首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The effects of p38 mitogen-activated protein kinase (p38MAPK) inhibitors on the adrenergic-stimulated cyclic nucleotide production in rat pinealocytes were investigated. Treatment with SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)IH-imidazole] and SB203580 [4-(4-fluoropheny)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)IH-imidazole] (1-100 microM), two pyridinyl imidazole compounds that inhibit p38MAPK, as well as SB202474 [4-(ethyl)-2-(4-methoxyphenyl)-5-(4-pyridyl)IH-imidazole], an inactive analog, was effective in potentiating norepinephrine- and isoproterenol-stimulated cyclic AMP (cAMP) and cyclic GMP (cGMP) accumulation in a concentration-dependent manner. All three compounds caused a greater increase in the cGMP than the cAMP response, with SB202474 being substantially more potent than the two active analogs. At 100 microM, SB202474 potentiated the isoproterenol-stimulated cAMP and cGMP accumulation by 65 and 500%, respectively. Pharmacological studies indicated that the potentiating effect of SB202474 was independent of protein kinase C activation, intracellular calcium elevation, or serine/threonine phosphatase inhibition, three pathways known to potentiate the beta-adrenergic-stimulated cyclic nucleotide responses in rat pinealocytes. In contrast, the potentiating effect of SB202474 was abolished in the presence of a phosphodiesterase inhibitor, isobutylmethylxanthine. At 100 microM, all three compounds inhibited cAMP- and cGMP-phosphodiesterase activities by 50 and 80%, respectively. These results suggest that the commonly used p38MAPK inhibitors can modulate cyclic nucleotide responses through phosphodiesterase inhibition, a mechanism that appears to be independent of p38MAPK inhibition.  相似文献   

3.
The signal transduction pathways activated by arachidonic acid that lead to p38 mitogen‐activated protein kinase (MAPK) activation in neutrophils remains unclear. In this study, selective inhibitors of several signalling pathways were utilized to investigate the mechanisms of activation of p38 MAPK by arachidonic acid in rat neutrophils. Stimulation of p38 MAPK phosphorylation by arachidonic acid and its trifluoromethyl ketone analogue AACOCF3 was transient, peaking at 1 min, and was concentration‐dependent. Arachidonic acid‐stimulated p38 MAPK phosphorylation was attenuated in cells pretreated with the Gi/o inhibitor (pertussis toxin), but not with the dual cyclooxygenase/lipoxygenase inhibitor (BW755C) or the leukotriene biosynthesis inhibitor (MK886). Tyrosine kinase inhibitor (genistein), but not the extracellular signal‐regulated kinase kinase inhibitors (PD98059 and U0126), attenuated the phosphorylation of p38 MAPK by arachidonic acid. Phosphoinositide 3‐kinase inhibitors (wortmannin and LY294002) did not affect the arachidonic acid‐induced response. After pretreatment of the cells with protein kinase C inhibitors (Gö6976, Gö6983 and GF109203X), only Gö6976 significantly attenuated the phosphorylation of p38 MAPK by arachidonic acid. In addition, phosphorylation of p38 MAPK by arachidonic acid was greatly attenuated by the phospholipase C inhibitor (U73122) and the Ca2+ chelator BAPTA ((1,2‐bis‐o‐amino‐phenoxy)‐ethane‐N,N,N′,N′‐tetraacetic acid), but not altered by the nitric oxide synthase inhibitor, N‐nitro‐l ‐arginine methyl ester. Arachidonic acid did not cause an increase in cellular cyclic GMP level. This study revealed the involvement of pertussis toxin‐sensitive G protein, non‐receptor tyrosine kinase, phospholipase C/Ca2+, and probably Ca2+‐dependent protein kinase C in arachidonic acid‐stimulated p38 MAPK activation.  相似文献   

4.
In the present study, murine RAW 264.7 macrophages were incubated with poly-L-lysine-derived advanced glycosylation end products (PLL-AGEs) to examine cyclooxygenase-2 protein expression. Treatment of RAW 264.7 cells with PLL-AGEs caused the dose-dependent expression of cylooxygenase-2 but not cylooxygenase-1 and an increase in cylooxygenase activity. Increased cylooxygenase-2 expression was seen at 6 h and reached a maximum at 24 h. The tyrosine kinase inhibitor, genistein, and the p38 mitogen-activated protein kinase (MAPK) inhibitor, [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole] (SB 203580), inhibited PLL-AGE-induced cylooxygenase-2 expression, while the Ras inhibitor, FPT inhibitor II, and the MAP kinase kinase inhibitor, (2'-amino-3'-methoxyflavone) (PD 98059), had no effect on PLL-AGE-induced cylooxygenase-2 expression. Incubation of RAW 264.7 cells with PLL-AGEs resulted in activation of p38 MAPK, and this activation was suppressed by genistein and SB 203580. Taken together, our results suggest that activation of protein tyrosine kinase and p38 MAPK is involved in AGE-induced cyclooxygenase-2 expression in RAW 264.7 macrophages.  相似文献   

5.
YC-1, an activator of soluble guanylate cyclase (sGC), has been shown to increase the intracellular cGMP concentration. This study was designed to investigate the signaling pathway involved in the YC-1-induced COX-2 expression in A549 cells. YC-1 caused a concentration- and time-dependent increase in COX activity and COX-2 expression in A549 cells. Pretreatment of the cells with the sGC inhibitor (ODQ), the protein kinase G (PKG) inhibitor (KT-5823), and the PKC inhibitors (Go 6976 and GF10923X), attenuated the YC-1-induced increase in COX activity and COX-2 expression. Exposure of A549 cells to YC-1 caused an increase in PKC activity; this effect was inhibited by ODQ, KT-5823 or Go 6976. Western blot analyses showed that PKC-alpha, -iota, -lambda, -zeta and -mu isoforms were detected in A549 cells. Treatment of A549 cells with YC-1 or PMA caused a translocation of PKC-alpha, but not other isoforms, from the cytosol to the membrane fraction. Long-term (24 h) treatment of A549 cells with PMA down-regulated the PKC-alpha. The MEK inhibitor, PD 98059 (10 - 50 microM), concentration-dependently attenuated the YC-1-induced increases in COX activity and COX-2 expression. Treatment of A549 cells with YC-1 caused an activation of p44/42 MAPK; this effect was inhibited by KT-5823, Go 6976, long-term (24 h) PMA treatment or PD98059, but not the p38 MAPK inhibitor, SB 203580. These results indicate that in human pulmonary epithelial cells, YC-1 might activate PKG through an upstream sGC/cGMP pathway to elicit PKC-alpha activation, which in turn, initiates p44/42 MAPK activation, and finally induces COX-2 expression.  相似文献   

6.
Dai J  Huang C  Wu J  Yang C  Frenkel K  Huang X 《Toxicology》2004,203(1-3):199-209
Increased iron store in the body may increase the risk of many diseases such as cancer and inflammation. However, the precise pathogenic mechanism of iron has not yet been elucidated. In the present study, the early biological responses of cells to iron treatment were investigated in AP-1 luciferase reporter stably transfected mouse epidermal JB6 cells and primary rat hepatocytes. It was shown that water-soluble iron compounds, such as FeSO4 and Fe2(SO4)3, were more active in inducing AP-1 in JB6 cells than water-insoluble iron compounds, such as Fe2O3 and FeS. Iron stimulated mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-jun NH2 terminal kinases (JNKs), both in JB6 cells and in primary rat hepatocytes, as determined by the phosphorylation assay. Interestingly, the increase in AP-1 luciferase activity by iron was inhibited by the pretreatment of the cells with PD98059, a specific MEK1 inhibitor, and SB202190, a p38 kinase inhibitor. Levels of interleukin-6 (IL-6), a pro-inflammatory cytokine, were increased in JB6 cells by iron in a dose-dependent manner. The increase in IL-6 and its mRNA by iron was also eliminated by the pretreatment of the cells with PD98059 and SB202190. Since the IL-6 promoter contains an AP-1 binding site, our studies indicate that the iron-induced IL-6 gene expression may be mediated through ERKs and p38 MAPK pathways, possibly one of the important mechanisms for the pathogenesis of iron overload.  相似文献   

7.
5-Hydroxytryptamine (5-HT) is sequestered and released by endothelial cells, acts as an endothelial cell mitogen, promotes the release of nitric oxide (NO), and has been associated with the p44/p42 mitogen-activated protein kinase (MAPK) cascade. NO also acts as a cell mitogen and promotes signals that culminate in the phosphorylation of MAPK. The aim of this study was to test whether endothelial 5-HT receptors stimulate dual (tyrosyl- and threonyl-) phosphorylation of MAPK through a mitogen-activated protein kinase kinase-1 (MEK-1) and eNOS-dependent pathway in bovine aortic endothelial cells (BAECs). As shown by Western blot analysis, 5-HT and the 5-HT1B-selective agonist 5-nonyloxytryptamine (5-NOT) stimulate time- and concentration-dependent (0.001-10 microM) phosphorylation of MAPK in these cells. The agonist-stimulated phosphorylation of MAPK was blocked by the 5-HT1b-receptor antagonist isamoltane (0.01-10 p3M) and the MEK-1 inhibitor PD 098059 ([2-(2'-amino-3'-methoxy-phenyl)-oxanaphthalen-4-one]; 0.01-10 microM?. The eNOS inhibitor L-N(omega)-iminoethyl-L-ornithine (L-NIO; 0.01-10 microM) failed to block the 1 microM 5-NOT-stimulated responses. Our findings suggest that the 5-HT receptors (specifically 5-HT1B) mediate signals to MEK-1 and subsequently to MAPK through an eNOS-independent pathway in BAECs.  相似文献   

8.
The signaling pathways leading to p38 mitogen-activated protein kinase (MAPK) activation in formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated rat neutrophils were examined. Immunoblot analysis with antibodies against a phosphorylated form of p38 MAPK showed that fMLP-stimulated p38 MAPK activation was dependent on a pertussis toxin-sensitive G protein. Two phosphatidylinositol 3-kinase inhibitors, wortmannin and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), did not affect the p38 MAPK activation. Phosphorylation of p38 MAPK was concentration dependently attenuated by a tyrosine kinase inhibitor, genistein, and by a Ca(2+)-dependent protein kinase C inhibitor, 13-cyanoethyl-12-methyl-6,7,12,13-tetrahydroindolo[2,3-a]pyrrolo[3 , 4-c]carbazole-7-one (G?6976). However, the protein kinase C inhibitors with a broader spectrum, 2-[1-(3-dimethylaminopropyl)-5-methoxy-1H-indol-3-yl]-3-(1H-indol-3-y l)-maleimide (G?6983) and 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimi de (GF109203X), had no inhibitory effect. fMLP-stimulated p38 MAPK phosphorylation was also reduced in cells pretreated with a phospholipase C inhibitor, 1-[6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione (U73122), or preloaded with an intracellular Ca(2+) chelator, 1, 2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA). We conclude that phosphorylation of p38 MAPK by fMLP stimulation in rat neutrophils is dependent on G(i/o) protein, nonreceptor tyrosine kinase, phospholipase C/Ca(2+), and probably Ca(2+)-dependent protein kinase C pathways.  相似文献   

9.
BACKGROUND AND PURPOSE: Mitogen-activated protein kinases (MAPK) are centrally involved in several mechanisms important for heart failure such as apoptosis, activation of inflammatory responses and cell proliferation. We therefore evaluated the effect of the selective p38 MAPK inhibitor SB 239063 on progression of left ventricular remodelling after myocardial infarction (MI) in rats. EXPERIMENTAL APPROACH: Rats were treated for 9 weeks with placebo or SB 239063 by gavage (15 mg kg(-1)) twice daily starting 7 days after ligation of the left anterior descending artery. Serial transthoracic echocardiography was performed at days 7, 36 and 70. KEY RESULTS: Over the 9 weeks, mortality was not different between the groups. On echocardiography, animals after myocardial infarction exhibited significant left ventricular dilatation as expected (week 10, end-systolic diameter, placebo sham 5.21+/- 0.34 vs. placebo MI 8.44+/- 0.57 mm). However, there was no difference between placebo and SB 239063-treated rats (week 10, end-systolic diameter, SB MI 7.76+/- 0.74 mm, not significantly different from placebo MI). Haemodynamics changed accordingly. Moreover, SB 239063 had no effect on left ventricular hypertrophy. Treatment with SB 239063 significantly reduced cytokine expression of tumour necrosis factor and interleukin-1beta after myocardial infarction. However, collagen content was not influenced by the treatment. CONCLUSION: Despite a reduction of inflammation, treatment with the p38 inhibitor SB 239063 does not affect cardiac remodelling and cardiac function when treatment is started 7 days after myocardial infarction.  相似文献   

10.
Treatment of serum-starved, human ECV304 cells with histamine or ATP elicited a transient induction of ornithine decarboxylase (ODC), a key enzyme in polyamine synthesis, to an extent similar to that provoked by phorbol myristate acetate or serum re-addition. All these agents also provoked an increase in active phosphorylated p44/42 mitogen-activated protein kinase (MAPK) and p38 MAPK. The involvement of p44/42 MAPK and p38 MAPK in the induction of ODC was investigated by using selective inhibitors. U0126 and PD98059, two specific p44/42 MAPK kinase inhibitors, prevented the induction of ODC elicited by any stimulus employed, whereas SB203580 and SB202190, which are widely used as p38 MAPK inhibitors, enhanced ODC induction in a way that appeared dependent on p44/42 MAPK activation. By using inhibitors of other key signaling proteins that may lead to activation of p44/42 MAPK, we provide evidence that protein kinase C, but not phosphoinositide 3-kinase, is involved in histamine-stimulated ODC induction. These results show that the p44/42 MAPK pathway, but not p38 MAPK, is essential for ODC induction stimulated either by agonists of G-protein-coupled receptors, phorbol esters, or serum, and suggest that the inhibition of ODC induction may be an important event in the antiproliferative response to p44/42 MAPK pathway inhibitors.  相似文献   

11.
12.
Cantharidin is an active compound from blister beetles traditionally used for the treatment of cancer. It is known to exert its antitumor activity by inducing apoptosis in cancer cells. However, its signaling pathway still remains unclear. Therefore, we investigated the roles of the mitogen-activated protein kinases (MAPKs) and the tumor suppressor gene, p53, during cantharidin-induced apoptosis in U937 human leukemic cells. Cantharidin effectively activated ERK-1/2, p38 and JNK in U937 cells in a time- and dose-dependent manner. Cantharidin also exhibited a strong cytotoxicity and induced apoptosis in U937 cells. For the evaluation of the role of MAPKs, PD98059, SB202190 and SP600125 were used as MAPK inhibitors for ERK-1/2, p38 and JNK. PD98059 did not affect cantharidin-induced cytotoxicity and apoptosis, whereas SB202190 and SP600125 significantly interfered with cytotoxic and apoptotic activities induced by cantharidin. Cantharidin alone induced the apoptosis by phosphorylation of p53, up-regulation of downstream target genes, MDM2 and p21 and also cleaved caspase-3, whereas SB202190 and SP600125 caused the down-regulation of p53, MDM-2, p21 and cleaved caspase-3 after a co-treatment with cantharidin. Similarly, SB202190 and SP600125 significantly disturbed the caspase-3 activity after a co-treatment with cantharidin by colorimetric assay. Taken together, these results suggest that cantharidin can induce apoptosis by activation of p38 and JNK MAP kinase pathways associated with p53 and caspase-3.  相似文献   

13.
1. The effect of a chronic programme of either low- or moderate-to-high-intensity treadmill running on the activation of the extracellular-signal regulated protein kinase (ERK1/2) and the p38 mitogen-activated protein kinase (MAPK) pathways was determined in rat muscle. 2. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary (NT; n = 8); (ii) low-intensity training (8 m/min; LIT; n = 16); and (iii) moderate-to-high-intensity training (28 m/min; HIT; n = 16). The training regimens were planned so that animals covered the same distance and had similar glycogen utilization for both LIT and HIT exercise sessions. 3. A single bout of LIT or HIT following 8 weeks of training led to a twofold increase in the phosphorylation of ERK1/2 (P = 0.048) and a two- to threefold increase in p38 MAPK (P = 0.005). Extracellular signal-regulated kinase 1/2 phosphorylation in muscle sampled 48 h after the last exercise bout was similar to sedentary values, while p38 MAPK phosphorylation was 70-80% lower than sedentary. One bout of LIT or HIT increased total ERK1/2 and p38 MAPK expression, with the magnitude of this increase being independent of prior exercise intensity or duration. Extracellular signal- regulated kinase 1/2 expression was increased three- to fourfold in muscle sampled 48 h after the last exercise bout irrespective of the prior training programme (P = 0.027), but p38 MAPK expression was approximately 90% lower than sedentary values. 4. In conclusion, exercise-training of different intensities/ durations results in selective postexercise activation of intracellular signalling pathways, which may be one mechanism regulating specific adaptations induced by diverse training programmes.  相似文献   

14.
Protein kinase C (PKC)-alpha, -betaI, and -delta are known to be involved in the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. The role of mitogen-activated protein kinases (MAPK) p44/42 and p38 in the LPS effect was studied further. LPS-mediated NO release and the inducible form of NO synthase expression were inhibited by the p38 inhibitor, SB 203580, but not by the MAPK kinase inhibitor, PD 98059. Ten-minute treatment of cells with LPS resulted in the activation of p44/42 MAPK, p38, and c-Jun NH2-terminal kinase. Marked or slight activation, respectively, of p44/42 MAPK or p38 was also seen after 10-min treatment with 12-O-tetradecanoylphorbol-13-acetate, but c-Jun NH2-terminal kinase activation did not occur. Tyrosine kinase inhibitor, genestein, attenuated the LPS-induced activation of both p44/42 MAPK and p38, whereas the PKC inhibitors, Ro 31-8220 and calphostin C, or long-term treatment with 12-O-tetradecanoylphorbol-13-acetate resulted in inhibition of p44/42 MAPK activation, but had only a slight effect on p38 activation, indicating that LPS-mediated PKC activation resulted in the activation of p44/42 MAPK. Nuclear factor-kappaB (NF-kappaB)-specific DNA-protein-binding activity in the nuclear extracts was enhanced by 10-min, 1-h, or 24-h treatment with LPS. Analysis of the proteins involved in NF-kappaB binding showed translocation of p65 from the cytosol to the nucleus after 10-min treatment with LPS. The onset of NF-kappaB activation correlated with the cytosolic degradation of both inhibitory proteins of NF-kappaB, IkappaB-alpha and IkappaB-beta. IkappaB-alpha was resynthesized rapidly after loss (1-h LPS treatment), whereas IkappaB-beta levels were not restored until after 24-h treatment. SB 203580 but not PD 98059 inhibited the LPS-induced stimulation of NF-kappaB DNA-protein binding. Thus, activation of p38 but not p44/42 MAPK by LPS resulted in the stimulation of NF-kappaB-specific DNA-protein binding and the subsequent expression of inducible form of NO synthase and NO release in RAW 264.7 macrophages.  相似文献   

15.
Daphnetin has been shown to be a potent in vitro anti-proliferative agent to the human renal cell carcinoma (RCC) cell line, A-498. In the present study, we investigated its effects on mitogen-activated protein kinase (MAPK) signalling along with cell cycle events and cellular differentiation. Daphnetin-activated p38, however, higher concentrations were required to inhibit ERK1/ERK2. In addition, it did not activate SAPK or induce apoptosis, but instead inhibited S phase cell cycle transition of A-498 cells at low concentrations and time of exposure. In addition, a late G(1), early S phase inhibition was observed at higher concentrations and time of exposure, indicating that the mechanism of daphnetin-induced differentiation was concentration dependent. Increased expression of the epithelial differentiation markers cytokeratins 8 and 18, correlated with increasing concentrations of daphnetin, while pre-treatment with a specific p38-inhibitor, served to limit this effect. There was no evidence that P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) played a role in the anti-proliferative activity of daphnetin. Consequently, we concluded that p38 MAP kinase is intrinsically involved in mediating the effect of daphnetin in A-498 cells, suggesting that this drug may act by promotion of cellular maturation, and consequently may represent a novel low toxic approach for the treatment of poorly differentiated RCCs.  相似文献   

16.
Myricetin (3,3',4',5,5',7-hexahydroxyflavone), a flavonoid compound, is present in vegetables and fruits. By means of alkaline phosphatase (ALP) activity, osteocalcin, and type I collagen enzyme-linked immunosorbent assay (ELISA), we have shown that myricetin exhibits a significant induction of differentiation in MG-63 and hFOB human osteoblasts. Alkaline phosphatase and osteocalcin are phenotypic markers for early-stage differentiated osteoblasts and terminally differentiated osteoblasts, respectively. Our results indicate that myricetin stimulates osteoblast differentiation at various stages, from maturation to terminally differentiated osteoblasts. Induction of differentiation by myricetin is associated with increased bone morphogenetic protein-2 (BMP-2) production. The BMP-2 antagonist noggin blocked myricetin-mediated ALP activity and osteocalcin secretion enhancement, indicating that BMP-2 production is required in myricetin-mediated osteoblast maturation and differentiation. Induction of differentiation by myricetin is associated with increased activation of SMAD1/5/8 and p38 mitogen-activated protein kinases. Cotreatment of p38 inhibitor SB203580 inhibited myricetin-mediated ALP upregulation and osteocalcin production. In conclusion, myricetin increased BMP-2 synthesis, and subsequently activated SMAD1/5/8 and p38 MAPK, and this effect may contribute to its action on the induction of osteoblast maturation and differentiation, followed by an increase of bone mass.  相似文献   

17.
Ozone is a potent oxidant and causes airway hyperresponsiveness and neutrophilia. To determine the role of p38 mitogen-activated protein kinase (MAPK) activation, we studied the effect of a p38α inhibitor SD-282 (Scios Inc, Fremont, CA USA) on ozone-induced airway hyperresponsiveness and neutrophilia. Balb/c mice received SD-282 (30 or 90 mg/kg i.p) or vehicle 1 h before exposure to either ozone (3 ppm, 3 h) or air. Three hours after exposure, lungs were analysed for cytokine levels and bronchoalveolar lavage was performed. Another set of mice were dosed 6 h after exposure and 1 h before assessing airway hyperresponsiveness. SD-282 (90 mg/kg) significantly inhibited ozone-induced airway hyperresponsiveness (− LogPC150: SD-282: − 1.73 ± 0.14 vs. vehicle: − 0.99 ± 0.15, < 0.05). Bronchoalveolar lavage neutrophil numbers were time-dependently increased in vehicle-dosed, ozone-exposed mice, greatest at 20–24 h after exposure. SD-282 (30 and 90 mg/kg) significantly inhibited ozone induced neutrophil numbers at 3 h and 20–24 h after ozone SD-282 significantly inhibited ozone-induced increases in phosphorylated p38 MAPK expression, and in cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and IL-1β but not MIP-1α gene expression. We conclude that p38 MAPK is involved in ozone-induced airway hyperresponsiveness and lung neutrophilia. Inhibition of p38 MAPK with small molecule kinase inhibitors may be a means of reducing ozone-induced inflammation and airway hyperresponsiveness.  相似文献   

18.
BACKGROUND AND PURPOSE: Macrophages release cytokines that may contribute to pulmonary inflammation in conditions such as chronic obstructive pulmonary disease. Thus, inhibition of macrophage cytokine production may have therapeutic benefit. p38 MAPK may regulate cytokine production, therefore, the effect of two p38 MAPK inhibitors, SB239063 and SD-282, on the release of TNF-alpha, GM-CSF and IL-8 from human macrophages was investigated. EXPERIMENTAL APPROACH: Cytokine release was measured by ELISA. Immunoblots and mRNA expression studies were performed to confirm p38 MAPK isoform expression and activity. Macrophages were isolated from lung tissue of current smokers, ex-smokers and emphysema patients and exposed to lipopolysaccharide. These cells then released cytokines in a concentration-dependent manner. KEY RESULTS: SB239063 only inhibited TNF-alpha release (EC50 0.3 +/- 0.1 microM). Disease status had no effect on the efficacy of SB239063. SD-282 inhibited both TNF-alpha and GM-CSF release from macrophages (EC50 6.1 +/- 1.4 nM and 1.8 +/- 0.6 microM respectively) but had no effect on IL-8 release. In contrast, both inhibitors suppressed cytokine production in monocytes. CONCLUSIONS AND IMPLICATIONS: The differential effects of p38 MAPK inhibitors between macrophages and monocytes could not be explained by differences in p38 MAPK isoform expression or activity. However, the stability of TNF-alpha mRNA was significantly increased in macrophages compared to monocytes. These data suggest a differential involvement for p38 MAPK in macrophage cytokine production compared with monocytes. These effects are not due to lack of p38 activation or p38alpha expression in macrophages but may reflect differential effects on the stability of cytokine mRNA.  相似文献   

19.
Upon cross-linking of the high-affinity IgE receptors on mast cells, a family of mitogen-activated protein kinases (MAPKs) is activated. The present study examined the effects of p42/44 MAPK kinase inhibitor U0126 and p38 MAPK inhibitors SB220025 and PD169316 on ovalbumin (OVA)-induced anaphylactic contraction of isolated guinea pig bronchi and release of histamine and peptidoleukotrienes from lung fragments. Guinea pigs were actively sensitized by OVA. OVA induced anaphylactic bronchial contractions, and release of histamine and peptidoleukotrienes from lung fragments. U0126 (0.3-30 microM), but not SB220025 and PD169316 (3-30 microM), slightly suppressed peak OVA-induced bronchial contraction but markedly reduced anaphylactical contraction over a 50-min period in a dose-dependent manner. U0126 did not inhibit bronchial contractions induced by KCl, histamine or leukotriene D4. U0126 produced a slight reduction in OVA-induced release of histamine but a significant inhibition on the release of peptidoleukotrienes from lung fragments. Exogenous arachidonic acid-induced release of peptidoleukotrienes was not blocked by U0126. SB220025 and PD169316 had no effect on OVA-induced release of histamine and peptidoleukotrienes. Our data indicate that inhibitor of p42/44 MAPK kinase, but not p38 MAPK, can reduce antigen-induced release of peptidoleukotrienes leading to a rapid resolution of anaphylactic bronchial contraction, and may have therapeutic potential for allergic asthma.  相似文献   

20.
The signaling pathways that lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) use to activate Akt in ovarian cancer cells are investigated here. We show for the first time, with the use of both pharmacological and genetic inhibitors, that the kinase activity and S473 phosphorylation of Akt induced by LPA and S1P requires both mitogen-activated protein (MAP) kinase kinase (MEK) and p38 MAP kinase, and MEK is likely to be upstream of p38, in HEY ovarian cancer cells. The requirement for both MEK and p38 is cell type- and stimulus-specific. Among 12 cell lines that we tested, 11 respond to LPA and S1P and all of the responsive cell lines require p38 but only nine of them require MEK. Among different stimuli tested, platelet-derived growth factor stimulates S473 phosphorylation of Akt in a MEK- and p38-dependent manner. However, epidermal growth factor, thrombin, and endothelin-1-stimulated Akt S473 phosphorylation require p38 but not MEK. Insulin, on the other hand, stimulates Akt S473 phosphorylation independent of both MEK and p38 in HEY cells. T308 phosphorylation stimulated by LPA/S1P requires MEK but not p38 activation. MEK and p38 activation were sufficient for Akt S473 but not T308 phosphorylation in HEY cells. In contrast to S1P and PDGF, LPA requires Rho for Akt S473 phosphorylation, and Rho is upstream of phosphatidylinositol 3-kinase (PI3-K). LPA/S1P-induced Akt activation may be involved in cell survival, because LPA and S1P treatment in HEY ovarian cancer cells results in a decrease in paclitaxel-induced caspase-3 activity in a PI3-K/MEK/p38-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号