首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Recent studies in humans suggest that ferritin iron in soybeans has high bioavailability. However, direct evidence for this is lacking because the soybeans were intrinsically labeled; thus, iron bound to other ligands, such as phytate, was also labeled. OBJECTIVE: The objectives of the study were to evaluate the absorption of iron from extrinsically labeled, purified ferritin (horse spleen) reconstituted with either high-phosphate iron mineral (plant-type) or low-phosphate iron mineral (animal-type) and to compare it with iron absorption from ferrous sulfate. DESIGN: Nonanemic, healthy young women were fed a standard breakfast meal supplemented with (59)Fe-labeled ferritin or ferrous sulfate, in randomized order. Fifteen subjects received ferritin with the low-phosphate iron mineral, and 15 subjects received ferritin with the high-phosphate iron mineral. Iron absorption was measured in a whole-body counter after 14 and 28 d and by red blood cell incorporation after 28 d. RESULTS: There was no significant difference in iron absorption between ferritin and ferrous sulfate: low-phosphate iron mineral ferritin (x +/- SD: 21.4 +/- 14.7%) compared with ferrous sulfate (21.9 +/- 14.6%), or high-phosphate iron mineral ferritin (22.2 +/- 19.2%) compared with ferrous sulfate (16.7 +/- 7.1%). Results obtained by using whole-body retention of iron and red blood cell incorporation differed with the type of iron, which suggests that pathways for iron uptake and utilization differed for the 2 forms. CONCLUSIONS: Iron is equally well absorbed from ferritin and ferrous sulfate independent of the phosphate content of the ferritin iron mineral. Thus, dietary ferritin iron is likely to be a good source of iron.  相似文献   

2.
Iron absorption from soybean ferritin in nonanemic women   总被引:4,自引:0,他引:4  
BACKGROUND: Dietary ferritin, a protein cage around an iron mineral, is an underestimated source of bioavailable iron. Plant ferritin, the most common dietary ferritin, has not been studied. Iron from animal ferritin is absorbed as well as is iron from FeSO4 in women. OBJECTIVE: The objective was to examine iron absorption from purified soybean ferritin. DESIGN: Healthy, nonanemic women (n = 16) were fed a standardized meal (bagel, cream cheese, and apple juice) containing 1 microCi 59Fe/meal as FeSO4 or (extrinsically labeled) as iron-free soybean ferritin reconstituted with the high phosphate characteristic of plant ferritin (iron:phosphorus = 4:1). Iron-free, apo-soybean ferritin was prepared (with the use of thioglycolic acid and extensive dialysis) from purified ferritin. In a randomized crossover design, the other labeled meal, which contained FeSO4 or ferritin, was given after 4 wk. The subjects received 140 microg Fe as ferritin (2.5 mg) or as FeSO4. After 28 d, whole-body 59Fe and 59Fe in red blood cells were measured before and after dosing. RESULTS: There was no significant difference in whole-body iron absorption from soybean ferritin (29.9 +/- 19.8%) and that from FeSO4 (34.3 +/- 23.6%) or in iron absorption calculated from red blood cell incorporation (33.0 +/- 20.1% for soybean ferritin and 35.3 +/- 23.4% for FeSO4), which confirmed previous results with animal ferritin that was mineralized and labeled similarly. An inverse relation was observed between serum ferritin and iron absorption from both ferritin and FeSO4, which suggested that sensors regulating iron absorption respond similarly to iron provided as ferrous salts or as ferritin mineral. CONCLUSION: Iron from soybean ferritin is well absorbed and may provide a model for novel, utilizable, plant-based forms of iron for populations with a low iron status.  相似文献   

3.
BACKGROUND: Nonheme-iron absorption requires an acidic milieu. Reduced gastric acid output as a consequence of Helicobacter pylori infection could be an important limiting factor for iron absorption. OBJECTIVE: We measured gastric acid output and iron absorption from a non-water-soluble iron compound (ferrous fumarate) and a water-soluble iron compound (ferrous sulfate) in children with and without H. pylori infection. DESIGN: Gastric acid output was quantified before (basal acid output, or BAO) and after pentagastrin stimulation (stimulated acid output, or SAO) in 2-5-y-old children with iron deficiency anemia who were (n = 13) or were not (n = 12) infected with H. pylori. Iron absorption was measured by using a double-stable-isotope technique. H. pylori-infected children were studied before and after eradication therapy. RESULTS: BAO and SAO were significantly lower in the H. pylori-infected children (0.2 +/- 0.2 and 1.6 +/- 0.9 mmol/h, respectively) than in the uninfected children (0.9 +/- 0.7 and 3.1 +/- 0.9 mmol/h, respectively; P = 0.01 and P < 0.005). BAO and SAO improved to 0.8 +/- 1.3 and 3.3 +/- 2.4 mmol/h, respectively, after therapy. Iron absorption from ferrous sulfate was significantly greater than that from ferrous fumarate both before (geometric : 19.7% compared with 5.3%; P < 0.0001) and after (22.5% compared with 6.4%; P < 0.0001) treatment in H. pylori-infected children. Corresponding values for uninfected children were 15.6% and 5.4%, respectively (P < 0.001; n = 12). CONCLUSIONS: Iron absorption from ferrous fumarate was significantly lower than that from ferrous sulfate in both H. pylori-infected and uninfected Bangladeshi children. Treatment of H. pylori infection improved gastric acid output but did not significantly influence iron absorption. The efficacy of ferrous fumarate in iron fortification programs to prevent iron deficiency in young children should be evaluated.  相似文献   

4.
After 1 y of distributing a milk-based fortified weaning food provided by the Mexican social program PROGRESA, positive effects on physical growth, prevalence of anemia, and several vitamin deficiencies were observed. There was no effect on iron status, which we hypothesized was related to the poor bioavailability of the reduced iron used as a fortificant in PROGRESA. The objective of this study was to compare the iron bioavailability from different iron sources added as fortificants to the weaning food. Children (n = 54) aged 2-4 y were randomly assigned to receive 44 g of the weaning food fortified with ferrous sulfate, ferrous fumarate, or reduced iron + Na(2)EDTA. Iron absorption was measured using an established double-tracer isotopic methodology. Iron absorption from ferrous sulfate (7.9 +/- 9.8%) was greater than from either ferrous fumarate (2.43 +/- 2.3%) or reduced iron + Na(2)EDTA (1.4 +/- 1.3%) (P < 0.01). The absorption of log-(58)Fe sulfate given with the iron source correlated with serum ferritin (s-ferritin) concentration (n = 13, r = 0.63, P = 0.01) and log-(57)Fe absorption (reference dose) (n = 14, r = -0.52, P = 0.02). Absorption from ferrous fumarate and reduced iron + Na2EDTA did not correlate with s-ferritin or absorption of (57)Fe. The recommended daily portion of the fortified complementary food provides an average of 0.256, 0.096, 0.046 mmol (1.44, 0.54, and 0.26 mg) of absorbed iron, if fortified with sulfate, fumarate and reduced iron + Na(2)EDTA, respectively. Ferrous sulfate was more bioavailable than either ferrous fumarate or reduced iron + Na(2)EDTA when added to the milk-based fortified food and more readily met the average daily iron requirements for children 2-3 y of age.  相似文献   

5.
OBJECTIVES: (a) To measure iron absorption by human subjects from citric acid stabilized fish sauce fortified with ferrous sulfate, ferric ammonium citrate or ferrous lactate and (b) to identify the effect of added citric acid (3 g/l) on iron absorption from ferrous sulfate fortified fish sauce. DESIGN: Iron absorption from the intrinsically labeled compounds was determined via erythrocyte incorporation of isotopic labels ((57)Fe and (58)Fe) using a randomized crossover design. In three separate absorption studies, 10 adult women each consumed a basic test meal of rice and vegetable soup seasoned with isotopically labeled, iron fortified fish sauce. RESULTS: Iron absorption was significantly lower from ferrous lactate and from ferric ammonium citrate fortified fish sauce than from ferrous sulfate fortified fish sauce. Fractional iron absorption (geometric mean; -1s.d., +1s.d.) was 8.7(3.6; 21.4)% for ferrous lactate compared to 13.0(5.4; 31.4)% from ferrous sulfate, P = 0.003 (study 1) and 6.0(2.5; 14.3)% from ferric ammonium citrate relative to 11.7(4.4; 30.7)% from ferrous sulfate, P < 0.001, in study 2. Citric acid added at a molar ratio of approximately 2.5 to iron had no effect on iron absorption from ferrous sulfate (study 3). Iron absorption in the presence of citric acid was 14.1(6.4; 30.8)% compared to 12.0(5.8; 24.7)% in its absence (P = 0.26). CONCLUSIONS: Iron absorption was 50-100% higher from ferrous sulphate fortified fish sauce than from fish sauce fortified with ferric ammonium citrate or ferrous lactate. In the presence of citric acid as a chelator, ferrous sulfate would appear to be a useful fortificant for fish sauce. SPONSORSHIP: International Atomic Energy Agency (IAEA), Vienna, Austria.  相似文献   

6.
Iron absorption in adults is regulated by homeostatic mechanisms that decrease absorption when iron status is high. There are few data, however, regarding the existence of a similar homeostatic regulation in infants. We studied 2 groups of human milk-fed infants using (57)Fe (given as ferrous sulfate without any milk) and (58)Fe (given at the time of a breast-milk feeding) stable isotopes to determine whether healthy infants at risk for iron deficiency would regulate their iron absorption based on their iron status. We studied 20 Peruvian infants at 5-6 mo of age and 18 infants at 9-10 mo of age. We found no effect of infant hemoglobin concentration on iron absorption with 5-6 mo-old infants absorbing 19.2 +/- 2.1% and 9- to 10-mo-old infants absorbing 25.8 +/- 2.6% of the (57)Fe dose. For (58)Fe, 5- to 6-mo-old infants absorbed 42.6 +/- 5.0% and 9 to 10-mo-old infants absorbed 51.9 +/- 10.3%. Following log transformation, iron absorption from (57)Fe (r = -0.61, P = < 0.001) and (58)Fe (r = -0.61, P = < 0.001) were inversely correlated to serum ferritin (S-Ft). For both the (57)Fe and (58)Fe doses, infants with S-Ft <12 mg/L (n = 11) had significantly higher iron absorption than those with S-Ft >12 mg/L. We concluded that iron absorption in infants is related to iron status as assessed by serum ferritin but not hemoglobin concentration. Infants with low iron status upregulate iron absorption from breast milk at both 5-6 and 9-10 mo of age.  相似文献   

7.
BACKGROUND: There is a need to determine whether iron absorption from iron amino acid chelates is protected from inhibition by dietary phytate and regulated normally by iron status. OBJECTIVE: The objective of this study was to compare iron absorption from ferrous sulfate, ferrous bisglycinate, and ferric trisglycinate in whole-maize meal; to determine whether iron from ferrous bisglycinate and ferrous sulfate exchanges in the intestinal pool; and to assess iron absorption from ferrous bisglycinate and ferric trisglycinate over a range of iron statuses. DESIGN: In study 1A, 10 iron-sufficient men consumed ferrous sulfate-fortified whole-maize meal porridge equilibrated with (59)Fe-sulfate on day 1 and (55)Fe-bisglycinate on day 2. In study 1B, these volunteers consumed ferrous sulfate-fortified porridge equilibrated with (59)Fe-sulfate and (55)Fe-bisglycinate simultaneously. In studies 2A and 2B, iron absorption from 3 mg Fe as (59)Fe-ascorbate, (55)Fe-bisglycinate, or (59)Fe-trisglycinate in water and in porridge was compared in 23 subjects with a range of iron statuses. Iron absorption was determined from blood radioactivity on day 16. RESULTS: In study 1A, geometric mean iron absorption from ferrous bisglycinate was 6.0% (range: 2.6-13.6%), 4 times higher than that from ferrous sulfate (1. 7%; range: 1.0-3.3%; P < 0.05). In study 1B, absorption from neither source was different from that in study 1A. In studies 2A and 2B, absorption from all sources was strongly inversely related to serum ferritin, with geometric means of 32.5% (iron ascorbate), 9.1% (bisglycinate), and 15.3% (trisglycinate). Iron from ferric trisglycinate was poorly absorbed (2.3%; range: 0.5-9.2%) from maize. CONCLUSION: In whole-maize meal, iron from ferrous bisglycinate is better absorbed than is iron from ferrous sulfate and does not exchange with iron from maize or ferrous sulfate in the intestinal pool. Absorption of iron from bisglycinate and trisglycinate is regulated normally by iron status.  相似文献   

8.
BACKGROUND: The enterocytic absorption pathway of the food fortificant iron bis-glycine chelate has been the subject of controversy because it is not clear whether that substance uses the classic nonheme-iron absorption pathway or a pathway similar to that of heme absorption. OBJECTIVE: The objective was to study the absorption pathway of iron bis-glycine chelate in human subjects. DESIGN: Eighty-five healthy adult women were selected to participate in 1 of 6 iron-absorption studies. Study A involved the measurement of the dose-response curve of the absorption of ferrous sulfate (through a nonheme-iron absorption pathway); study B involved the competition of iron bis-glycine chelate with ferrous sulfate for the nonheme-iron absorption pathway; study C involved the measurement of the dose-response curve of heme-iron absorption; study D involved the competition of iron bis-glycine chelate with hemoglobin for the heme-iron absorption pathway; and studies E and F were the same as studies A and B, except that the iron bis-glycine chelate was encapsulated in enteric gelatin capsules so that it would not be processed in the stomach. RESULTS: Iron from the bis-glycine chelate competed with ferrous sulfate for the nonheme-iron absorption pathway. Iron from the bis-glycine chelate also competed with ferrous sulfate for absorption when liberated directly into the intestinal lumen. Iron from the bis-glycine chelate did not compete with heme iron for the heme-iron absorption pathway. CONCLUSION: The iron from iron bis-glycine chelate delivered at the level of the stomach or duodenum becomes part of the nonheme-iron pool and is absorbed as such.  相似文献   

9.
BACKGROUND: The use of microencapsulated ferrous fumarate sprinkles is a new approach for home fortification. Iron and hematologic status may affect the absorption of iron from sprinkles. OBJECTIVE: The objective was to measure the absorption (corrected erythrocyte incorporation of (57)Fe) of 2 different doses of iron from sprinkles added to a maize-based complementary food provided to infants with different iron and hematologic status. DESIGN: Infants aged 6-18 mo were randomly assigned to receive either 30 (n = 45) or 45 (n = 45) mg elemental Fe as (57)Fe-labeled sprinkles added to a maize-based porridge on 3 consecutive days. A (58)Fe tracer (0.2 mg as ferrous citrate) was also infused intravenously (n = 46). Blood was drawn at baseline and 14 d later to determine erythrocyte incorporation of (57)Fe and (58)Fe by using inductively coupled plasma mass spectrometry. On the basis of hemoglobin and soluble transferrin receptor concentrations, subjects were classified as having iron deficiency anemia (IDA), iron deficiency (ID), or sufficient iron status. RESULTS: There was no significant effect of dose on iron absorption (P > 0.05). Geometric mean iron absorption was 8.25% (range: 2.9-17.8%) in infants with IDA (n = 32), 4.48% (range: 1.1-10.6%) in infants with ID (n = 20), and 4.65% (range: 1.5-12.3%) in iron-sufficient infants (n = 20). Geometric mean iron absorption was significantly higher in infants with IDA than in infants with ID or iron-sufficient infants (P = 0.0004); however, there were no significant differences between infants with ID and iron-sufficient infants. CONCLUSION: During infancy, iron absorption from sprinkles in a maize-based porridge meets and surpasses requirements for absorbed iron and is up-regulated in infants with IDA.  相似文献   

10.
BACKGROUND: Although ferric pyrophosphate is a promising compound for iron fortification of foods, few data are available on the effect of food matrices, processing, and ascorbic acid on its bioavailability. OBJECTIVE: We compared the relative bioavailability (RBV) of ferrous sulfate in an experimental form of micronized dispersible ferric pyrophosphate (MDFP) in a wheat-milk infant cereal given with and without ascorbic acid with the RBV of MDFP from a processed and unprocessed rice meal. DESIGN: A crossover design was used to measure iron absorption in young women (n = 26) from test meals fortified with isotopically labeled [57Fe]-MDFP and [58Fe]-ferrous sulfate, based on erythrocyte incorporation of stable isotope labels 14 d later. RESULTS: Geometric mean iron absorption from the wheat-based meal fortified with MDFP was 2.0% and that from the meal fortified with ferrous sulfate was 3.2% (RBV = 62). The addition of ascorbic acid at a molar ratio of 4:1 to iron increased iron absorption from MDFP to 5.8% and that from ferrous sulfate to 14.8% (RBV = 39). In the rice meals, mean iron absorption from MDFP added to the rice at the time of feeding was 1.7%, and that from ferrous sulfate was 11.6% (RBV = 15). The mean iron absorption from MDFP extruded into artificial rice grains was 3.0% and that from ferrous sulfate in unprocessed rice was 12.6% (RBV = 24). Sixteen of 26 subjects were iron deficient. Iron status was a highly significant predictor of the RBV of MDFP (P < 0.001). CONCLUSION: RBV of the experimental MDFP varied markedly with food matrix and iron status. Assigning a single RBV value to poorly soluble compounds may be of limited value in evaluating their suitability for food fortification.  相似文献   

11.
BACKGROUND: Reducing the phytate content in grains by genetic manipulation is a novel approach to increasing nonheme-iron absorption from mixed diets. Fractional iron absorption from a genetically modified strain of low-phytate maize (LPM) increased significantly, by 50%. OBJECTIVE: We assessed iron absorption from porridges prepared from the same LPM (lpa-1-1 mutant) and unmodified wild-type maize (WTM), both of which were fortified with either ferrous sulfate or sodium iron EDTA. DESIGN: Porridges providing 3.4 mg Fe were fortified with either ferrous sulfate or sodium iron EDTA to provide an additional 1 mg Fe/serving. In 14 nonanemic women, iron absorption was measured as the amount of radioiron incorporated into red blood cells (extrinsic tag method) 12 d after consumption of the study diets. RESULTS: No significant effect of phytate content on iron absorption was found when porridge was fortified with either sodium iron EDTA or ferrous sulfate. Fractional absorption of iron from WTM porridge fortified with sodium iron EDTA (5.73%) was 3.39 times greater than that from the same porridge fortified with ferrous sulfate (1.69%). Fractional absorption of iron from the sodium iron EDTA-fortified LPM porridge (5.40%) was 2.82 times greater than that from LPM porridge fortified with ferrous sulfate (1.91%) (P<0.0001 for both comparisons, repeated-measures analysis of variance). Thus, the previously identified benefit of LPM was no longer detectable when maize porridge was fortified with additional iron. CONCLUSION: Iron was absorbed more efficiently when the fortificant was sodium iron EDTA rather than ferrous sulfate, regardless of the type of maize.  相似文献   

12.
Ferrous sulfate is a commonly used iron supplement for the correction of iron-deficiency anemia but with frequent gastrointestinal side effects. Milk-derived iron-binding glycoprotein lactoferrin possesses well gastrointestinal tolerance and fewer side effects caused by the intake of high-dose iron. However, the underlying mechanism of the iron-enhancing effect of lactoferrin remains unclear. In addition, the comparative efficacies between lactoferrin and ferrous sulfate are also remained to be determined. We conducted a systematic review and meta-analysis on published intervention studies to investigate how lactoferrin modulate iron metabolism and evaluate the comparative effects between lactoferrin and ferrous sulfate supplementation on iron absorption, iron storage, erythropoiesis and inflammation. Lactoferrin supplementation had better effects on serum iron (WMD: 41.44 ug/dL; p < 0.00001), ferritin (WMD: 13.60 ng/mL; p = 0.003) and hemoglobin concentration (11.80 g/dL; p < 0.00001), but a reducing effect on fractional iron absorption (WMD: −2.08%; p = 0.02) and IL-6 levels (WMD: −45.59 pg/mL; p < 0.00001) compared with ferrous sulfate. In conclusion, this study supports lactoferrin as a superior supplement to ferrous sulfate regarding the improvement in serum iron parameters and hemoglobin levels. Considering the weak influence of lactoferrin on iron absorption, the anti-inflammation effect of lactoferrin may be the potential mechanism to explain its efficacy on iron status and erythropoiesis.  相似文献   

13.
The data presented confirm the advantages of sugar as a vehicle for iron fortification over other vehicles used in the past. The absorption comparison between ferric and ferrous salts added to sugar demonstrated that Fe(III)-EDTA Complex and ferrous sulfate exhibited the highest absorption, while ferric ammonium citrate was poorly absorbed. It was also found that Fe(III)-EDTA reacts slowly with the tannin contained in tea; the color of the tea changes slightly in the first 2 hr after the addition of the fortified sugar. Iron absorption of sugar fortified with ferrous sulfate was tested in seven beverages. The mean absorption ratio from fortified sugar given with beverages to reference dose of iron ascorbate ranged between 0.42 and 0.70, that is, more than 4 times the absorption from fortified sugar when it is administered with a meal containing one or more vegetals. An absorption of between 0.25 and 0.80 mg of iron/soft drink sugar fortified with 3 mg of iron as ferrous sulfate can be expected in subjects with various degrees of iron deficiency. Thus, two soft drinks per day between meals would be enough to meet the iron requirement in more than 95% of menstruating women, even though the daily iron absorption from the diet is about 0.8 to 1.0 mg.  相似文献   

14.
This study was conducted to determine the bioavailability of iron amino acid chelate (ferrochel) added to fortify breads prepared from either precooked corn flour or white wheat flour + cheese and margarine compared with the same basal breakfast enriched with either ferrous sulfate or iron-EDTA. The inhibitory effect of phytate and polyphenols on iron absorption from ferrochel was also tested. A total of 74 subjects were studied in five experiments. Iron absorption from ferrochel was about twice the absorption from ferrous sulfate (P: < 0.05). When ferrous sulfate and ferrochel were administered together or in different meals, absorption from ferrochel was about twice the absorption from ferrous sulfate (P: < 0.05). Polyphenols present in coffee and tea inhibited iron absorption in a dose-dependent manner. American-type coffee did not modify iron absorption significantly, whereas both espresso-type coffee and tea reduced iron absorption from ferrochel by 50% (P: < 0. 05). Ferrochel partially prevented the inhibitory effect of phytates. Because of its high solubility in aqueous solutions even at pH 6, its low interactions with food and high absorption, ferrochel is a suitable compound for food fortification.  相似文献   

15.
Iron anemia was induced in pigs immediately after birth by feeding an iron depletion diet containing only 17 mg iron/kg feed. (The requirement for iron in this period is 50 mg iron/kg feed). When Hb concentrations were 5 g/100 ml the pigs were given iron repletion diets. One group received 7% bran in the diet, about 60% of the iron derived from the bran and 40% from ferrous sulfate. The other group received no bran and 80% of the iron from ferrous sulfate. There were no differences, either in the increase of Hb or in the increase of serum iron, in the two groups. In a second experiment, one group received all their iron from cereals, and an addition of 20% bran in the diet. The other group received no bran and 80% of the iron from ferrous sulfate. There was no significant difference in the bioavailability of the iron present in the diets. In our experiments bran seemed to have no inhibitory effect on iron absorption, even when 20% bran was included in the diet.  相似文献   

16.
BACKGROUND: Although elemental iron powders are widely used to fortify cereal products, little data exist on their efficacy in humans. OBJECTIVE: We compared the efficacy of wheat-based snacks fortified with ferrous sulfate, electrolytic iron, or hydrogen-reduced iron in Thai women with low iron stores. DESIGN: A double-blind intervention was conducted in 18-50-y-old women (n = 330) randomly assigned into 4 groups to receive either no fortification iron or 12 mg Fe/d for 6 d/wk for 35 wk as ferrous sulfate, electrolytic iron, or hydrogen-reduced iron in a baked, wheat-flour-based snack. Snacks were not consumed with meals, and consumption was monitored. At baseline, 20 wk, and 35 wk, hemoglobin status and iron were measured and the groups were compared. RESULTS: Between baseline and 35 wk, geometric mean serum ferritin (SF) increased significantly in all 3 groups receiving iron (P < 0.01), and geometric mean serum transferrin receptor (TfR) decreased significantly in the groups receiving ferrous sulfate and electrolytic iron (P < 0.05). Calculated mean (+/-SD) body iron stores increased from 1.5 +/- 2.8 to 5.4 +/- 2.9 mg/kg in the ferrous sulfate group, from 1.5 +/- 3.5 to 4.4 +/- 3.6 mg/kg in the electrolytic iron group, and from 1.3 +/- 3.2 to 3.2 +/- 4.3 mg/kg in the hydrogen-reduced iron group (P < 0.01 for all 3 groups) but did not change significantly in the control group. CONCLUSIONS: Ferrous sulfate, electrolytic iron, and hydrogen-reduced iron, fortified into wheat-based snacks, significantly improved iron status. On the basis of the change in body iron stores during the 35-wk study, the relative efficacy of the electrolytic and hydrogen-reduced iron compared with ferrous sulfate was 77% and 49%, respectively.  相似文献   

17.
OBJECTIVE: Although it is well known that bioavailability of iron in the diet is important, it has not been fully elucidated in practice. We investigated iron intake and iron absorption in the ordinary diet of free-living individuals in relation to iron status and assessed iron requirements. METHODS: From a total of 1245 adolescent boys and girls included in the G?teborg Adolescence Study of food habits, 28 adolescent girls registered their food intake during 7 d. Iron intake was assessed on the basis of these 7-d dietary records. Iron absorption was calculated using an algorithm including enhancing and inhibiting dietary factors on iron absorption in relation to individual iron status. RESULTS: Available iron intake was 11.5 +/- 2.8 mg/d (mean +/- SD). The proportion of girls with an iron intake below the Nordic nutrition recommendations was 85% (n = 24). Calculated iron absorption was 1.09 +/- 0.59 mg/d (mean +/- SD). Only four girls satisfied their estimated individual iron requirement concerning the absorbed amount of iron. Iron depletion (serum ferritin concentration < or = 15 microg/L) was present in 10 girls (36%), 2 of whom were also anemic (hemoglobin concentration < or = 120 g/L). CONCLUSION: Swedish adolescent girls seemed to have difficulties satisfying their iron requirement in terms of absorbed amount. The data support the view that iron intake and bioavailability of dietary iron is important when evaluating whether iron requirements have been met.  相似文献   

18.
BACKGROUND: Phytic acid is a strong inhibitor of iron absorption from fortified foods. In adults, this inhibitory effect can be overcome by adding ascorbic acid with the iron fortificant or by using a "protected" iron compound such as NaFeEDTA. In addition, the use of NaFeEDTA as an iron fortificant has been reported to increase zinc absorption in adult women. No information is available on iron bioavailability from NaFeEDTA or the influence of NaFeEDTA on minerals and trace elements in infants. OBJECTIVE: We aimed to compare iron bioavailability from a complementary food based on wheat and soy fortified with either NaFeEDTA or ferrous sulfate plus ascorbic acid. The apparent absorption of zinc, copper, calcium, and magnesium was evaluated in parallel. DESIGN: Stable-isotope techniques were used in a crossover design to evaluate erythrocyte incorporation of iron 14 d after administration of labeled test meals and the apparent absorption of zinc, copper, calcium, and magnesium on the basis of fecal monitoring in 11 infants. RESULTS: Geometric mean erythrocyte incorporation of iron was 3.7% (NaFeEDTA) and 4.9% (ferrous sulfate plus ascorbic acid) (P = 0.08). No significant differences in the apparent absorption of zinc, copper, calcium, or magnesium were observed between test meals (n = 10). CONCLUSIONS: Iron bioavailability from a high-phytate, cereal-based complementary food fortified with either NaFeEDTA or ferrous sulfate plus ascorbic acid was not significantly different. NaFeEDTA did not influence the apparent absorption of zinc, copper, calcium, or magnesium. NaFeEDTA does not provide any nutritional benefit compared with the combination of a highly bioavailable iron compound and ascorbic acid.  相似文献   

19.
BACKGROUND: Iron deficiency is a major nutritional concern in developing countries, and food fortification is a common strategy to treat it. In Indonesia wheat flour is fortified with 60 mg Fe/kg, but because of increasing concerns about marginal zinc status in at-risk populations, consideration is being given to cofortifying flour with zinc. However, little is known about the effect of zinc fortification of flour on iron bioavailability or about the optimum form of zinc supplementation. OBJECTIVE: We measured iron and zinc bioavailability from wheat-flour dumplings containing 25 g flour fortified with 60 mg Fe/kg, either alone or with 60 mg Zn/kg as zinc oxide or as zinc sulfate. DESIGN: Ninety children aged 4-8 y were recruited and assigned randomly to the 3 groups; 86 completed the study. Iron and zinc absorption were measured with established stable-isotope methods. RESULTS: Iron absorption from the flour fortified with iron only was good (15.9 +/- 6.8%), but when corrections were made for hemoglobin concentrations, it was significantly lower from the flour cofortified with zinc sulfate (11.5 +/- 4.9%; P < 0.05) but not from the flour cofortified with zinc oxide (14.0 +/- 8.9%). Zinc absorption was not significantly different between the zinc oxide and zinc sulfate cofortified flours (24.1 +/- 8.2% compared with 23.7 +/- 11.2%; P = 0.87). CONCLUSIONS: Iron and zinc appear to be highly bioavailable from foods made from fortified flour, but zinc sulfate cofortification may have a detrimental effect on iron absorption.  相似文献   

20.
OBJECTIVES: Postgastrectomy iron deficiency anemia has a variable prevalence and occurs in 20-50% of patients. Food fortification reports examining ferrous glycinate chelate have shown that it can be 2.5-3.4 times more bioavailable than ferrous sulfate, with minimal gastrointestinal symptoms. The present study was designed as a controlled experimental study including 18 gastrectomized patients with iron deficiency anemia to compare the effects of ferrous sulfate and ferrous glycinate chelate in the treatment of anemia and to evaluate the presence of side effects. METHODS: Patients were divided in two groups: group 1 received ferrous sulfate (200 mg twice a day, corresponding to 80 mg of elemental iron) and group 2 received ferrous glycinate chelate (250 mg/d, corresponding to 50 mg of elemental iron) for 4 mo. Laboratory measurements were performed at baseline and after 2 and 4 mo. RESULTS: Group 1 showed an apparent recovery in laboratory parameters, with increases in medium corpuscular hemoglobin (P = 0.02), serum iron (P = 0.02), and ferritin (P = 0.04), and a decrease in transferrin (P = 0.002) after 4 mo. Individualized analysis showed that only one patient using ferrous sulfate had anemia at the end of the study in contrast to six patients using ferrous glycinate. In addition, ferritin levels increased above 20 microg/L at the end of the study in seven patients using ferrous sulfate in contrast to one patient using ferrous glycinate. CONCLUSION: Patients with iron deficiency anemia after gastrectomy treated with ferrous sulfate had better results in hematologic laboratory parameters than those who used ferrous glycinate chelate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号