首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reduction of neutrophil apoptosis represents a major cause for granulocytosis and increases the destructive potential of theses cells during systemic inflammatory response syndrome (SIRS) and sepsis. In this light, the role of protein kinases for the regulation of altered neutrophil apoptosis under infectious conditions was investigated. Neutrophils, obtained from patients with severe sepsis (n = 18), were incubated ex vivowith either LPS (1 microg/mL) or interferon-gamma (IFN-gamma; 10 ng/mL) for 16 h. Apoptosis was determined by propidium iodine (PI) staining of DNA fragments and was compared with the rate of spontaneous apoptosis. Tyrosine kinases were inhibited by herbimycin (1 microM), the mitogen-activated protein (MAP) kinase ERK was inhibited with PD98059 (50 microM), and p38 MAP kinase was inhibited with SB203580 (5 microM). Herbimycin reconstituted LPS-reduced apoptosis in neutrophils from controls (39.9 +/- 3.8%) and patients (20.8 +/- 2.8%) to levels seen in spontaneous apoptosis (70.9 +/- 2.8% and 40.7 +/- 3.7%, respectively). Inhibition of the ERK kinase yielded similar results, whereas SB203580 had no effect on LPS-reduced apoptosis. However, inhibition of p38 partially reconstituted IFN-gamma-reduced apoptosis (51.3 +/- 7.7% and 25.6 +/- 5.8%) and increased spontaneous apoptosis (82.4 +/- 3.3% and 42.0 +/- 5.8%) in controls and patients, respectively. Western blot analysis revealed phosphorylation of both MAP kinases by LPS, but not by IFN-gamma. Inhibition of MAP kinases did not augment neutrophil apoptosis in patients to the level seen in controls, indicating that other mechanisms must be involved in the regulation of neutrophil apoptosis. Although the ERK kinase regulates LPS-induced reduction of apoptosis, the p38 MAP kinase might be involved in IFN-gamma signaling and the feedback regulation of neutrophil apoptosis.  相似文献   

3.
HER2, a member of the human epidermal growth factor (EGF) receptor family, not only plays important roles in the progression of breast cancer tumorigenesis and metastasis, but may protect cancer cells from conventional cytotoxic therapies as well. In the current study, we evaluated the effect of targeting HER2 on radiosensitization of human breast cancer cells. Using six breast cancer cell lines with various levels of HER2 (BT474, SKBR3, MDA453, MCF7, ZR75B, and MDA468), we found that trastuzumab (Herceptin), a humanized monoclonal antibody that may inhibit breast cancer cell proliferation but does not induce apoptosis when used alone, enhanced radiation-induced apoptosis of the cells in a HER2 level-dependent manner. We furthered this study in MCF7 cells transfected for high levels of HER2 (MCF7HER2). Compared with parental or control vector-transfected MCF7 cells, MCF7HER2 cells showed increased phosphorylation of at least two important HER2 downstream molecules, protein kinase B/Akt and mitogen-activated protein kinase (MAPK), and increased resistance to radiotherapy, as shown by reduced induction of apoptosis and increased cell clonogenic survival after radiation. Exposure of the cells to trastuzumab down-regulated the levels of HER2 and reduced phosphorylation levels of Akt and MAPK in MCF7HER2 cells, and sensitized these cells to radiotherapy. When specific inhibitors of the phosphatidylinositol 3-kinase (PI3-K) and MAPK kinase (MEK) pathways were used, we found that exposure of MCF7HER2 cells to the PI3-K inhibitor LY294002 inhibited Akt phosphorylation and radiosensitized the cells, whereas the radiosensitization effect by the MEK inhibitor PD98059 was relatively weaker, albeit the phosphorylation of MAPK was reduced by PD98059 treatment. Our results indicate that the PI3-K pathway might be the major pathway for trastuzumab-mediated radiosensitization of breast cancer cells.  相似文献   

4.
(E)-(1S,4S,10S,21R)-7-[(Z)-ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo[8,7,6]-tricos-16-ene-3,6,9,19,22-pentanone (FR901228), a natural anticancer depsipeptide, induces apoptosis of ras-transformed 10T1/2 cells whereas it induces growth arrest of nontransformed counterpart cells in G0/G1 phase of the cell cycle. Our study of the effect of FR901228 treatment on intracellular signaling pathways reveals a discriminating activity of FR901228 to regulate signaling cascades differently in ras-transformed 10T1/2 cells and nontransformed counterpart cells. Induction of apoptosis of ras-transformed cells by FR901228 correlates with suppression of the extracellular signal-regulated kinase (ERK) signaling pathway through reduction of Raf expression and deactivation of Mek and Erk, inhibition of the phosphoinositide-3 kinase (PI3-K) pathway indexed by suppression of Akt activity, suppression of p38 activity, and activation of caspase-3. Expression of p21(Cip1) is not induced in ras-transformed cultures undergoing apoptosis induced by FR901228. In contrast, FR901228 induces p21(Cip1) expression in nontransformed counterpart cultures growth-arrested in G0/G1 that is also accompanied by moderate induction of the kinase activities of Raf, Mek, Erk, and Akt, but not accompanied by activation of caspase-3 or changes in p38 activity. Our study indicates a potential value of FR901228 in the treatment of cancer cells involving aberrant regulation of Ras through preferential induction of the caspase cascade and suppression of the ERK, PI3-K, and p38 pathways.  相似文献   

5.
Decreased neutrophil apoptosis is associated with persistent inflammation, the severity of which correlates with serum IL-18 levels. IL-18 receptors as well as Toll-like receptors, including Toll-like receptor 4, a receptor for LPS, possess a highly conserved intracellular domain called "Toll-IL-1R domain" and activate overlapping signaling pathways. Here, we show that IL-18 modulates neutrophil apoptosis and compare its mechanism of action with LPS. We found that both IL-18 and LPS decreased neutrophil apoptosis in a similar dose- and time-dependent fashion. However, pretreatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 increased apoptosis more effectively in IL-18- than in LPS-stimulated cells, whereas the ERK inhibitor PD98059 had the same effect in both. In contrast, the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 had no influence on apoptosis at all. Neutrophils constitutively expressed mRNA for IL-18 receptor beta, but little or no receptor alpha, both of which increased during coculture with either IL-18 or LPS in a time- and dose-dependent manner. Of the Bcl-2 family, antiapoptotic A1/Bfl-1 tended to increase on IL-18 and LPS stimulation, but was further increased despite increased apoptosis in the presence of MAPK inhibitors. Thus, human neutrophils can express mRNA for IL-18 receptors alpha and beta, and IL-18, like LPS, inhibits neutrophil apoptosis by activating PI3K and ERK pathways but not p38MAPK. However, PI3K may play more important role(s) in IL-18- than in LPS-induced inhibition of apoptosis. Mitogen-activated protein kinases seem to mediate antiapoptotic signals through factors other than Bcl-2 gene family expression.  相似文献   

6.
OBJECTIVE: Despite advances in the management of sepsis and acute respiratory distress syndrome, the mortality rate remains high. Delayed apoptosis of neutrophils is associated with multiple organ failure under those conditions. Thus, development of nontoxic neutrophil apoptosis regulating molecules may provide a novel therapeutic strategy. Curcumin is a promising dietary supplement for cancer prevention. However, the effect of curcumin on human neutrophil apoptosis remains unknown. We therefore hypothesized that curcumin would produce a proapoptotic effect on neutrophils. DESIGN: Prospective, controlled, and randomized in vitro study. SETTING: Research institute laboratory. SUBJECTS: Human peripheral neutrophils obtained from normal subjects. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: In the presence or absence of curcumin, both spontaneous neutrophil apoptosis and apoptosis of neutrophils following transmigration across a human lung endothelium-epithelium bilayer were studied by morphology and terminal dUTP nucleotide end labeling analyses, respectively. Myeloperoxidase activity and migration assays were performed to determine the impact of curcumin on neutrophil function. To elucidate the potential mechanism, the p38 mitogen-activated protein kinase pathway and caspase-3 activity were examined by Western blotting and enzymatic analyses. The data demonstrate that curcumin increased constitutive neutrophil apoptosis and abrogated the transbilayer migration-induced delay in neutrophil apoptosis. Neutrophil activation was reduced by curcumin treatment as evidenced by a decrease in migration and myeloperoxidase release. A marked increase in p38 phosphorylation and caspase-3 activity was observed following curcumin exposure. In addition, inhibition of p38 mitogen-activated protein kinase with SB203580 suppressed apoptosis and caspase-3 activation induced by curcumin. Thus, activation of p38 mitogen-activated protein kinase or an increase in caspase-3 activity appears to contribute to the proapoptotic effect of human neutrophil apoptosis by curcumin. CONCLUSION: The characteristics of curcumin, including its proapoptotic effect and antidegranulation effect, make it a potential candidate for the therapy of neutrophil-induced lung injury and sepsis.  相似文献   

7.
Mitogen-activated protein kinase (MAPK) signaling pathways involve two closely related MAPKs, known as extracellular signal-regulated kinase (ERK)1 and ERK2. The aim of the present study was to evaluate the contribution of MAPK3/MAPK1 in the secondary damage in experimental spinal cord injury (SCI) in mice. To this purpose, we used 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059), which is an inhibitor of MAPK3/MAPK1. Spinal cord trauma was induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of inflammatory mediators, tissue damage, and apoptosis. PD98059 treatment (10 mg/kg i.p.) at 1 and 6 h after the SCI significantly reduced 1) the degree of spinal cord inflammation and tissue injury (histological score), 2) neutrophil infiltration (myeloperoxidase activity), 3) nitrotyrosine formation, 4) proinflammatory cytokines expression, 5) nuclear factor-kappaB activation, 6) phospho-ERK1/2 expression, and 6) apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, Fas ligand, Bax, and Bcl-2 expression). Moreover, PD98059 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. Taken together, our results clearly demonstrate that PD98059 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.  相似文献   

8.
Inhibition of mTOR signaling by rapamycin has been shown to activate extracellular signal-regulated kinase 1 or 2 (ERK1/2) and Akt in various types of cancer cells, which contributes to rapamycin resistance. However, the downstream effect of rapamycin-activated ERKs and Akt on survival or death substrate(s) remains unclear. We discovered that treatment of human lung cancer cells with rapamycin results in enhanced phosphorylation of Bad at serine (S) 112 and S136 but not S155 in association with activation of ERK1/2 and Akt. A higher level of Bad phosphorylation was observed in rapamycin-resistant cells compared with parental rapamycin-sensitive cells. Thus, Bad phosphorylation may contribute to rapamycin resistance. Mechanistically, rapamycin promotes Bad accumulation in the cytosol, enhances Bad/14-3-3 interaction, and reduces Bad/Bcl-XL binding. Rapamycin-induced Bad phosphorylation promotes its ubiquitination and degradation, with a significant reduction of its half-life (i.e., from 53.3-37.5 hours). Inhibition of MEK/ERK by PD98059 or depletion of Akt by RNA interference blocks rapamycin-induced Bad phosphorylation at S112 or S136, respectively. Simultaneous blockage of S112 and S136 phosphorylation of Bad by PD98059 and silencing of Akt significantly enhances rapamycin-induced growth inhibition in vitro and synergistically increases the antitumor efficacy of rapamycin in lung cancer xenografts. Intriguingly, either suppression of Bad phosphorylation at S112 and S136 sites or expression of the nonphosphorylatable Bad mutant (S112A/S136A) can reverse rapamycin resistance. These findings uncover a novel mechanism of rapamycin resistance, which may promote the development of new strategies for overcoming rapamycin resistance by manipulating Bad phosphorylation at S112 and S136 in human lung cancer.  相似文献   

9.
Cocaine induces apoptosis in fetal rat myocardial cells (FRMCs). However, the mechanisms are not clear. The present study examined the role of p38 mitogen-activated protein kinase (MAPK) and cytochrome c release in the cocaine-induced apoptosis in primary culture of FRMCs prepared from the fetal heart of gestational age of 21 days. Cocaine induced time-dependent, concurrent increases in cytochrome c release and activities of caspase-9 and caspase-3, which preceded apoptosis. Caspase-8 was not activated. In accordance, cyclosporin A and the inhibitors of caspase-9 and caspase-3 inhibited cocaine-induced caspase activation and apoptosis. Cocaine stimulated a transient increase in the p38 MAPK activity at a time point of 15 min but reduced the extracellular signal-regulated kinase (ERK) activity at 5 and 15 min in FRMCs. The p38alpha MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole] inhibited cocaine-induced activation of caspases and apoptosis. In contrast, the p38beta MAPK and mitogen-activated protein kinase kinase/ERK inhibitors SB 202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole] and PD98059 (2'-amino-3'-methoxyflavone), respectively, increased apoptosis in the absence of cocaine and potentiated cocaine-induced apoptosis. Consistent with its inhibition of apoptosis, SB203580 inhibited cocaine-induced cytochrome c release and activation of caspase-9 and caspase-3. In addition, cocaine induced a decrease in Bcl-2 protein levels, with no effect on Bax levels. The cocaine-mediated reduction of Bcl-2 levels was not affected with SB203580 and the caspase inhibitors. The results suggest that in FRMCs, p38alpha MAPK plays an important role in the cocaine-induced apoptosis by promoting cytochrome c release, downstream or independent of Bcl-2 protein-mediated regulation. In contrast, p38beta MAPK and ERK protect fetal myocardial cells against apoptosis.  相似文献   

10.
11.
The possible participation of phosphatidylinositol (PI) 3-kinase, p44/42 mitogen-activated protein (MAP) kinases and protein kinase C (PKC) in staurosporine-induced prostaglandin E(2) (PGE(2)) production was investigated pharmacologically in rat peritoneal macrophages. When the cells were incubated in the presence of staurosporine (63 nM), phosphorylation of p44/42 MAP kinases and cytosolic phospholipase A(2) (cPLA(2)) was induced at 15 min and increased until 60 min, whereas PGE(2) production and expression of cyclooxygenase-2 (COX-2) protein began to increase at 2 h and increased thereafter. Both PD98059 and U0126, MAP kinase/extracellular signal-regulated kinase (ERK) kinase inhibitors, and LY294002, a PI 3-kinase inhibitor, inhibited staurosporine-induced phosphorylation of p44/42 MAP kinases and cPLA(2) and PGE(2) production. Moreover, U0126 inhibited staurosporine-induced arachidonic acid release at 1 h. Although PD98059 and U0126 at 30 microM partially inhibited staurosporine-induced COX-2 protein expression, they completely inhibited staurosporine-induced PGE(2) production. LY294002 at 100 microM did not inhibit staurosporine-induced expression of COX-2 protein. In contrast, Ro-31-8220, a PKC inhibitor, completely inhibited staurosporine-induced PGE(2) production and COX-2 protein expression at 8 h but did not inhibit staurosporine-induced phosphorylation of p44/42 MAP kinases and cPLA(2). These findings suggest that staurosporine induces PGE(2) production by two mechanisms. One is cPLA(2) phosphorylation through a signal transduction pathway from PI 3-kinase to p44/42 MAP kinases, by which arachidonic acid, a substrate for COX-1 and COX-2, is increased. The other is COX-2 protein expression, which is induced mainly by activation of PKC and partially by activation of p44/42 MAP kinases; thus, arachidonic acid is metabolized to PGE(2).  相似文献   

12.
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a naturally occurring polyphenolic compound found abundantly in grape skins and red wines, has been found to pharmacologically precondition the heart against ischemia reperfusion injury through the potentiation of a survival signal involving cAMP response element-binding protein-dependent phosphatidylinositol 3-kinase-Akt-BclII pathway. The present study was designed to determine whether, similar to ischemic preconditioning, resveratrol uses mitogen-activated protein kinases (MAPKs) as upstream signaling targets. The isolated rat hearts were preperfused for 15 min with Krebs-Henseleit bicarbonate buffer in the absence (control) or presence of extracellular signal-regulated kinase (ERK) 1/2 inhibitor 2'-amino-3'-methoxyflavone (PD98059), p38 MAPK inhibitor 4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole (SB-202190), mitogen- and stress-activated protein kinase 1 (MSK-1) inhibitor N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H89), protein kinase A inhibitor (9S,10S,12R)-2,3,9,10,11,12-hexahydro-10hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3fg: 3',2',1'-kl]-pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid hexyl ester (KT5720), resveratrol only, resveratrol plus PD98059, resveratrol plus SB-202190, resveratrol plus H89, or resveratrol plus KT5720. Consistent with previous reports, resveratrol provided cardioprotection as evidenced by its ability to improve postischemic ventricular function, reduction of myocardial infarct size, and cardiomyocyte apoptosis. The cardioprotection afforded by resveratrol was partially abolished with PD98059 or SB-202190, suggesting that ERK1/2 and p38 MAPK play roles in resveratrol-mediated preconditioning. An MSK-1 inhibitor, H89, abolished resveratrol-mediated preconditioning, indicating MSK-1 to be the downstream target molecule for both ERK1/2 and p38 MAPK. KT5720 had no effect on resveratrol-mediated cardioprotection. Corroborating these results, Western blot analysis revealed phosphorylation of ERK1/2, p38 MAPK, MAPK-activated protein (MAPKAP) kinase 2, and MSK-1 with resveratrol and inhibition of phosphorylation with corresponding inhibitors. These results showed for the first time that resveratrol triggers an MAPK signaling pathway involving ERK1/2 and p38 MAPK, the former using MSK-1 as the downstream target and the latter, using both MAPKAP kinase 2 and MSK-1 as downstream targets.  相似文献   

13.
本研究探讨脑源性神经营养因子(BDNF)促进血管新生的作用及其参与的信号通路,为抗肿瘤血管生成的研究提供新的实验依据。以人脐静脉内皮细胞为对象,采用Western blot方法检测细胞内磷酸化Akt、ERK1/2蛋白质的表达;采用Transwell小室迁移实验和管腔形成实验评价体外内皮细胞血管新生的能力,MTT法检测内皮细胞增殖活性,FITC-Annexin-Ⅴ/PI双染流式细胞术分析细胞调亡。结果表明:BDNF以时间依赖性的方式激活PI3K/Akt和MEK1/ERK信号通路。应用PI3K激酶抑制剂Ly294002、MEK1激酶抑制剂PD98059可以明显阻断BDNF对PI3K/Akt、MEK1/ERK信号通路的激活。100ng/ml的BDNF体外促内皮细胞血管新生能力与25ng/ml血管内皮生长因子(VEGF)相当,其中BDNF诱导的细胞迁移分别被Ly294002和PD98059阻断,其抑制率分别约为74%和36%;同样,Ly294002、PD98059可部分阻断BDNF诱导的小管形成效应,其阻断率分别约57%和37%;而BDNF的促增殖效应仅被PD98059拮抗,抑制凋亡效应仅受Ly294002影响。结论:BDNF在体外有促血管新生的作用。PI3K/Akt和MEK1/ERK信号通路以不同机制共同调节这一过程,其中PI3K/Akt信号通路起着更为重要的调节作用。  相似文献   

14.
目的研究15Hz 1mT的正弦波电磁场对大鼠骨髓间充质干细胞(MSCs)的细胞外信号调节激酶(ERK)和丝裂原激活的蛋白激酶(MAPK)p38的激活规律及相互作用特点,探讨ERK和p38 MAPK信号通路在电磁场促成骨效应中的作用。 方法选取第3代体外分离培养的大鼠骨髓间充质干细胞,分为对照组、曝磁组、曝磁+PD98059组和曝磁+SB202190组四个大组。曝磁组细胞置于带有电磁发生器的培养箱中培养,曝磁+PD98059组和曝磁+SB202190组细胞分别加入ERK信号通路阻断剂PD98059和p38 MAPK信号通路阻断剂SB202190后再置入带有电磁发生器的培养箱中培养,对照组细胞正常培养。用免疫印迹(Western blot)法检测ERK和p38 MAPK的蛋白表达及磷酸化水平变化。按照细胞碱性磷酸酶(ALP)试剂盒说明书操作步骤对各组细胞ALP活性进行检测,其活性变化可间接反映细胞的分化成骨活性;用噻唑蓝比色法检测各组细胞的增殖活性变化。 结果①电磁场作用下,骨髓间充质干细胞内p38 MAPK信号通路可被快速激活,曝磁15min后出现p38磷酸化水平升高(P<0.05);加用SB202190后,再行电磁场刺激,细胞内p38磷酸化水平仍然维持在较低水平,与曝磁组比较,差异有统计学意义(P<0.05)。②与对照组比较,曝磁5d后细胞内ALP活性显著升高(P<0.05),SB202190可明显阻断该效应(P<0.05)。③与对照组比较,曝磁3d后骨髓间充质干细胞的增殖活性明显升高(P<0.05),SB202190不能阻断该效应(曝磁+SB202190组与曝磁组比较,P>0.05)。④SB202190阻断p38 MAPK信号通路并曝磁5min后,ERK MAPK磷酸化水平明显强化(P<0.05);PD98059阻断ERK MAPK信号通路并曝磁30min后,p38 MAPK磷酸化水平明显强化(P<0.05)。 结论ERK和p38 MAPK信号通路分别参与了电磁场对骨髓间充质干细胞增殖和分化成骨过程的调节,并在电磁场作用下两通路表现出串扰现象。  相似文献   

15.
Anchorage-independent growth is a hallmark of oncogenic transformation. We reported that the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor U0126 inhibited anchorage-independent growth of Ki-ras-transformed rat fibroblasts by simultaneously blocking both extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR)-p70(S6K) pathways. Here, we examined the effects of U0126 on the growth of eight human breast cancer cell lines. U0126 selectively repressed anchorage-independent growth of MDA-MB231 and HBC4 cells, two lines with constitutively activated ERK. Loss of contact with substratum triggers apoptosis in many normal cell types, a phenomenon termed anoikis. U0126 sensitized MDA-MB231 and HBC4 to anoikis, i.e., upon treatment with U0126, cells deprived of anchorage entered apoptosis, whereas adherent cells remained viable. Another MEK inhibitor PD98059 also induced anoikis sensitivity in MDA-MB231 cells but not in HBC4 cells. However, HBC4 cells were sensitized to anoikis when PD98059 was combined with the mTOR inhibitor rapamycin. To study the biochemical basis for induction of anoikis sensitivity, we examined the effects of the MEK inhibitors on ERK and p70(S6K) pathways in anchored versus nonanchored cells. As in Ki-ras-transformed rat fibroblasts, U0126 reduced activation of both ERK and p70(S6K) in MDA-MB231 and HBC4 cells, irrespective of anchorage. PD98059, in anchored cells, was more selective for the ERK pathway and did not significantly block the p70(S6K) pathway. Removal of anchorage substantially sensitized p70(S6K) to PD98059 in MDA-MB231 cells, whereas p70(S6K) in suspended HBC4 cells remained fairly refractory. U0126 was either without effect or less inhibitory on p70(S6K) in MDA-MB453 and SKBR3, two cell lines in which anoikis sensitivity was not induced. Thus, susceptibility of the p70(S6K) pathway to MEK inhibitors appeared to be an important determinant of anoikis sensitivity. The results indicate that concurrent inhibition of MEK-ERK and mTOR-p70(S6K) pathways induces apoptosis in MDA-MB231 and HBC4 cells when cells are deprived of anchorage but not when anchored. Inhibitors of MEK-ERK and mTOR-p70(S6K) pathways may provide a therapeutic strategy to selectively target neoplasms proliferating at ectopic locations, with acceptable effects on normal cells in their proper tissue context.  相似文献   

16.
Alpha2-adrenoceptor-mediated vasoconstriction in the porcine palmar lateral vein is dependent upon activation of the extracellular signal-regulated kinase-mitogen-activated protein (ERK-MAP) kinase signal transduction pathway. Recent studies have shown that alpha2-adrenoceptor-mediated vasoconstriction in the rat aorta is also dependent upon activation of Rho kinase. The aim of this study was to determine whether Rho kinase and ERK-MAP kinase are part of the same signaling pathway. The Rho kinase inhibitor Y27632 (trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride) (10 microM) almost completely inhibited the contractile response to the alpha2-adrenoceptor agonist UK14304 (5-bromo-6-[2-imidazolin-2-ylamine]-quinoxaline bitartrate) in segments of porcine palmar lateral vein [maximum response 2.9 +/- 2.3% of 60 mM KCl response (mean +/- S.E.M.) in the presence of Y27632, compared with 64.9 +/- 7.1% in control tissues, n = 4]. However, Y27632 had no effect on alpha2-adrenoceptor-mediated ERK activation, as measured by Western blotting. Alpha2-adrenoceptor-mediated vasoconstriction was associated with an increase in phosphorylation of the myosin phosphatase-targeting subunit (MYPT) at Thr696 (the Rho kinase phosphorylation site). This phosphorylation was inhibited by 10 microM Y27632. In contrast, inhibition of ERK activation with the MAP kinase kinase inhibitor PD98059 (2-amino-3-methoxyflavone) (50 microM) had no effect on MYPT phosphorylation. Both Y27632 and PD98059 inhibited myosin light chain phosphorylation. These data indicate that alpha2-adrenoceptor-mediated vasoconstriction in the porcine palmar lateral vein is dependent upon both Rho kinase and ERK activation, although these are separate pathways. Rho kinase causes vasoconstriction through inhibition of myosin phosphatase and an increase in myosin light chain phosphorylation, whereas ERK causes vasoconstriction through a myosin phosphatase-independent pathway.  相似文献   

17.
Neutrophil apoptosis occurs both in the bloodstream and in the tissue and is considered essential for the resolution of an inflammatory process. Here, we show that p38-mitogen-activated protein kinase (MAPK) associates to caspase-8 and caspase-3 during neutrophil apoptosis and that p38-MAPK activity, previously shown to be a survival signal in these primary cells, correlates with the levels of caspase-8 and caspase-3 phosphorylation. In in vitro experiments, immunoprecipitated active p38-MAPK phosphorylated and inhibited the activity of the active p20 subunits of caspase-8 and caspase-3. Phosphopeptide mapping revealed that these phosphorylations occurred on serine-364 and serine-150, respectively. Introduction of mutated (S150A), but not wild-type, TAT-tagged caspase-3 into primary neutrophils made the Fas-induced apoptotic response insensitive to p38-MAPK inhibition. Consequently, p38-MAPK can directly phosphorylate and inhibit the activities of caspase-8 and caspase-3 and thereby hinder neutrophil apoptosis, and, in so doing, regulate the inflammatory response.  相似文献   

18.
19.
Our recent study demonstrated that central cannabinoid receptor 1 (CB?R) activation caused dose-related pressor response in conscious rats, and reported studies implicated the brainstem phosphatidylinositol 3-kinase (PI3K)/Akt-extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in blood pressure control. Therefore, in this study, we tested the hypothesis that the modulation of brainstem PI3K/Akt-ERK1/2 signaling plays a critical role in the central CB(1)R-mediated pressor response. In conscious freely moving rats, the pressor response elicited by intracisternal (i.c.) (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt (WIN55,212-2) (15 μg) was associated with significant increases in ERK1/2 phosphorylation in the rostral ventrolateral medulla (RVLM) and the nucleus tractus solitarius (NTS). In contrast, Akt phosphorylation was significantly reduced in the same neuronal pools. Pretreatment with the selective CB?R antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) (30 μg i.c.) attenuated the neurochemical responses elicited by central CB?R activation. Furthermore, pretreatment with the ERK/mitogen-activated protein kinase kinase inhibitor 2'-amino-3'-methoxyflavone (PD98059) (5 μg i.c.) abrogated WIN55,212-2-evoked increases in blood pressure and neuronal ERK1/2 phosphorylation but not the reduction in Akt phosphorylation. On the other hand, prior PI3K inhibition with wortmannin (0.4 μg i.c.) exacerbated the WIN55,212-2 (7.5 and 15 μg i.c.) dose-related increases in blood pressure and ERK1/2 phosphorylation in the RVLM. The present neurochemical and integrative studies yield new insight into the critical role of two brainstem kinases, PI3K and ERK1/2, in the pressor response elicited by central CB?R activation in conscious rats.  相似文献   

20.
Articular cartilage is recalcitrant to endogenous repair and regeneration and is thus a focus of tissue engineering and regenerative medicine strategies. A prerequisite for articular cartilage tissue engineering is an understanding of the signal transduction pathways involved in mechanical compression during trauma or disease. We sought to explore the role of the extracellular signal‐regulated kinase 1/2 (ERK 1/2) pathway in chondrocyte proliferation and proteoglycan synthesis following acute mechanical compression. Bovine articular cartilage explants were cultured with and without the ERK 1/2 pathway inhibitor PD98059. Cartilage explants were statically loaded to 40% strain at a strain rate of 1/s for 5 s. Control explants were cultured under similar conditions but were not loaded. There were four experimental groups: (a) no load, without inhibitor; (b) no load, with the inhibitor PD98059; (c) loaded, without the inhibitor; and (d) loaded, with the inhibitor PD98059. The explants were cultured for varying durations from 5 min to 5 days and were then analysed by biochemical and immunohistochemical methods. Mechanical compression induced phosphorylation of ERK 1/2, and this was attenuated with the ERK 1/2 pathway inhibitor PD98059 in a dose‐dependent manner. Chondrocyte proliferation was increased by mechanical compression. This effect was blocked by the inhibitor of the ERK 1/2 pathway. Mechanical compression also led to a decrease in proteoglycan synthesis that was reversed with inhibitor PD98059. In conclusion, the ERK 1/2 pathway is involved in the proliferative and biosynthetic response of chondrocytes following acute static mechanical compression. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号