首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sodium phenylacetate (NaPa), a non-toxic phenylalanine metabolite, has been shown to induce in vivo and in vitro cytostatic and antiproliferative effects on various cell types. In this work, we analysed the effect of NaPa on the invasiveness of breast cancer cell (MDA-MB-231, MCF-7 and MCF-7 ras). Using the highly invasive breast cancer cell line MDA-MB-231, we demonstrated that an 18-hour incubation with NaPa strongly inhibits the cell invasiveness through Matrigel (86% inhibition at 20 mM of NaPa). As cell invasiveness is greatly influenced by the expression of urokinase (u-PA) and its cell surface receptor (u-PAR) as well as the secretion of matrix metalloproteinases (MMP), we tested the effect of NaPa on these parameters. An 18-hour incubation with NaPa did not modify u-PA expression, either on MDA-MB-231 or on MCF-7 and MCF-7 ras cell lines, and induced a small u-PA decrease after 3 days of treatment of MDA-MB-321 with NaPa. In contrast, an 18 h incubation of MDA-MB-231 increased the expression of u-PAR and the secretion of MMP-9. As u-PAR is a ligand for vitronectin, a composant of the extracellular matrix, these data could explain the increased adhesion of MDA-MB-231 to vitronectin, while cell adhesivity of MCF-7 and MCF-7 ras was unmodified by NaPa treatment. NaPa induced also an increased expression of both Lymphocyte Function-Associated-1 (LFA-1) and Intercellular Adhesion Molecule-1 (ICAM-1), which was obvious from 18 hour incubation with NaPa for the MDA-MB-231 cells, but was delayed (3 days) for MCF-7 and MCF-7 ras. Only neutralizing antibodies against LFA-1 reversed the decreased invasiveness of NaPa-treated cells. Therefore we can conclude that the strong inhibition of MDA-MB-231 invasiveness is not due to a decrease in proteases involved in cell migration (u-PA and MMP) but could be related both to the modification of cell structure and an increased expression of adhesion molecules such as u-PAR and LFA-1.  相似文献   

3.
A molecular role for lysyl oxidase in breast cancer invasion   总被引:11,自引:0,他引:11  
We identified previously an up-regulation in lysyl oxidase (LOX) expression,an extracellular matrix remodeling enzyme, in a highly invasive/metastatic human breast cancer cell line, MDA-MB-231, compared with MCF-7, a poorly invasive/nonmetastatic breast cancer cell line. In this study, we demonstrate that the mRNA expression of LOX and other LOX family members [lysyl oxidase-like (LOXL), LOXL2, LOXL3, and LOXL4] was observed only in breast cancer cells with a highly invasive/metastatic phenotype but not in poorly invasive/nonmetastatic breast cancer cells. LOX and LOXL2 showed the strongest association with invasive potential in both highly invasive/metastatic breast cancer cell lines tested (MDA-MB-231 and Hs578T). To determine whether LOX is directly involved in breast cancer invasion, LOX antisense oligonucleotides were transfected into MDA-MB-231 and Hs578T cells, and found to inhibit invasion through a collagen IV/laminin/gelatin matrix in vitro compared with LOX sense oligonucleotide-treated and untreated controls. In addition, treatment of MDA-MB-231 and Hs578T cells with beta-aminopropionitrile (an irreversible inhibitor of LOX enzymatic activity) decreased invasive activity. Conversely, MCF-7 cells transfected with the murine LOX gene demonstrated a 2-fold increase in invasiveness that was reversible by the addition of beta-aminopropionitrile in a dose-dependent manner. In addition, endogenous LOX mRNA expression was induced when MCF-7 cells were cultured in the presence of fibroblast conditioned medium or conditioned matrix, suggesting a role for stromal fibroblasts in LOX regulation in breast cancer cells. Moreover, the correlation of LOX up-regulation and invasive/metastatic potential was additionally demonstrated in rat prostatic tumor cell lines, and human cutaneous and uveal melanoma cell lines. These results provide substantial new evidence that LOX is involved in cancer cell invasion.  相似文献   

4.
Metastatic spread of breast cancer is responsible for most of the morbidity and mortality associated with this disease. Thus, it is important to identify agents with antimetastatic activity. Because invasiveness and tumor cell attachment are fundamental steps in the metastatic cascade, the major objective of the present study was to evaluate the antimetastatic potential of three antiestrogens, each with different chemical structure and mechanism of action, on breast cancer cell invasiveness and laminin attachment. The antiestrogens examined were tamoxifen, a mixed antagonist/agonist; Analog II, a cyclopropyl antiestrogen with pure antagonist activity; and ICI-182,780, a steroidal antiestrogen with pure antagonist activity. Our results indicate that MDA-MB-231 human breast cancer cells are much more invasive and have a higher affinity for laminin than do MCF-7 human breast cancer cells. All three antiestrogens, at a concentration of 10(-6) M, produced a reduction in MDA-MB-231 cell invasiveness, which was comparable in magnitude to their inhibition of MDA-MB-231 attachment to laminin. Evaluation of MDA-MB-231 cell morphology using scanning electron microscopy revealed the involvement of cellular pseudopodia and microvilli in the process of invasion. The results of this study suggest that antiestrogen-induced inhibition of breast cancer cell invasiveness could be due in part to a decrease in the attachment of tumor cells to laminin in the basement membrane.  相似文献   

5.
Cancers of the breast, cervix, uterus and ovary are the most prevalent cancers in women worldwide. Proteases play a key role in tumor cell invasion and metastasis by digesting the basement membrane and ECM components. Strong clinical and experimental evidence demonstrates association of elevated levels of urokinase plasminogen activators (u-PA) and matrix metalloproteinases (MMPs) with cancer progression, metastasis and shortened patient survival. MMP activities are regulated by specific tissue inhibitors of metalloproteinases (TIMPs). Our main objective was to study the effect of a nutrient mixture (NM) on the activity of u-PA, MMPs and TIMPs in human breast, cervix, uterine and ovarian cancer cell lines. Human breast (MDA-MB-231 and MCF-7), cervical (HeLa), uterine (SK-UT-1) and ovarian (SKOV3) cancer cell lines were cultured in their respective media and treated at confluence with NM at 0, 50, 100, 250, 500 and 1000 μg/ml. Analysis of u-PA activity was carried out by fibrin zymography, MMPs by gelatinase zymography and TIMPs by reverse zymography. Both breast and uterine cancer cell lines expressed u-PA, which was inhibited by NM in a dose-dependent manner. However, no bands corresponding to u-PA were detected for HeLa and SK-OV-3 cell lines. On gelatinase zymography, MDA-MB-231 and MCF-7 showed one band corresponding to MMP-9, HeLa showed two bands, an intense band corresponding to MMP-2 and a faint band corresponding to MMP-9, SK-UT-1 showed PMA-induced MMP-9, and SK-OV-3 showed a band corresponding to MMP-2. NM inhibited their expression in all cell lines. The activity of TIMPs was upregulated in all cancer cell lines in a dose-dependent manner. Analysis revealed a positive correlation between u-PA and MMPs and a negative correlation between u-PA/MMPs and TIMPs. These findings suggest the therapeutic potential of NM in the treatment of female cancers.  相似文献   

6.
Dehydroepiandrosterone (DHEA), an adrenal hormone, has a protective role against cancer. We previously shown that DHEA inhibits the proliferation and migration of cell lines derived from breast cancer; however, the role of DHEA in others events related with these effects are unknown. We hypothesized that DHEA inhibits the expression of proteins and some events related with cell migration and metastasis. We determined the migration in Boyden chambers, the invasion in matrigel, anchorage-independent growth and the formation of spheroids in 3 cell lines (MCF-7, MDA-MB-231, ZR-75-30) derived from breast cancer exposed to DHEA. The secretion of metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and several pro-inflammatory molecules in the secretome of these cells was also evaluated. DHEA inhibited the migration in transwells and the invasion in matrigel of MCF-7 and MDA-MB-231 cells. Besides, DHEA inhibited the anchorage-independent growth on agar and decreased the size of spheroids, and also reduced the secretion of IL-1α, IL-6, IL-8, and TNF-α in all cell lines. Metalloproteinase-1 (MMP-1) secretion was slightly decreased by DHEA treatment in MDA-MB-231 cells. Our results also showed that inhibition of migration and invasion induced by DHEA in breast cancer cells is correlated with the decrease of cytokine/chemokine secretion and the diminution of tumor cells growth. MCF-7 cells were the most responsive to the exposure to DHEA, whereas ZR-75-30 cells responded less to this hormone, suggesting that DHEA could be used in the treatment of breast cancer in early stages.  相似文献   

7.
8.
The expression levels of ets and MMP genes was examined in two breast cancer cell lines of differing invasive potential. The more invasive MDA-MB-231 cell line had higher levels of Ets-1, Ets-2, PEA3, ERM, Tel, Net, MMP-13 and -14 mRNA than MCF-7 cells. MMP-1, -3 and -16 mRNAs were expressed equally. TPA stimulated MMP-1, -9 and TIMP-1 mRNA expression in both cell lines. MMP-2 and MMP-7 mRNAs were not detected in either cell line. The Ets-1 protein was only detected in MDA-MB-231 cells and its level increased following TPA stimulation. TPA induced MMP-9 activity in MCF-7 cells and increased its activity in MDA-MB-231 cells, however, MMP-2 activity was not detected.  相似文献   

9.
Glycolysis is increased in cancer cells compared with normal cells. It has been shown that glucose enters cells via a family of five functional glucose transporters (GLUT). However, GLUT expression appears to be altered in human breast cancer, which may serve as a selective advantage and facilitate the metastatic potential of these cells. The relationship of GLUT isoform expression and breast cancer cell invasiveness has not been adequately addressed. Thus, the purpose of this study was to investigate whether an association exists between GLUT expression and human breast cancer cell invasiveness. Invasiveness of the human breast cancer lines MCF-7, MDA-MB-435 and MDA-MB-231 was measured using anin vitro assay and compared with cellular GLUT isoform expression, assessed by Western blot analysis and verified by immunohistochemistry in a poorly differentiated human ductal breast cancer. Cell surface GLUT-1 expression was associated with the invasive ability of MCF-7 (2.0 ± 0.02%), MDA-MB-435 (6.4 ±0.4%), and MDA-MB-231 (19.3 ± 2.0%). However, GLUT-2 and GLUT-5 were inversely associated with invasiveness; GLUT-3 expression was variable; and GLUT-4 was undetected. In a poorly differentiated human ductal breast cancer,in situ GLUT-1 staining was intense. GLUT-1 expression was associated with the in vitro invasive ability of human breast cancer cells which was validatedin situ. If this relationship is found to exist in a larger number of human breast cancer tissues, it may be possible to develop diagnostic and therapeutic strategies based on targeted GLUT isoform expression.  相似文献   

10.
Park SY  Jun JA  Jeong KJ  Heo HJ  Sohn JS  Lee HY  Park CG  Kang J 《Oncology reports》2011,25(6):1677-1681
Histone deacetylases (HDACs) are associated with the development and progression of cancer, but it is not known which of the HDAC isoforms play important roles in breast cancer metastasis. This study identified the specific HDAC isoforms that are necessary for invasion and/or migration in human breast cancer cell lines. MDA-MB-231 cells were significantly more invasive and expressed higher levels of matrix metalloproteinase-9 (MMP-9) compared to MCF-7 cells. We compared the expression of HDAC isoforms between MCF-7 and MDA-MB-231 cells and found greater expression of HDAC4, 6 and 8 in MDA-MB-231 cells by RT-PCR and Western blot analyses. In addition, apicidin, a histone deacetylase inhibitor, was shown to attenuate the invasion, migration and MMP-9 expression in MDA-MB-231 cells. Using specific siRNAs directed against HDAC1, 4, 6 and 8, we show that inhibition of HDAC1, 6 and 8, but not HDAC4, are responsible for invasion and MMP-9 expression in MDA-MB-231 cells. We analyzed the invasiveness of MCF-7 cells overexpressing HDAC1, 4, 6 or 8 and found that overexpression of HDAC1, 6 or 8 increased invasion and MMP-9 expression. By developing HDAC isoforms as potential biomarkers for breast cancer metastasis, the present study can be extended to developing therapies for breast cancer invasion.  相似文献   

11.
目的:研究miRNA-34a(miR-34a)对乳腺癌细胞MCF-7、MDA-MB-231的生物调控作用。方法:采用定量PCR检测人乳腺上皮细胞MCF-10A,乳腺癌细胞株MCF-7、T47D、MDA-MB-231、MDA-MB-453、Hs578T中miR-34a的表达水平。通过miR-34a mimics分别上调MCF-7、MDA-MB-231细胞中miR-34a的表达水平,MTT和Transwell检测肿瘤细胞增殖能力、侵袭力等生物学行为的变化。结果:乳腺癌细胞MCF-7、T47D、MDA-MB-231、MDA-MB-453、Hs578T中miR-34a处于低表达水平。通过miR-34a mimics上调MCF-7、MDA-MB-231细胞中miR-34a的表达后,细胞的增殖能力被miR-34a抑制(P<0.05),miR-34a对细胞侵袭有显著抑制作用(P<0.05)。结论:miR-34a在乳腺癌细胞MCF-7、T47D、MDA-MB-231、MDA-MB-453及Hs578T中低表达,miR-34a抑制乳腺癌细胞MCF-7、MDA-MB-231的细胞增殖和侵袭能力。  相似文献   

12.
目的:通过从MCF-7、ZR-75-1、MDA-MB-231乳腺癌细胞系中培养富集及鉴定乳腺癌干细胞(breast cancer stem cell,BCSC),寻找培养与富集乳腺癌干细胞的方法。方法:贴壁培养MCF-7、ZR-75-1、MDA-MB-231细胞系,倒置显微镜观察各细胞形态;流式细胞仪分别分选收集CD44-CD24-、CD44-CD24+、CD44+CD24-及 CD44+CD24+ 细胞,其中CD44+CD24-为乳腺癌干细胞,其余三类为对照组;MTT法计数细胞,绘制MCF-7、ZR-75-1、MDA-MB-231细胞系生长曲线;MCF-7细胞系进行无血清悬浮培养1个周期,流式细胞仪检测分子表面标记物CD44+CD24-含量,贴壁培养的CD44+CD24-乳腺癌干细胞为对照组;将分选的MCF-7(CD44+CD24-)和分选的其余MCF-7细胞(非CD44+CD24-)进行干性成球实验,鉴定CD44+CD24-干性表达。结果:MCF-7、MDA-MB-231细胞系富含表面标志物CD44-CD24-的乳腺癌细胞;ZR-75-1细胞系富含分子表面标志物CD44+CD24+的乳腺癌细胞;生长曲线显示MCF-7、ZR-75-1、MDA-MB-231均呈持续增长,MDA-MB-231细胞生长较MCF-7、ZR-75-1细胞快;通过无血清悬浮培养CD44+CD24-乳腺癌干细胞由19.4%富集到88.9%;成球实验中CD44+CD24-表型细胞成球数量较分选的其余MCF-7细胞(非CD44+CD24-表型)明显增多,成球率分别为(36.5±1.7)%,(1.1±0.5)%。结论:流式细胞仪可成功分选出分子表面标志物为CD44+CD24-的乳腺癌干细胞;CD44+CD24-可能不是乳腺癌干细胞唯一的表面标志物;MDA-MB-231细胞系较MCF-7、ZR-75-1细胞系生长快;无血清悬浮培养法可简便、高效地富集乳腺癌干细胞;CD44+CD24-乳腺癌干细胞干性表达较强。  相似文献   

13.
Following removal of the primary breast tumour by conservative surgery, patients may still have additional malignant foci scattered throughout the breast. Radiation treatments are not designed to eliminate all these residual cancer cells. Rather, the radiation dose is calculated to optimise long-term results with minimal complications. In a tumour, cancer cells are surrounded by a basement membrane, which plays an important role in the regulation of gene expression. Using an invasion chamber, we have shown that irradiation before cell plating of a reconstituted basement membrane (Matrigel; Becton Dickinson, Bedford, MA, USA) increased the invasiveness of the breast cancer cells MDA-MB-231. This radiation enhancement of invasion was associated with the upregulation of the pro-invasive gene matrix metalloproteinase (MMP)-2. The expression of membrane type 1 matrix metalloproteinase (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP), which are required to activate the MMP-2, were also increased. Confirming the role of MMP-2 and MT1-MMP, radiation enhancement of cancer cell invasion was prevented by an MMP-2 inhibitor and an anti-MT1-MMP antibody. This study also demonstrated that radiation can potentially enhance the invasion ability by inducing the release of pro-invasive factors stored in the Matrigel. Conversely, no enhancement of invasiveness was observed with the low metastatic cell line MCF-7. This lack of invasiveness correlated with the absence of the MMP-2 activator MT1-MMP in the MCF-7 cells. Radiotherapy is an efficient modality to treat breast cancer which could be further improved by inhibiting the pro-invasive gene upregulated by radiation.  相似文献   

14.
目的:探讨干细胞标志物醛脱氢酶1A1(ALDH1A1)对乳腺癌细胞血管生成因子表达的影响,以及对与乳腺癌细胞共培养的HUVEC细胞小管形成和侵袭能力的影响。方法:采用免疫组化检测了乳腺癌组织和乳腺增生组织中ALDH1A1的表达。使用ALDH1A1 shRNA或过表达ALDH1A1的pcDNA3.1质粒转染乳腺癌细胞(MCF-7和MDA-MB-231),通过qRT-PCR和Western blot检测敲低或过表达ALDH1A1对乳腺癌细胞中血管内皮生长因子(VEGF)、缺氧诱导因子-1α(HIF-1α)和白细胞介素-12(IL-12)表达的影响。通过用1 μmol/L 的外源性RA和RAR阻断剂(AGN 193109)处理乳腺癌细胞48 h来考察视黄酸信号通路是否参与ALDH1A1对VEGF和HIF-1α的调控过程。将乳腺癌细胞(MCF-7和MDA-MB-231)和HUVEC细胞共培养来模拟肿瘤形成的微环境,并检测HUVEC的小管形成能力和细胞侵袭能力。结果:乳腺癌组织的ALDH1A1染色平均光密度显著高于乳腺增生组织,并且淋巴结转移的乳腺癌组织显著高于未淋巴结转移的乳腺癌组织(P<0.05)。敲低ALDH1A1可显著降低MCF-7和MDA-MB-231细胞中VEGF和HIF-1α蛋白表达,并上调IL-12蛋白表达。然而,上调ALDH1A1表达则可逆转上述变化。外源性RA处理可显著上调MCF-7和MDA-MB-231细胞中VEGF和HIF-1α的表达,然而,RAR阻断剂处理可抑制MCF-7和MDA-MB-231细胞中VEGF和HIF-1α的上调。敲低乳腺癌细胞中ALDH1A1的表达可导致共培养的HUVEC细胞的小管形成能力和侵袭能力显著降低。而上调乳腺癌细胞中ALDH1A1的表达则可显著促进共培养的HUVEC细胞的小管形成能力和侵袭能力。结论:在乳腺癌细胞中,ALDH1A1通过激活HIF-1α和视黄酸信号通路来上调血管生成因子的表达并提高共培养的内皮细胞的血管生成能力,从而增加肿瘤的侵袭性。  相似文献   

15.
目的:探索乳腺癌细胞MDA-MB-231及MCF-7中CD44分子的表达水平差异及沉默CD44对乳腺癌细胞MDA-MB-231增殖、侵袭和迁移的影响。方法:利用qRT-PCR及Western blot技术检测细胞中CD44基因表达水平;设计并合成CD44的siRNA片段(CD44-siRNA)转染乳腺癌细胞,利用qRT-PCR、Western blot技术检测细胞中CD44基因表达水平的变化;MTT检测MDA-MB-231细胞增殖;Transwell侵袭实验检测MDA-MB-231细胞的迁移与侵袭能力变化。结果:CD44在侵袭性乳腺癌细胞MDA-MB-231中的表达高于非侵袭性乳腺癌细胞MCF-7,CD44-siRNA下调了 MDA-MB-231细胞中CD44 mRNA与蛋白水平的表达,并抑制了细胞的增殖和侵袭转移能力。结论:CD44-siRNA能够下调CD44的表达,并有效抑制乳腺癌细胞MDA-MB-231的增殖及其侵袭迁移力。  相似文献   

16.
杨婉华  汪蕊  陈睿  马湘一  王世宣  卢运萍  马丁 《肿瘤》2006,26(8):728-731
目的:研究αv整联蛋白拮抗剂RGD肽对乳腺癌细胞株MDA-MB-231、MCF-7增殖侵袭能力的影响,探讨其在肿瘤靶向性治疗中的作用机制。方法:化学合成RGD肽,免疫细胞荧光技术检测RGD肽与MDA-MB-231、MCF-7细胞结合能力;MTT法检测不同浓度RGD肽对细胞增殖能力的影响;流式细胞学检测RGD肽处理对细胞周期和凋亡的影响;Boyden小室体外侵袭实验测定RGD肽处理后细胞迁移与侵袭能力的改变。结果:RGD肽与MDA-MB-231、MCF-7细胞均有特异性结合作用,15μmoI/L及更高浓度的RGD肽作用24h后细胞增殖能力显著降低(P<0.01),细胞凋亡明显增加,细胞阻滞于G_0/G_1期,且RGD肽对细胞体外侵袭能力有不同程度的抑制作用。结论:RGD肽作为αv整联蛋白的一种拮抗剂,不仅具有药物、基因治疗载体的导向运输功能,更具有肿瘤的直接杀伤效应,是一种理想的肿瘤靶向性治疗药物。  相似文献   

17.

Background

In breast cancer cells, the metastatic cell state is strongly correlated to epithelial-to-mesenchymal transition (EMT) and the CD44+/CD24- stem cell phenotype. However, the MCF-7 cell line, which has a luminal epithelial-like phenotype and lacks a CD44+/CD24- subpopulation, has rare cell populations with higher Matrigel invasive ability. Thus, what are the potentially important differences between invasive and non-invasive breast cancer cells, and are the differences related to EMT or CD44/CD24 expression?

Methods

Throughout the sequential selection process using Matrigel, we obtained MCF-7-14 cells of opposite migratory and invasive capabilities from MCF-7 cells. Comparative analysis of epithelial and mesenchymal marker expression was performed between parental MCF-7, selected MCF-7-14, and aggressive mesenchymal MDA-MB-231 cells. Furthermore, using microarray expression profiles of these cells, we selected differentially expressed genes for their invasive potential, and performed pathway and network analysis to identify a set of interesting genes, which were evaluated by RT-PCR, flow cytometry or function-blocking antibody treatment.

Results

MCF-7-14 cells had enhanced migratory and invasive ability compared with MCF-7 cells. Although MCF-7-14 cells, similar to MCF-7 cells, expressed E-cadherin but neither vimentin nor fibronectin, β-catenin was expressed not only on the cell membrane but also in the nucleus. Furthermore, using gene expression profiles of MCF-7, MCF-7-14 and MDA-MB-231 cells, we demonstrated that MCF-7-14 cells have alterations in signaling pathways regulating cell migration and identified a set of genes (PIK3R1, SOCS2, BMP7, CD44 and CD24). Interestingly, MCF-7-14 and its invasive clone CL6 cells displayed increased CD44 expression and downregulated CD24 expression compared with MCF-7 cells. Anti-CD44 antibody treatment significantly decreased cell migration and invasion in both MCF-7-14 and MCF-7-14 CL6 cells as well as MDA-MB-231 cells.

Conclusions

MCF-7-14 cells are a novel model for breast cancer metastasis without requiring constitutive EMT and are categorized as a "metastable phenotype", which can be distinguished from both epithelial and mesenchymal cells. The alterations and characteristics of MCF-7-14 cells, especially nuclear β-catenin and CD44 upregulation, may characterize invasive cell populations in breast cancer.
  相似文献   

18.
An interaction between cellular estrogen response and melatonin signaling mediated by G-protein coupled receptors is present in breast cancer cells. In this study, the effect of antiestrogens on basal and melatonin-modulated expression of MT1 melatonin receptor in breast and ovarian cancer cells was examined. For this purpose, the effects of the selective estrogen receptor modulator tamoxifen and pure antiestrogen ICI 182,780 on MT1 expression in estrogen receptor (ER) alpha-positive and -negative breast and ovarian cancer cell lines cultured in medium supplemented with 1 nM 17-beta estradiol were assessed by Western blot analysis. We were able to detect expression of the MT1 receptor in SK-OV-3 and OVCAR-3 cells and report its up-regulation by melatonin in both ovarian cancer cell lines. MT1 expression was observed to be significantly weaker in ERalpha-positive MCF-7 and OVCAR-3 cells than in ERalpha-negative MDA-MB-231 and SK-OV-3 cells. Treatment with the pure antiestrogen ICI 182,780 increased MT1 receptor expression in OVCAR-3 ovarian cancer cells, but decreased MT1 expression in MCF-7 breast cancer cells. No effect of ICI 182,780 on MT1 expression was observed in the ERalpha-negative cell lines SK-OV-3 and MDA-MB-231. After treatment with 4-OH tamoxifen, down-regulation of basal MT1 receptor expression in ERalpha-positive MCF-7 cells and inhibition of melatonin-induced up-regulation of MT1 in OVCAR-3 ovarian cancer cells were observed. In contrast, treatment with 4-OH tamoxifen increased the MT1 receptor level in ERalpha-negative SK-OV-3 ovarian cancer cells. Our findings support the existence of close interaction between estrogen and melatonin signaling. Moreover, our data suggest that melatonin signaling is modulated by antiestrogens in breast and ovarian cancer cells.  相似文献   

19.
20.
A pharmacological-based global screen for epigenetically silenced tumor suppressor genes was performed in MCF-7 and MDA-MB-231 breast cancer cells. Eighty-one genes in MCF-7 cells and 131 in MDA-MB-231 cells were identified, that had low basal expression and were significantly upregulated following treatment. Eighteen genes were studied for methylation and/or expression in breast cancer; PTCH, the receptor for the hedgehog (Hh) pathway and a known tumor suppressor gene, was selected for further analysis. Methylation of the PTCH promoter was found in MCF-7 cells and in breast cancer samples, and correlated with low PTCH expression. Immunohistochemical analysis of breast tissue arrays revealed high expression of PTCH in normal breast compared to ductal carcinomas in situ (DCIS) and invasive ductal carcinomas; furthermore, association was found between PTCH expression and favorable prognostic factors. PTCH is an inhibitor of the Hh pathway, and its silencing activates the pathway and promotes growth. Indeed, high activity of the Hh pathway was identified in MCF-7 cells and overexpression of PTCH inhibited the pathway. Moreover, treatment with cyclopamine, an inhibitor of the pathway, reduced cell growth and slowed the cell cycle in these cells. Thus, unmasking of epigenetic silencing in breast cancer enabled us to discover a large number of candidate tumor suppressor genes. Further analysis suggested a role of one of these genes, PTCH, in breast cancer tumorigenesis. Electronic supplementary material The online version of this article contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号