Conclusions

PRA-LNS could easily re-disperse in water with increased solubility, enhanced oral bioavailability, and controllable production process.
  相似文献   

19.

Purpose

Amorphous solid dispersions (ASDs) formulated with acid-insoluble (enteric) polymers form suspensions in acidic media where the polymer is largely insoluble. However, a small amount of drug can dissolve and a supersaturated solution may be generated. The goal of this study was to gain insight into the leaching mechanisms of both drug and polymer from the suspended particles, studying the impact of solution additives such as surfactants.

Methods

ASDs were prepared by spray drying lopinavir (LPV) with an enteric polymer, either hydroxypropylmethylcellulose acetate succinate (HPMCAS) or hydroxypropylmethylcellulose phthalate (HPMCP). Four surfactants and a suspending agent were added to the liquid media to evaluate the effect of these excipients on leaching. pH 3 and pH 5 buffers were used to investigate the effect of pH.

Results

The extent of drug leaching from the amorphous formulation was proportional to the crystalline solubility of the drug in the same medium. All surfactants promoted solubilization of LPV with the exception of poloxamer and sodium dodecyl sulfate-HPMCP combinations. A small amount of polymer ionization significantly enhanced LPV leaching in solutions containing an ionic surfactant.

Conclusions

The mechanism of enhanced leaching appeared to be solubilization, with the apparent supersaturation remaining the same for systems containing the same polymer.
  相似文献   

20.

Purpose

Imaging methods were used as tools to provide an understanding of phenomena that occur during dissolution experiments, and ultimately to select the best ratio of two polymers in a matrix in terms of enhancement of the dissolution rate and prevention of crystallization during dissolution.

Methods

Magnetic resonance imaging, ATR-FTIR spectroscopic imaging and Raman mapping have been used to study the release mechanism of a poorly water soluble drug, aprepitant, from multicomponent amorphous solid dispersions. Solid dispersions were prepared based on the combination of two selected polymers - Soluplus, as a solubilizer, and PVP, as a dissolution enhancer. Formulations were prepared in a ratio of Soluplus:PVP 1:10, 1:5, 1:3, and 1:1, in order to obtain favorable properties of the polymer carrier.

Results

The crystallization of aprepitant during dissolution has occurred to a varying degree in the polymer ratios 1:10, 1:5, and 1:3, but the increasing presence of Soluplus in the formulation delayed the onset of crystallization. The Soluplus:PVP 1:1 solid dispersion proved to be the best matrix studied, combining the abilities of both polymers in a synergistic manner.

Conclusions

Aprepitant dissolution rate has been significantly enhanced. This study highlights the benefits of combining imaging methods in order to understand the release process.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号