首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reports showed noxious forepaw stimulation in rats evoked an unexpected sustained decrease in cerebral blood volume (CBV) in the bilateral striatum, whereas increases in spike activity and Fos-immunoreactive cells were observed. This study aimed to further evaluate the hemodynamic and metabolic needs in this model and the sources of negative functional magnetic resonance imaging (fMRI) signals by measuring blood oxygenation-level-dependent (BOLD), cerebral-blood-flow (CBF), CBV, and oxygen-consumption (i.e., cerebral metabolic rate of oxygen (CMRO2)) changes using an 11.7-T MRI scanner, and glucose-consumption (i.e., cerebral metabolic rate of glucose (CMRglc)) changes using micro-positron emission tomography. In the contralateral somatosensory cortex, BOLD, CBF, CBV, CMRO2 (n=7, P<0.05), and CMRglc (n=5, P<0.05) increased. In contrast, in the bilateral striatum, BOLD, CBF, and CBV decreased (P<0.05), CMRO2 decreased slightly, although not significantly from baseline, and CMRglc was not statistically significant from baseline (P>0.05). These multimodal functional imaging findings corroborate the unexpected negative hemodynamic changes in the striatum during noxious forepaw stimulation, and support the hypothesis that striatal hemodynamic response is dominated by neurotransmitter-mediated vasoconstriction, overriding the stimulus-evoked fMRI signal increases commonly accompany elevated neuronal activity. Multimodal functional imaging approach offers a means to probe the unique attributes of the striatum, providing novel insights into the neurovascular coupling in the striatum. These findings may have strong implications in fMRI studies of pain.  相似文献   

2.
Previous studies showed noxious unilateral forepaw electrical stimulation surprisingly evoked negative blood-oxygenation-level-dependent (BOLD), cerebral blood flow (CBF), and cerebral blood volume (CBV) fMRI responses in the bilateral striatum whereas the local neuronal spike and c-Fos activities increased. These negative responses are associated with vasoconstriction and appeared to override the increased hemodynamic responses that typically accompanied with increased neural activity. The current study aimed to investigate the role of μ-opioid system in modulating vasoconstriction in the striatum associated with noxious stimulation on a 4.7-Tesla MRI scanner. Specifically, we investigated: i) how morphine (a μ-opioid receptor agonist) affects the vasoconstriction in the bilateral striatum associated with noxious electrical forepaw stimulation in rats, and ii) how naloxone (an opioid receptor antagonist) and eticlopride (a dopamine D(2)/D(3) receptor antagonist) modulates the morphine effects onwards. Injection of morphine enhanced the negative striatal CBV responses to noxious stimulation. Sequential injection of naloxone in the same animals abolished the stimulus-evoked vasoconstriction. In a separate group of animals, injection of eticlopride following morphine also reduced the vasoconstriction. Our findings suggested that noxious stimulation endogenously activated opioid and dopamine receptors in the striatum and thus leading to vasoconstriction.  相似文献   

3.
The relationship between neuronal activity and hemodynamic changes plays a central role in functional neuroimaging. Under normal conditions and in neurological disorders such as epilepsy, it is commonly assumed that increased functional magnetic resonance imaging (fMRI) signals reflect increased neuronal activity and that fMRI decreases represent neuronal activity decreases. Recent work suggests that these assumptions usually hold true in the cerebral cortex. However, less is known about the basis of fMRI signals from subcortical structures such as the thalamus and basal ganglia. We used WAG/Rij rats (Wistar albino Glaxo rats of Rijswijk), an established animal model of human absence epilepsy, to perform fMRI studies with blood oxygen level-dependent and cerebral blood volume (CBV) contrasts at 9.4 tesla, as well as laser Doppler cerebral blood flow (CBF), local field potential (LFP), and multiunit activity (MUA) recordings. We found that, during spike-wave discharges, the somatosensory cortex and thalamus showed increased fMRI, CBV, CBF, LFP, and MUA signals. However, the caudate-putamen showed fMRI, CBV, and CBF decreases despite increases in LFP and MUA signals. Similarly, during normal whisker stimulation, the cortex and thalamus showed increases in CBF and MUA, whereas the caudate-putamen showed decreased CBF with increased MUA. These findings suggest that neuroimaging-related signals and electrophysiology tend to agree in the cortex and thalamus but disagree in the caudate-putamen. These opposite changes in vascular and electrical activity indicate that caution should be applied when interpreting fMRI signals in both health and disease from the caudate-putamen, as well as possibly from other subcortical structures.  相似文献   

4.
Innervation of intrastriatal grafts of fetal striatal tissue by host corticostriatal projections has been shown in a number of previous studies in rats. In the work reported here, induction of Fos protein in grafted striatal neurons by electrical stimulation of the host frontoparietal cortex has been used as cell-level marker of corticostriatal postsynaptic responses within the striatal grafts. Unilateral cortical stimulation 30 min before sacrifice led to bilateral widespread and intense Fos induction throughout the normal striatum, although the response was somewhat more intense ipsilaterally and in the dorsolateral rostral striatum. In adult rats whose striatum had been lesioned with ibotenic acid 10–12 days prior to implantation of fetal striatal tissue, 3- and 18-month-old striatal grafts showed Fos immunoreactivity in a considerable number of cells after either bilateral, or ipsilateral (30–40% of the density of Fos-immunoreactive cells in the normal striatum) or contralateral cortical stimulation. Double-Fos and -DARPP-32 immunohistochemistry revealed that the Fos-immunoreactive nuclei were concentrated in the DARPP-32-positive (i.e. striatum-like) patches, which contained 60% of the density of Fos-positive nuclei in the normal striatum after either ipsilateral or bilateral stimulation. However, Fos-immunoreactive nuclei were unevenly distributed within the DARPP-32-positive compartment of the graft, with some clusters of Fos-immunoreactive nuclei at 2−3 × the density observed in the normal striatum and other areas with Fos-immunoreactive nuclei present at lower density or absent. Fos induction was also observed in 4-week-old grafts, indicating that functional corticostriatal synaptic contacts develop rapidly. Striatal grafts implanted either in non-lesioned host striatum or in long-term (18 months) lesioned striatum, similarly showed Fos-positive nuclei after cortical stimulation, indicating that host corticostriatal fibers are equally capable of establishing functional synaptic contacts under these conditions. These results indicate that host corticostriatal fibres not only form an axonal network within the graft but also induce postsynaptic responses which may contribute to the observed graft-induced amelioration of lesion-induced behavioural deficits.  相似文献   

5.
This article describes the effects of dexmedetomidine (DEX) – the active ingredient of medetomidine, which is the latest popular sedative for functional magnetic resonance imaging (fMRI) in rodents – on multiple unit activity, local field potential (LFP), cerebral blood flow (CBF), pial vessel diameter [indicative of cerebral blood volume (CBV)], and blood oxygenation level‐dependent (BOLD) fMRI. These measurements were obtained from the rat somatosensory cortex during 10 s of forepaw stimulation. We found that the continuous intravascular systemic infusion of DEX (50 μg/kg/h, doses typically used in fMRI studies) caused epileptic activities, and that supplemental isoflurane (ISO) administration of ~0.3% helped to suppress the development of epileptic activities and maintained robust neuronal and hemodynamic responses for up to 3 h. Supplemental administration of N2O in addition to DEX nearly abolished hemodynamic responses even if neuronal activity remained. Under DEX + ISO anesthesia, spike firing rate and the delta power of LFP increased, whereas beta and gamma power decreased, as compared with ISO‐only anesthesia. DEX administration caused pial arteries and veins to constrict nearly equally, resulting in decreases in baseline CBF and CBV. Evoked LFP and CBF responses to forepaw stimulation were largest at a frequency of 8–10 Hz, and a non‐linear relationship was observed. Similarly, BOLD fMRI responses measured at 9.4 T were largest at a frequency of 10 Hz. Both pial arteries and veins dilated rapidly (artery, 32.2%; vein, 5.8%), and venous diameter returned to baseline slower than arterial diameter. These results will be useful for designing, conducting and interpreting fMRI experiments under DEX sedation.  相似文献   

6.
Introducing optogenetics into neurovascular research can provide novel insights into the cell-specific control of the hemodynamic response. To generalize findings from molecular approaches, it is crucial to determine whether light-activated circuits have the same effect on the vasculature as sensory-activated ones. For that purpose, rats expressing channelrhodopsin (ChR2) specific to excitatory glutamatergic neurons were used to measure neural activity, blood flow, hemoglobin-based optical intrinsic signal, and blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) during optogenetic and sensory stimulation. The magnitude of the evoked hemodynamic responses was monotonically correlated with optogenetic stimulus strength. The BOLD hemodynamic response function was consistent for optogenetic and sensory stimuli. The relationship between electrical activities and hemodynamic responses was comparable for optogenetic and sensory stimuli, and better explained by the local field potential (LFP) than the firing rate. The LFP was well correlated with cerebral blood flow, moderately with cerebral blood volume, and less with deoxyhemoglobin (dHb) level. The presynaptic firing rate had little impact on evoking vascular response. Contribution of the postsynaptic LFP to the blood flow response induced by optogenetic stimulus was further confirmed by the application of glutamate receptor antagonists. Overall, neurovascular coupling during optogenetic control of glutamatergic neurons largely conforms to that of a sensory stimulus.  相似文献   

7.
The hemodynamic response to neural activity consists of changes in blood flow, blood volume and oxygen metabolism. Changes in the vascular state after sensory stimulation have different spatial and temporal characteristics in the brain. This has been shown using imaging techniques, such as BOLD functional magnetic resonance imaging (fMRI), which monitor vascular changes once the stimulus is turned on, and the eventual return to baseline levels, once the stimulus is turned off. The BOLD fMRI signal during sensory stimulation has been well characterized and modeled in terms of the spatial and temporal characteristics of the vascular response. However, the return of the signals to baseline levels after sensory stimulation is not as well characterized. During this period, a poststimulus undershoot in the BOLD signal is observed. This poststimulus undershoot has been modeled and investigated to characterize the physiological mechanisms (cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral oxygen consumption) associated with the response. However, the data in the literature, which lack any spatially dependent information, appear to be contradictory in terms of the mechanisms associated with this poststimulus response. With a high spatial resolution cat model at 9.4 T, we show that CBV changes in the tissue persist once the stimulus is turned off, while CBV changes in the surface vessels quickly return to baseline levels, despite a concurrent undershoot in the BOLD signal in both the tissue and surface vessel areas. In addition, the BOLD data alone indicate that different physiological mechanisms regulate the poststimulus response in the tissue versus the surface vessel regions.  相似文献   

8.
The magnitude of the blood oxygenation level-dependent (BOLD) signal depends on cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2). Thus, it is difficult to separate CMRO2 changes from CBF and CBV changes. To detect the BOLD signal changes induced only by CMRO2 responses without significant evoked CBF and CBV changes, BOLD and CBV functional magnetic resonance imaging (fMRI) responses to visual stimulation were measured under normal and hypotension conditions in isoflurane-anesthetized cats at 4.7 T. When the mean arterial blood pressure (MABP) decreased from 89+/-10 to 50+/-1 mm Hg (mean+/-standard deviation, n=5) by infusion of vasodilator sodium nitroprusside, baseline CBV in the visual cortex increased by 28.4%+/-8.3%. The neural activity-evoked CBV increase in the visual cortex was 10.8%+/-3.9% at normal MABP, but was negligible at hypotension. Positive BOLD changes of +1.8%+/-0.5% (gradient echo time=25 ms) at normal MABP condition became prolonged negative changes of -1.2%+/-0.3% at hypotension. The negative BOLD response at hypotension starts approximately 1 sec earlier than positive BOLD response, but similar to CBV change at normal MABP condition. Our finding shows that the negative BOLD signals in an absence of CBV changes are indicative of an increase in CMRO2. The vasodilator-induced hypotension model simplifies the physiological source of the BOLD fMRI signals, providing an insight into spatial and temporal CMRO2 changes.  相似文献   

9.
To elucidate whether vascular endothelial growth factor (VEGF) improves stroke-induced striatal neurogenesis, we intraventricularly injected human VEGF(165)-expressive plasmid (phVEGF) mixed with liposome into adult rats after a transient middle cerebral artery occlusion (MCAO). The results showed that EGFP, a reporter protein, positive cells appeared at 2 hr, further enhanced at 4 hr, reached the maximum at 3 days and still remained at 14 days after a single injection. Treatment with phVEGF increased angiogenesis, as indicated by double staining of vWF, a marker of endothelial cells, and 5'-bromodeoxyuridine (BrdU), a marker of cell proliferation. The phVEGF treatment dose-dependently reduced infarct volume of brain at 2 weeks after MCAO. The neuroprotection by VEGF could be obtained when the plasmid was injected within 2 hr after stroke. Moreover, VEGF overexpression significantly increased cell proliferation in the ipsilateral SVZ and the numbers of BrdU(+)-CRMP-4(+) and BrdU(+)-Tuj1(+), two markers of immature newborn neurons, and BrdU(+)-MAP-2(+), a marker of mature newborn neurons, cells in the ipsilateral striatum to MCAO. Present results show that VEGF plasmid treatment after stroke can significantly reduce infarct volume and enhance striatal neurogenesis in adult rat brain. This suggests that VEGF overexpression acquires significant functions of neuronal protection and repair in the injured brain, which provides a possibility to develop a novel therapeutic strategy for the patients with stroke.  相似文献   

10.
Brief focal ischemia leading to temporary neurological deficits induces delayed hyperintensity on T1-weighted magnetic resonance imaging (MRI) in the striatum of humans and rats. The T1 hyperintensity may stem from biochemical alterations including manganese (Mn) accumulation after ischemia. To clarify the significance of this MRI modification, we investigated the changes in the dorsolateral striatum of rats from 4 hours through 16 weeks after a 15-minute period of middle cerebral artery occlusion (MCAO), for MRI changes, Mn concentration, neuronal number, reactivities of astrocytes and microglia/macrophages, mitochondrial Mn-superoxide dismutase (Mn-SOD), glutamine synthetase (GS), and amyloid precursor protein. The cognitive and behavioral studies were performed in patients and rats and compared with striatal T1 hyperintensity to show whether alteration in brain function correlated with MRI and histological changes. The T1-weighted MRI signal intensity of the dorsolateral striatum increased from 5 days to 4 weeks after 15-minute MCAO, and subsequently decreased until 16 weeks. The Mn concentration of the dorsolateral striatum increased after ischemia in concert with induction of Mn-SOD and GS in reactive astrocytes. The neuronal survival ratio in the dorsolateral striatum decreased significantly from 4 hours through 16 weeks, accompanied by extracellular amyloid precursor protein accumulation and chronic glial/inflammatory responses. The patients and rats with neuroradiological striatal degeneration had late-onset cognitive and/or behavioral declines after brief focal ischemia. This study suggests that (1) the hyperintensity on T1-weighted MRI after mild ischemia may involve tissue Mn accumulation accompanied by Mn-SOD and GS induction in reactive astrocytes, (2) the MRI changes correspond to striatal neurodegeneration with a chronic inflammatory response and signs of oxidative stress, and (3) the subjects with these MRI changes are at risk for showing a late impairment of brain function even though the transient ischemia is followed by total neurological recovery.  相似文献   

11.
Behavioral and histological studies were performed on a reversible ischemia model in rats. At 60 days after unilateral transient middle cerebral artery occlusion for 30 min, the operated rats exhibited the ipsiversive rotational behavior elicited by systemic administration of dopamine receptor agonist apomorphine in a dose-dependent manner. Histologically, the ipsilateral striatum of the rats showed a subdivisional ischemic injury, while the nigral dopaminergic neurons appeared intact. The striatal lesions having a cell typespecific injury were located in the dorsolateral protion of the rostral striatum and in the lateral portion of the caudal part of the nucleus. Thus, the transient cerebral ischemia could successfully produce selective damage of a striatal subdivision, which causes an abnormality in motor controls in response to dopamine receptor stimulation. The present data may provide a part of functional and anatomical basis for understanding the movement disorders associated with basal ganglia dysfunction (e.g., parkinsonism), which may occur in patients with cerebrovascular disorders.Supported in part by grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan  相似文献   

12.
Increased striatal dopamine synthesis capacity has consistently been reported in patients with schizophrenia. However, the mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error signaling during reinforcement learning. In this study, we investigated striatal dopamine synthesis capacity, reward prediction errors, and their association in unmedicated schizophrenia patients (n = 19) and healthy controls (n = 23). They took part in FDOPA-PET and underwent functional magnetic resonance imaging (fMRI) scanning, where they performed a reversal-learning paradigm. The groups were compared regarding dopamine synthesis capacity (Kicer), fMRI neural prediction error signals, and the correlation of both. Patients did not differ from controls with respect to striatal Kicer. Taking into account, comorbid alcohol abuse revealed that patients without such abuse showed elevated Kicer in the associative striatum, while those with abuse did not differ from controls. Comparing all patients to controls, patients performed worse during reversal learning and displayed reduced prediction error signaling in the ventral striatum. In controls, Kicer in the limbic striatum correlated with higher reward prediction error signaling, while there was no significant association in patients. Kicer in the associative striatum correlated with higher positive symptoms and blunted reward prediction error signaling was associated with negative symptoms. Our results suggest a dissociation between striatal subregions and symptom domains, with elevated dopamine synthesis capacity in the associative striatum contributing to positive symptoms while blunted prediction error signaling in the ventral striatum related to negative symptoms.  相似文献   

13.
Neurogenesis in the adult rat dentate gyrus was studied following focal ischemic insults produced by middle cerebral artery occlusion (MCAO). Animals were subjected to either 30 min of MCAO, which causes damage confined to the striatum, or 2 h of MCAO, which leads to both striatal and cortical infarction. When compared to sham-operated rats, MCAO-rats showed a marked increase of the number of cells double-labelled for 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU; injected during 4-6 days postischemia) and neuronal-specific antigen (NeuN; a marker of postmitotic neurons) in the ipsilateral dentate granule cell layer and subgranular zone at 5 weeks following the 2 h insult. Only a modest and variable increase of BrdU-labelled cells was found after 30 min of MCAO. The enhanced neurogenesis was not dependent on cell death in the hippocampus, and its magnitude was not correlated to the degree of cortical damage. Systemic administration of the N-methyl-D-aspartate (NMDA) receptor blocker dizocilpine maleate (MK-801) completely suppressed the elevated neurogenesis following 2 h of MCAO. Our findings indicate that stroke leads to increased neurogenesis in the adult rat dentate gyrus through glutamatergic mechanisms acting on NMDA receptors. This modulatory effect may be mediated through changes in the levels of several growth factors, which occur after stroke, and could influence various regulatory steps of neurogenesis.  相似文献   

14.
The striatum integrates sensory information to enable action selection and behavioural reinforcement. In the rat, a large topographical projection from the rat barrel cortex to widely distributed areas of the striatum is assumed to be an important structural component supporting these processes. The striatal sensory response is, however, not comprehensively understood at a network level. We used a 10-Hz, 100-ms air puff, allowing undamped movement of multiple whiskers, to look at functional connectivity in contralateral cortex and striatum in response to sensory stimulation. Simultaneous recordings of cortical and striatal local field potentials (LFPs) were made under isoflurane anaesthesia in 15 male Brown Norway rats. Four electrodes were placed in the barrel cortex while the dorsolateral striatum was mapped with a 500-μm resolution, resulting in a maximum of 315 recording positions per animal. Significant event-related responses were unevenly distributed throughout the striatum in 34.8% of positions recorded within this area. Only 10.3% of recorded positions displayed significant total power increases in the LFPs during the stimulation period at the stimulus frequency. This suggests that the responses seen in the LFPs are due to phase rearrangement rather than an amplitude increase in the signal. Analysis of corticostriatal imaginary coherence revealed stimulus-induced changes in the functional connectivity of 12% of corticostriatal pairs, the sensory response of sparsely distributed neuronal ensembles within the dorsolateral striatum is reflected in the phase relationship between the cortical and striatal local fields.  相似文献   

15.
Cellular localization and tissue levels of BDNF protein were studied using immunocytochemistry and enzyme immunoassay, respectively, in the cortex and striatum at different reperfusion times (0–24 h) after 2 h of unilateral middle cerebral artery occlusion (MCAO) in rats. The distribution of neuronal injury was analyzed in NeuN-, cresyl violet-, and Fluoro-Jade-stained sections. At 2 h postischemia, but not at later time points, there was a several-fold increase of the number of BDNF-immunoreactive (-ir) cells in the ipsilateral cingulate and frontal cortices outside the damaged area. Animals with cortical injury showed loss of BDNF-ir fibers in the striatum at 2–24 h, whereas rats with cell damage confined to the striatum exhibited no such change. At 2–16 h, strongly BDNF-ir fibers were observed along the myelinated fascicles medially in the striatum, in the anterior commissure, and in the corpus callosum ipsilateral to the MCAO. BDNF protein levels were increased (by 133–213%) at 2 h in the cingulate and frontal cortices and decreased (by 40%) at 24 h in the striatum. These findings show that the increased expression of BDNF mRNA in cortical neurons previously demonstrated after transient focal ischemia is accompanied by elevated levels of BDNF protein. The rapid decline of BDNF protein levels suggests a pronounced release or anterograde axonal transport in the postischemic phase. The reduction of BDNF protein in the striatum of animals with cortical damage provides further evidence for anterograde transport, which is also supported by the accumulation of BDNF protein in several preterminal fiber systems. The changes of BDNF protein after focal ischemia could play a role for survival and plasticity of cortical and striatal neurons.  相似文献   

16.
The objective of the present study was to explore whether grafted immortalized neural stem cells, genetically modified to secrete nerve growth factor (NGF), can ameliorate neuronal death in the adult rat striatum following transient middle cerebral artery occlusion (MCAO). One week after cell implantation in the striatum, animals were subjected to 30 min of MCAO. Striatal damage was evaluated at the cellular level after 48 h of recirculation using immunocytochemical and stereological techniques. The ischaemic insult caused an extensive degeneration of projection neurons, immunoreactive for dopamine- and adenosine 3′: 5′-monophosphate-regulated phosphoprotein with a molecular weight of 32 kilodaltons (DARPP-32). 3H-Thymidine autoradiography demonstrated surviving grafted cells in the lesioned striatum in all transplanted rats. The loss of striatal projection neurons was significantly reduced (by an average of 45%) in animals with NGF-secreting grafts, whereas control cells, not producing NGF, had no effect. The neuroprotective action of NGF-secreting grafts was also observed when the total number of striatal neurons immunopositive for the neuronal marker NeuN was quantified, as well as in cresyl violet-stained sections. The present findings indicate that administration of NGF by ex vivo gene transfer and grafting of neural stem cells can ameliorate death of striatal projection neurons caused by transient focal ischaemia.  相似文献   

17.
We investigated the immunohistochemical changes of 8-hydroxy-2′-deoxyguanosine (8-OHdG) immunoreactivity as a marker of DNA damage and single-strand DNA (ssDNA) immunoreactivity as a marker of apoptosis in the striatum from 1 up to 15 days after 90 min of focal cerebral ischemia caused by middle cerebral artery occlusion in rats. In the present study, marked loss of MAP2 immunostaining was observed in the ipsilateral striatum 3 days after focal cerebral ischemia. A significant increase in the number of ssDNA-immunoreactive apoptotic neurons was observed in the ipsilateral striatum 1 and 3 days after focal cerebral ischemia. In contrast, a significant increase in densities of 8-OHdG-immunopositive cells was observed in the ipsilateral striatum from 3 up to 15 days after focal cerebral ischemia. Our double-labeled immunochemical study showed that 8-OHdG immunoreactivity was observed in both isolectin B4-positive microglia and glial fibrillary acidic protein-immunopositive astrocytes in the ipsilateral striatum 7 days after focal cerebral ischemia. These results suggest that focal cerebral ischemia can cause a marked increase in the number of microglia and astrocytes with oxidative DNA damage in the ipsilateral striatum. Furthermore, our results show that most microglia and astrocytes in the ipsilateral striatum after focal cerebral ischemia may not die by apoptosis. Thus, our findings provide novel evidence that focal cerebral ischemia can cause oxidative DNA damage in most microglia and astrocytes.  相似文献   

18.
Changes in cerebral blood flow (CBF), volume (CBV), and oxygenation (blood-oxygenation level dependent (BOLD)) during functional activation are important for calculating changes in cerebral metabolic rate of oxygen consumption (CMRo2) from calibrated functional MRI (fMRI). An important part of this process is the CBF/CBV relationship, which is signified by a power-law parameter: gamma=ln (1+DeltaCBV/CBV)/ln (1+DeltaCBF/CBF). Because of difficulty in measuring CBF and CBV with MRI, the value of gamma is therefore assumed to be approximately 0.4 from a prior primate study under hypercapnia. For dynamic fMRI calibration, it is important to know if the value of gamma varies after stimulation onset. We measured transient relationships between DeltaCBF, DeltaCBV, and DeltaBOLD by multimodal MRI with temporal resolution of 500 ms (at 7.0 T) from the rat somatosensory cortex during forepaw stimulation, where the stimulus duration ranged from 4 to 32 secs. Changes in CBF and BOLD were measured before the administration of the contrast agent for CBV measurements in the same subjects. We observed that the relationship between DeltaCBF and DeltaCBV varied dynamically from stimulation onset for all stimulus durations. Typically after stimulation onset and at the peak or plateau of the DeltaCBF, the value of gamma ranged between 0.1 and 0.2. However, after stimulation offset, the value of gamma increased to 0.4 primarily because of rapid and slow decays in DeltaCBF and DeltaCBV, respectively. These results suggest caution in using dynamic measurements of DeltaCBF and DeltaBOLD required for calculating DeltaCMRo2 for functional stimulation, when either DeltaCBV has not been accurately measured or a fixed value of gamma during hypercapnia perturbation is used.  相似文献   

19.
Paired associative stimulation has been used in stroke patients as an innovative recovery treatment. However, the mechanisms underlying the therapeutic effectiveness of paired associative stimulation on neurological function remain unclear. In this study, rats were randomly divided into middle cerebral occlusion model(MCAO) and paired associated magnetic stimulation(PAMS) groups. The MCAO rat model was produced by middle cerebral artery embolization. The PAMS group received PAMS on days 3 to 20 post MCAO. The MCAO group received sham stimulation, three times every week. Within 18 days after ischemia, rats were subjected to behavioral experiments—the foot-fault test, the balance beam walking test, and the ladder walking test. Balance ability was improved on days 15 and 17, and the footfault rate was less in their affected limb on day 15 in the PAMS group compared with the MCAO group. Western blot assay showed that the expression levels of brain derived neurotrophic factor, glutamate receptor 2/3, postsynaptic density protein 95 and synapsin-1 were significantly increased in the PAMS group compared with the MCAO group in the ipsilateral sensorimotor cortex on day 21. Resting-state functional magnetic resonance imaging revealed that regional brain activities in the sensorimotor cortex were increased in the ipsilateral hemisphere, but decreased in the contralateral hemisphere on day 20. By finite element simulation, the electric field distribution showed a higher intensity, of approximately 0.4 A/m~2, in the ischemic cortex compared with the contralateral cortex in the template. Together, our findings show that PAMS upregulates neuroplasticity-related proteins, increases regional brain activity, and promotes functional recovery in the affected sensorimotor cortex in the rat MCAO model. The experiments were approved by the Institutional Animal Care and Use Committee of Fudan University, China(approval No. 201802173 S) on March 3, 2018.  相似文献   

20.
This study investigated the role of spontaneous and induced spreading depression (SD) on the evolution of focal ischemia in vivo. We induced focal ischemia in 12 rats using the middle cerebral artery suture occlusion (MCAO) method. Chemical stimulation of nonischemic ipsilateral cortex by potassium chloride application (KCl group; n = 7) and saline (NaCI group; n = 5) was performed at 15, 30, 45, and 60 minutes following MCAO, and SD was detected electrophysiologically. Ischemic lesion volumes assessed over 15-minute intervals, evaluated by continuous apparent diffusion coefficient (ADC) of water mapping, demonstrated that the ischemic region increased significantly during 15-minute time epochs with a single SD episode (36.5 ± 12.9 mm3 mean ± SD) or multiple SD episodes (39.8 ± 22.3) compared with those without SD (13.9 ± 11.5) (p = 0.0009). Infarct volume at postmortem 24 hours after MCAO was significantly larger in the KCl group, with more total SDs (237.8 ± 13.8) than the NaCl group (190.5 ± 12.6) (p = 0.0001). This study demonstrates that ischemia-related and induced SDs increase significantly ischemic lesion volume in vivo, supporting the hypothesis for a causative role of SD in extending focal ischemic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号