首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Purpose

To develop and validate a Level A in vitro-in vivo correlation (IVIVC) for potassium chloride extended-release (ER) formulations.

Methods

Three prototype ER formulations of potassium chloride with different in vitro release rates were developed and their urinary pharmacokinetic profiles were evaluated in healthy subjects. A mathematical model between in vitro dissolution and in vivo urinary excretion, a surrogate for measuring in vivo absorption, was developed using time-scale and time-shift parameters. The IVIVC model was then validated based on internal and external predictability.

Results

With the established IVIVC model, there was a good correlation between the observed fraction of dose excreted in urine and the time-scaled and time-shifted fraction of the drug dissolved, and between the in vitro dissolution time and the in vivo urinary excretion time for the ER formulations. The percent prediction error (%PE) on cumulative urinary excretion over the 24 h interval (Ae0–24h) and maximum urinary excretion rate (Rmax) was less than 15% for the individual formulations and less than 10% for the average of the two formulations used to develop the model. Further, the %PE values using external predictability were below 10%.

Conclusions

A novel Level A IVIVC was successfully developed and validated for the new potassium chloride ER formulations using urinary pharmacokinetic data. This successful IVIVC may facilitate future development or manufacturing changes to the potassium chloride ER formulation.
  相似文献   

2.

Purpose

The aim of the present work was to classify metaxalone according to the Biopharmaceutics Classification System (BCS), to develop a clinically relevant dissolution method that can be used to predict the oral absorption of metaxalone and to establish an in vitro-in vivo correlation (IVIVC).

Methods

Solubility of the drug was studied in different pH media and permeability studies were performed using a Caco-2 cell model. The in vitro dissolution and in vivo disposition of metaxalone from 3 different immediate release (IR) tablet formulations were investigated using USP 2 apparatus and a single dose, four-way, crossover bioequivalence study in healthy humans along with an oral solution of the drug, respectively. An IVIVC was established by using a direct, differential based method.

Results

Metaxalone has been confirmed as a Class II drug according to BCS. Bioavailability studies performed in humans demonstrated that dissolution was the rate limiting step for bioavailability of the drug and one of the test products had significantly improved bioavailability compared to the marketed product Skelaxin®. An IVIVC model was developed that demonstrated an acceptable internal predictability.

Conclusion

The IVIVC demonstrated that formulation factors play a significant role in dissolution and absorption of metaxalone. A pH 4.5 dissolution medium containing 0.5% NaCl with 0.2% SLS (USP apparatus 2 at 50 rpm) is clinically relevant to predict bioavailability of the drug and is superior to the USP method in terms of the Quality by Design (QbD) concept.
  相似文献   

3.

Purpose

The ability of two semi-mechanistic simulation approaches to predict the systemic pharmacokinetics (PK) of inhaled corticosteroids (ICSs) delivered via dry powder inhalers (DPIs) was assessed for mometasone furoate, budesonide and fluticasone propionate.

Methods

Both approaches derived the total lung doses and the central to peripheral lung deposition ratios from clinically relevant cascade impactor studies, but differed in the way the pulmonary absorption rate was derived. In approach 1, the rate of in vivo drug dissolution/absorption was predicted for the included ICSs from in vitro aerodynamic particle size distribution and in vitro drug solubility estimates measured in an in vivo predictive dissolution medium. Approach 2 derived a first order absorption rate from the mean dissolution time (MDT), determined for the test formulations in an in vitro Transwell® based dissolution system.

Results

Approach 1 suggested PK profiles which agreed well with the published pharmacokinetic profiles. Similarly, within approach 2, input parameters for the pulmonary absorption rate constant derived from dissolution rate experiments were able to reasonably predict the pharmacokinetic profiles published in literature.

Conclusion

Approach 1 utilizes more complex strategies for predicting the dissolution/absorption process without providing a significant advantage over approach 2 with regard to accuracy of in vivo predictions.
  相似文献   

4.

Purpose

To understand hydrolysis and alcoholysis of polyvinylpyrrolidone-co-vinylacetate (PVPVA) during formulation and storage, elucidate the reaction mechanism, establish an intrinsic kinetic model, and apply this model coupled with GastroPlus? modeling to predict the amount of PVPVA degradation in vivo.

Methods

The experimental approach includes the detection of the polymer reaction by solution nuclear magnetic resonance (NMR) and the measurement of reaction product concentration via gas chromatography (GC). The theoretical approach includes the establishment of the intrinsic kinetic model and the application of GastroPlus? to predict the degree of PVPVA degradation.

Results

The kinetic model established is a first order reaction between PVPVA and 2-propanol (IPA) or water under an acidic condition. The application of this kinetic model shows that between 1.7 and 6.8 mg of degradant is formed in the GI tract for a 850 mg dose of PVPVA.

Conclusions

The results from this application provide valuable input for process development and the risk analysis of the degradation of PVPVA.
  相似文献   

5.

Purpose

We developed simulation and modeling methods to predict the in vivo pharmacokinetic profiles of acyclovir, following escalating oral doses of valacyclovir, in wildtype and Pept1 knockout mice. We also quantitated the contribution of specific intestinal segments in the absorption of valacyclovir in these mice.

Methods

Simulations were conducted using a mechanistic advanced compartmental absorption and transit (ACAT) model implemented in GastroPlus?. Simulations were performed for 3 h post-dose in wildtype and Pept1 knockout mice following single oral doses of 10, 25, 50 and 100 nmol/g valacyclovir, and compared to experimentally observed plasma concentration-time profiles of acyclovir.

Results

Good fits were obtained in wildtype and Pept1 knockout mice. Valacyclovir was primarily absorbed from duodenum (42%) and jejunum (24%) of wildtype mice, with reduced uptake from ileum (3%) and caecum/colon (1%), for a total of 70% absorption. In contrast, the absorption of valacyclovir in Pept1 knockout mice was slow and sustained throughout the entire intestinal tract in which duodenum (4%), jejunum (14%), ileum (10%) and caecum/colon (12%) accounted for a total of 40% absorption.

Conclusion

The ACAT model bridged the gap between in situ and in vivo experimental findings, and facilitated our understanding of the complicated intestinal absorption processes of valacyclovir.
  相似文献   

6.

Purpose

Polymer-xerogel composite materials have been introduced to better optimize local anesthetics release kinetics for the pain management. In a previous study, it was shown that by adjusting various compositional and nano-structural properties of both inorganic xerogels and polymers, zero-order release kinetics over 7 days can be achieved in vitro. In this study, in vitro release properties are confirmed in vivo using a model that tests for actual functionality of the released local anesthetics.

Methods

Composite materials made with tyrosine-polyethylene glycol(PEG)-derived poly(ether carbonate) copolymers and silica-based sol–gel (xerogel) were synthesized. The in vivo release from the composite controlled release materials was demonstrated by local anesthetics delivery in a rat incisional pain model.

Results

The tactile allodynia resulting from incision was significantly attenuated in rats receiving drug-containing composites compared with the control and sham groups for the duration during which natural healing had not yet taken place. The concentration of drug (bupivacaine) in blood is dose dependent and maintained stable up to 120 h post-surgery, the longest time point measured.

Conclusions

These in vivo studies show that polymer-xerogel composite materials with controlled release properties represent a promising class of controlled release materials for pain management.
  相似文献   

7.
8.

Objective

To examine whether in vitro and ex vivo measurements of topical drug product performance correlate with in vivo outcomes, such that more efficient experimental approaches can be reliably and reproducibly used to establish (in)equivalence between formulations for skin application.

Materials and Methods

In vitro drug release through artificial membranes, and drug penetration into porcine skin ex vivo, were compared with published human in vivo studies. Two betamethasone valerate (BMV) formulations, and three marketed econazole nitrate (EN) creams were assessed.

Results

For BMV, the stratum corneum (SC) uptake of drug in 6 h closely matched data observed in vivo in humans, and distinguished between inequivalent formulations. SC uptake of EN from the 3 creams mirrored the in vivo equivalence in man (both clinically and via similar tape-stripping experiments). However, EN clearance from SC ex vivo did not parallel that in vivo, presumably due to the absence of a functioning microcirculation. In vitro release of BMV from the different formulations did not overlap with either ex vivo or in vivo tape-stripping data whereas, for EN, a good correlation was observed. No measurable permeation of either BMV or EN was detected in a 6-h in vitro skin penetration experiment.

Conclusions

In vitro and ex vivo methods for topical bioequivalence determination can show correlation with in vivo outcomes. However, these surrogates have understandable limitations. A “one-size-fits-all” approach for topical bioequivalence evaluation may not always be successful, therefore, and the judicious use of complementary methods may prove a more effective and reliable strategy.
  相似文献   

9.

Purpose

Performance of a transdermal delivery system (TDS) can be affected by exposure to elevated temperature, which can lead to unintended safety issues. This study investigated TDS and skin temperatures and their relationship in vivo, characterized the effective thermal resistance of skin, and identified the in vitro diffusion cell conditions that would correlate with in vivo observations.

Methods

Experiments were performed in humans and in Franz diffusion cells with human cadaver skin to record skin and TDS temperatures at room temperature and with exposure to a heat flux. Skin temperatures were regulated with two methods: a heating lamp in vivo and in vitro, or thermostatic control of the receiver chamber in vitro.

Results

In vivo basal skin temperatures beneath TDS at different anatomical sites were not statistically different. The maximum tolerable skin surface temperature was approximately 42–43°C in vivo. The temperature difference between skin surface and TDS surface increased with increasing temperature, or with increasing TDS thermal resistance in vivo and in vitro.

Conclusions

Based on the effective thermal resistance of skin in vivo and in vitro, the heating lamp method is an adequate in vitro method. However, the in vitro-in vivo correlation of temperature could be affected by the thermal boundary layer in the receiver chamber.
  相似文献   

10.

Purpose

To extend the physiological features of the anatomically accurate model of the rabbit eye for intravitreal (IVT) and intracameral (IC) injections of macromolecules.

Methods

The computational fluid dynamic model of the rabbit eye by Missel (2012) was extended by enhancing the mixing in the anterior chamber with thermal gradient, heat transfer and gravity, and studying its effect on IC injections of hyaluronic acids. In IVT injections of FITC-dextrans (MW 10–157 kDa) the diffusion though retina was defined based on published in vitro data. Systematic changes in retinal permeability and convective transport were made, and the percentages of anterior and posterior elimination pathways were quantified. Simulations were compared with published in vivo data.

Results

With the enhanced mixing the elimination half-lives of hyaluronic acids after IC injection were 62–100 min that are similar to in vivo data and close to the theoretical value for the well-stirred anterior chamber (57 min). In IVT injections of FITC-dextrans a good match between simulations and in vivo data was obtained when the percentage of anterior elimination pathway was over 80%.

Conclusions

The simulations with the extended model closely resemble in vivo pharmacokinetics, and the model is a valuable tool for data interpretation and predictions.
  相似文献   

11.

Purpose

A delayed release bio-polymeric Dual-Biotic system has been extensively evaluated in this study to overcome the therapeutic issue of probiotic killing due to incorrect administration with the antibiotic.

Methods

In vitro and ex vivo release and characterization studies have been undertaken on the Dual-Biotic system. In vivo analyses utilizing a Large White pig model were also performed with commercial products used as a comparison. Intestinal fluid for probiotic quantification was aspirated using a surgically implanted intestinal cannula with Lactobacillus acidophilus cell counts determined through luminescence and inoculation onto Lactobacilli-specific agar. Plasma amoxicillin concentrations were determined through Ultra-Performance Liquid Chromatography. The reactional profile and crosslinking mechanism of ovalbumin and genipin was elucidated using molecular mechanic energy relationships in a vacuum system by exploring the spatial disposition of different concentrations of genipin with respect to ovalbumin with ovalbumin/genipin ratios of 1:1, 1:5 and 1:10.

Results

In vivo evaluation of the Dual-Biotic system detailed maximum Lactobacillus viability (~455% baseline viability) 6 h after oral administration. Concurrent administration of the commercial products revealed a 75% decrease in bacterial viability when compared to the controls analyzed. A level A in vitro-in vivo correlation was also established with 96.9% predictability of amoxicillin release ascertained. The computational results achieved corroborated well with the experimental findings and physicochemical data.

Conclusions

Evaluation and correlation of the Dual-Biotic system has detailed the success of the formulation for the concurrent delivery of an antibiotic and probiotic.
  相似文献   

12.

Purpose

To evaluate the use of Labrafil® M2125CS as a lipid vehicle for danazol. Further, the possibility of predicting the in vivo behavior with a dynamic in vitro lipolysis model was evaluated.

Methods

Danazol (28 mg/kg) was administered orally to rats in four formulations: an aqueous suspension, two suspensions in Labrafil® M2125CS (1 and 2 ml/kg) and a solution in Labrafil® M2125CS (4 ml/kg).

Results

The obtained absolute bioavailabilities of danazol were 1.5?±?0.8%; 7.1?±?0.6%; 13.6?±?1.4% and 13.3?±?3.4% for the aqueous suspension, 1, 2 and 4 ml Labrafil® M2125CS per kg respectively. Thus administration of danazol with Labrafil® M2125CS resulted in up to a ninefold increase in the bioavailability, and the bioavailability was dependent on the Labrafil® M2125CS dose. In vitro lipolysis of the formulations was able to predict the rank order of the bioavailability from the formulations, but not the absorption profile of the in vivo study.

Conclusions

The bioavailability of danazol increased when Labrafil® M2125CS was used as a vehicle, both when danazol was suspended and solubilized in the vehicle. The dynamic in vitro lipolysis model could be used to rank the bioavailabilities of the in vivo data.
  相似文献   

13.

Purpose

To evaluate the ability of human airway epithelial cell layers and a simple rat isolated perfused lung (IPL) model to predict pulmonary drug absorption in rats in vivo.

Method

The permeability of seven compounds selected to possess a range of lipophilicity was measured in two airway cell lines (Calu-3 and 16HBE14o-), in normal human bronchial epithelial (NHBE) cells and using a simple isolated perfused lungs (IPL) technique. Data from the cell layers and ex vivo lungs were compared to published absorption rates from rat lungs measured in vivo.

Results

A strong relationship was observed between the logarithm of the in vivo absorption half-life and the absorption half-life in the IPL (r = 0.97; excluding formoterol). Good log-linear relationships were also found between the apparent first-order absorption rate in vivo and cell layer permeability with correlation coefficients of 0.92, 0.93, 0.91 in Calu-3, 16HBE14o- and NHBE cells, respectively.

Conclusion

The simple IPL technique provided a good prediction of drug absorption from the lungs, making it a useful method for empirical screening of drug absorption in the lungs. Permeability measurements were similar in all the respiratory epithelial cell models evaluated, with Calu-3 having the advantage for routine permeability screening purposes of being readily availability, robust and easy to culture.
  相似文献   

14.

Purpose

To develop a model linking in vitro and in vivo erosion of extended release tablets under fasting and postprandial status.

Methods

A nonlinear mixed-effects model was developed from the in vitro erosion profiles of four hydroxypropyl methylcellulose (HPMC) matrix tablets studied under a range of experimental conditions. The model was used to predict in vivo erosion of the HPMC matrix tablets in different locations of the gastrointestinal tract, determined by magnetic marker monitoring. In each gastrointestinal segment the pH was set to physiological values and mechanical stress was estimated in USP2 apparatus rotation speed equivalent.

Results

Erosion was best described by a Michaelis–Menten type model. The maximal HPMC release rate (VMAX) was affected by pH, mechanical stress, HPMC and calcium hydrogen phosphate content. The amount of HPMC left at which the release rate is half of VMAX depended on pH and calcium hydrogen phosphate. Mechanical stress was estimated for stomach (39.5 rpm), proximal (93.3 rpm) and distal (31.1 rpm) small intestine and colon (9.99 rpm).

Conclusions

The in silico model accurately predicted the erosion profiles of HPMC matrix tablets under fasting and postprandial status and can be used to facilitate future development of extended release tablets.
  相似文献   

15.

Purpose

Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin’s effect on mechanical hypersensitivity in a rat model of CFA-induced inflammatory hyperalgesia.

Methods

A semi-mechanistic population-based PKPD model was developed using nonlinear mixed-effects modelling, based on gabapentin plasma and brain extracellular fluid (ECF) time-concentration data and measurements of CFA-evoked mechanical hyperalgesia following administration of a range of gabapentin doses (oral and intravenous).

Results

The plasma/brain ECF concentration-time profiles of gabapentin were adequately described with a two-compartment plasma model with saturable intestinal absorption rate (K m ?=?44.1 mg/kg, V max ?=?41.9 mg/h?kg) and dose-dependent oral bioavailability linked to brain ECF concentration through a transit compartment. Brain ECF concentration was directly linked to a sigmoid E max function describing reversal of hyperalgesia (EC 50, plasma ?=?16.7 μg/mL, EC 50, brain ?=?3.3 μg/mL).

Conclusions

The proposed semi-mechanistic population-based PKPD model provides further knowledge into the understanding of gabapentin’s non-linear pharmacokinetics and the link between plasma/brain disposition and anti-hyperalgesic effects. The model suggests that intestinal absorption is the primary source of non-linearity and that the investigated rat model provides reasonable predictions of clinically effective plasma concentrations for gabapentin.
  相似文献   

16.

Purpose

The aim of this study was to enhance the dissolution and oral absorption of poorly water-soluble active pharmaceutical ingredients (APIs) using nanoparticle suspensions prepared with a PureNano? continuous crystallizer (PCC).

Method

Nanoparticle suspensions were prepared with a PCC, which is based on microfluidics reaction technology and solvent–antisolvent crystallization. Phenytoin, bezafibrate, flurbiprofen, and miconazole were used as model APIs. These APIs were dissolved in ethanol and precipitated by the addition of water and polyvinyl alcohol. Batch crystallization (BC) using a beaker was also performed to prepare the suspensions. Both PCC and BC formulations were freeze-dried before being characterized in vitro and in vivo.

Results

The particle sizes of the nanoparticle suspensions prepared with the PCC were smaller than those prepared by BC. The dissolution rate of each API in vitro significantly increased after crystallization. Reducing the particle size of either the BC or PCC formulation led to increased API flux across Caco-2 cell monolayers. PCC preparations showed higher plasma concentrations after oral administration, demonstrating the advantages of a fast dissolution rate and increased interaction with the gastrointestinal tract owing to the smaller particle size.

Conclusions

PCC can continuously produce nanoparticle APIs and is an efficient approach for improving their oral bioavailability.
  相似文献   

17.

Purpose

In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption ‘sink’ into the experimental model.

Methods

An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption.

Results

Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion – in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance.

Conclusion

For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.
  相似文献   

18.

Purpose

To evaluate the combination of a pressure-indicating sensor film with hydrogel-forming microneedle arrays, as a method of feedback to confirm MN insertion in vivo.

Methods

Pilot in vitro insertion studies were conducted using a Texture Analyser to insert MN arrays, coupled with a pressure-indicating sensor film, at varying forces into excised neonatal porcine skin. In vivo studies involved twenty human volunteers, who self-applied two hydrogel-forming MN arrays, one with a pressure-indicating sensor film incorporated and one without. Optical coherence tomography was employed to measure the resulting penetration depth and colorimetric analysis to investigate the associated colour change of the pressure-indicating sensor film.

Results

Microneedle insertion was achieved in vitro at three different forces, demonstrating the colour change of the pressure-indicating sensor film upon application of increasing pressure. When self-applied in vivo, there was no significant difference in the microneedle penetration depth resulting from each type of array, with a mean depth of 237 μm recorded. When the pressure-indicating sensor film was present, a colour change occurred upon each application, providing evidence of insertion.

Conclusions

For the first time, this study shows how the incorporation of a simple, low-cost pressure-indicating sensor film can indicate microneedle insertion in vitro and in vivo, providing visual feedback to assure the user of correct application. Such a strategy may enhance usability of a microneedle device and, hence, assist in the future translation of the technology to widespread clinical use.
  相似文献   

19.

Purpose

To reduce side effects due to non-specific expression, the heme oxygenase-1 (HO-1) gene under control of a hypoxia-inducible erythropoietin (Epo) enhancer (pEpo-SV-HO-1) was developed for site-specific gene therapy of ischemic stroke.

Methods

pEpo-SV-HO-1 was constructed by insertion of the Epo enhancer into pSV-HO-1. Dexamethasone-conjugated polyamidoamine (PAMAM-Dexa) was used as a gene carrier. In vitro transfection assays were performed in the Neuro2A cells. In vivo efficacy of pEpo-SV-HO-1 was evaluated in the transient middle cerebral artery occlusion (MCAO) model.

Results

In vitro transfection assay with the PAMAM-Dexa/pEpo-SV-HO-1 complex showed that pEpo-SV-HO-1 had higher HO-1 gene expression than pSV-HO-1 under hypoxia. In addition, pEpo-SV-HO-1 reduced the level of apoptosis more efficiently than pSV-HO-1 in Neuro2A cells under hypoxia. For in vivo evaluation, the PAMAM-Dexa/pEpo-SV-HO-1 complex was injected into the ischemic brain of the transient MCAO model. pEpo-SV-HO-1 increased HO-1 expression and reduced the number of apoptotic cells in the ischemic brain, compared with the pSV-HO-1 injection group. As a result, the infarct volume was more efficiently decreased by pEpo-SV-HO-1 than by pSV-HO-1.

Conclusions

pEpo-SV-HO-1 induced HO-1 gene expression and therapeutic effect in the ischemic brain. Therefore, pEpo-SV-HO-1 may be useful for site-specific gene therapy of ischemic stroke.
  相似文献   

20.

Purpose

Lamivudine, a characterized substrate for human multidrug and toxin extrusion protein 1 (hMATE1) in vitro, was commonly used with indinavir as a therapy against human immunodeficiency virus (HIV). We aimed to investigate whether mouse MATE1 is involved in the disposition of lamivudine in vivo, and whether there is any transporter-mediated interaction between indinavir and lamivudine.

Methods

The role of MATE1 in the disposition of lamivudine was determined using Mate1 wild type (+/+) and knockout (?/?) mice. The inhibitory potencies of indinavir on lamivudine uptake mediated by OCT2 and MATE1 were determined in human embryonic kidney 293 (HEK 293) cells stably expressing these transporters. The role of MATE1 in the interaction between indinavir and lamivudine in vivo was determined using Mate1 (+/+) and Mate1 (?/?) mice.

Results

The plasma concentrations and tissue accumulation of lamivudine were markedly elevated in Mate1 (?/?) mice as compared to those in Mate1 (+/+) mice. Indinavir significantly increased the pharmacokinetic exposure of lamivudine in mice; however, the effect by indinavir was significantly less pronounced in Mate1 (?/?) mice as compared to Mate1(+/+) mice.

Conclusion

MATE1 played an important role in lamivudine pharmacokinetics. Indinavir could cause drug-drug interaction with lamivudine in vivo via inhibition of MATE1 and additional mechanism.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号