首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal‐to‐noise ratio (SNR) is a major challenge to sodium magnetic resonance imaging. Phased array coils have been shown significantly improving SNR in proton imaging over volume coils. This study investigates SNR advantage of a 15‐channel array head coil (birdcage volume coil for transmit/receive and 15‐channel array insert for receive‐only) in sodium imaging at 7 T. Phantoms and healthy human brains were scanned on a whole‐body 7 T magnetic resonance imaging scanner using a customer‐developed pulse sequence with the twisted projection imaging trajectory. Noise‐only images were acquired with blanked radiofrequency excitations for noise measurement on a pixel basis. SNR was calculated on the root of sum‐of‐squares images. When compared with the volume coil, the 15‐channel array produced SNR more than doubled at the periphery and slightly increased at the center of the phantoms and human brains. Decorrelation of noise across channels of the array coil extended the SNR‐doubled region into deep area of the brain. The spatial modulation of element sensitivities on the sum‐of‐squares combined image was removed by performing self‐calibrated sensitivity encoding parallel image reconstruction and uniform image intensity across entire field of view was attained. The 15‐channel array coil is an efficient tool to substantially improve SNR in sodium imaging on human brain. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The loopless antenna magnetic resonance imaging detector is comprised of a tuned coaxial cable with an extended central conductor that can be fabricated at submillimeter diameters for interventional use in guidewires, catheters, or needles. Prior work up to 4.7 T suggests a near-quadratic gain in signal-to-noise ratio with field strength and safe operation at 3 T. Here, for the first time, the signal-to-noise ratio performance and radiofrequency safety of the loopless antenna are investigated both theoretically, using the electromagnetic method-of-moments, and experimentally in a standard 7 T human scanner. The results are compared with equivalent 3 T devices. An absolute signal-to-noise ratio gain of 5.7 ± 1.5-fold was realized at 7 T vs. 3 T: more than 20-fold higher than at 1.5 T. The effective field-of-view area also increased approximately 10-fold compared with 3 T. Testing in a saline gel phantom suggested that safe operation is possible with maximum local 1-g average specific absorption rates of <12 W kg(-1) and temperature increases of <1.9°C, normalized to a 4 W kg(-1) radiofrequency field exposure at 7 T. The antenna did not affect the power applied to the scanner's transmit coil. The signal-to-noise ratio gain enabled magnetic resonance imaging microscopy at 40-50 μm resolution in diseased human arterial specimens, offering the potential of high-resolution large-field-of-view or endoscopic magnetic resonance imaging for targeted intervention in focal disease.  相似文献   

3.
The objective of this study was to investigate the feasibility of whole‐body imaging at 7T. To achieve this objective, new technology and methods were developed. Radio frequency (RF) field distribution and specific absorption rate (SAR) were first explored through numerical modeling. A body coil was then designed and built. Multichannel transmit and receive coils were also developed and implemented. With this new technology in hand, an imaging survey of the “landscape” of the human body at 7T was conducted. Cardiac imaging at 7T appeared to be possible. The potential for breast imaging and spectroscopy was demonstrated. Preliminary results of the first human body imaging at 7T suggest both promise and directions for further development. Magn Reson Med 61:244–248, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
5.
In this work, a number of important issues associated with fast spin echo (FSE) imaging of the human brain at 4.7 T are addressed. It is shown that FSE enables the acquisition of images with high resolution and good tissue contrast throughout the brain at high field strength. By employing an echo spacing (ES) of 22 ms, one can use large flip angle refocusing pulses (162 degrees ) and a low acquisition bandwidth (50 kHz) to maximize the signal-to-noise ratio (SNR). A new method of phase encode (PE) ordering (called "feathering") designed to reduce image artifacts is described, and the contributions of RF (B(1)) inhomogeneity, different echo coherence pathways, and magnetization transfer (MT) to FSE signal intensity and contrast are investigated. B(1) inhomogeneity is measured and its effect is shown to be relatively minor for high-field FSE, due to the self-compensating characteristics of the sequence. Thirty-four slice data sets (slice thickness = 2 mm; in-plane resolution = 0.469 mm; acquisition time = 11 min 20 s) from normal volunteers are presented, which allow visualization of brain anatomy in fine detail. This study demonstrates that high-field FSE produces images of the human brain with high spatial resolution, SNR, and tissue contrast, within currently prescribed power deposition guidelines.  相似文献   

6.
Triple-quantum-filtered sodium imaging of the human brain at 4.7 T   总被引:1,自引:0,他引:1  
The limited signal-to-noise ratio of triple-quantum-filtered MRI of sodium is a major hurdle for its application clinically. Although it has been shown that short 90° radiofrequency pulses in combination with sufficiently long repetition time for full T(1) recovery (labelled "standard" parameters) produce the maximum signal through the triple-quantum-filter, and in this work, simulation and images of agar phantoms and human brain demonstrate that the use of longer radiofrequency pulses and reduced repetition time (optimized parameters to accommodate more averages for a constant specific absorption rate, reducing noise variance for a given scan length) results in signal-to-noise ratio improvement (22 ± 5% in brain tissue of five healthy volunteers--images created in 11 min with nominal resolution of 8.4 mm isotropic). However, residual intensity was observed in the ventricular space on triple-quantum-filtered images acquired with either optimized or standard parameters, contrary to the expectation of complete single-quantum signal suppression. Further simulation and experimentation suggest that this is likely due to the combination of triple-quantum-passed signal from surrounding brain tissue being spatially smeared into the ventricular space and single-quantum-signal breakthrough from sodium nuclei in the fluid space. It is shown that the latter can be eliminated with judicious first flip angle selection.  相似文献   

7.

Purpose:

To demonstrate the technical feasibility of high‐resolution (0.28–0.14 mm) ultrashort echo time (UTE) imaging on human knee at 3T with the acquisition‐weighted stack of spirals (AWSOS) sequence.

Materials and Methods:

Nine human subjects were scanned on a 3T MRI scanner with an 8‐channel knee coil using the AWSOS sequence and isocenter positioning plus manual shimming.

Results:

High‐resolution UTE images were obtained on the subject knees at TE = 0.6 msec with total acquisition time of 5.12 minutes for 60 slices at an in‐plane resolution of 0.28 mm and 10.24 minutes for 40 slices at an in‐plane resolution of 0.14 mm. Isocenter positioning, manual shimming, and the 8‐channel array coil helped minimize image distortion and achieve high signal‐to‐noise ratio (SNR).

Conclusion:

It is technically feasible on a clinical 3T MRI scanner to perform UTE imaging on human knee at very high spatial resolutions (0.28–0.14 mm) within reasonable scan time (5–10 min) using the AWSOS sequence. J. Magn. Reson. Imaging 2012;35:204‐210. © 2011 Wiley Periodicals, Inc.  相似文献   

8.

Purpose:

To compare signal‐to‐noise ratios (SNRs) and T*2 maps at 3 T and 7 T using 3D cones from in vivo sodium images of the human knee.

Materials and Methods:

Sodium concentration has been shown to correlate with glycosaminoglycan content of cartilage and is a possible biomarker of osteoarthritis. Using a 3D cones trajectory, 17 subjects were scanned at 3 T and 12 at 7 T using custom‐made sodium‐only and dual‐tuned sodium/proton surface coils, at a standard resolution (1.3 × 1.3 × 4.0 mm3) and a high resolution (1.0 × 1.0 × 2.0 mm3). We measured the SNR of the images and the T*2 of cartilage at both 3 T and 7 T.

Results:

The average normalized SNR values of standard‐resolution images were 27.1 and 11.3 at 7 T and 3 T. At high resolution, these average SNR values were 16.5 and 7.3. Image quality was sufficient to show spatial variations of sodium content. The average T*2 of cartilage was measured as 13.2 ± 1.5 msec at 7 T and 15.5 ± 1.3 msec at 3 T.

Conclusion:

We acquired sodium images of patellar cartilage at 3 T and 7 T in under 26 minutes using 3D cones with high resolution and acceptable SNR. The SNR improvement at 7 T over 3 T was within the expected range based on the increase in field strength. The measured T*2 values were also consistent with previously published values. J. Magn. Reson. Imaging 2010;32:446–451. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
High‐resolution (~0.22 mm) images are preferably acquired on whole‐body 7T scanners to visualize minianatomic structures in human brain. They usually need long acquisition time (~12 min) in three‐dimensional scans, even with both parallel imaging and partial Fourier samplings. The combined use of both fast imaging techniques, however, leads to occasionally visible undersampling artifacts. Spiral imaging has an advantage in acquisition efficiency over rectangular sampling, but its implementations are limited due to image blurring caused by a strong off‐resonance effect at 7T. This study proposes a solution for minimizing image blurring while keeping spiral efficient. Image blurring at 7T was, first, quantitatively investigated using computer simulations and point‐spread functions. A combined use of multishot spirals and ultrashort echo time acquisitions was then employed to minimize off‐resonance‐induced image blurring. Experiments on phantoms and healthy subjects were performed on a whole‐body 7T scanner to show the performance of the proposed method. The three‐dimensional brain images of human subjects were obtained at echo time = 1.18 ms, resolution = 0.22mm (field of view = 220mm, matrix size = 1024), and in‐plane spiral shots = 128, using a home‐developed ultrashort echo time sequence (acquisition‐weighted stack of spirals). The total acquisition time for 60 partitions at pulse repetition time = 100 ms was 12.8 min without use of parallel imaging and partial Fourier sampling. The blurring in these spiral images was minimized to a level comparable to that in gradient‐echo images with rectangular acquisitions, while the spiral acquisition efficiency was maintained at eight. These images showed that spiral imaging at 7T was feasible. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.

Purpose

To demonstrate how averaging of multiple gradient echoes can improve high‐resolution FLASH (fast low angle shot) magnetic resonance imaging (MRI) of the human brain.

Materials and Methods

3D‐FLASH with multiple bipolar echoes was studied by simulation and in three experiments on human brain at 3T. First, the repetition time (TR) was increased by the square of the flip angle to maintain contrast as derived by theory. Then the number of echoes was increased at constant TR with bandwidths between 110 and 1370 Hz/pixel. Finally, signals of a 12‐echo acquisition train (echo times 4.9–59 msec) were averaged consecutively to study the increase in SNR.

Results

At unchanged contrast, the signal increased proportionally with flip angle and sqrt(TR). Increasing the bandwidth improved delineation of the basal cortex and vessels, while most of the loss in the signal‐to‐noise ratio (SNR) was recovered by averaging. Consecutive averaging increased the SNR to reach maximum efficiency at an echo train length corresponding roughly to T.

Conclusion

SNR is gained efficiently by acquiring additional echoes and increasing TR (and flip angle accordingly to maintain contrast) until the associated T loss in the averaged signal consumes the sqrt(TR) increase in the steady state. A bandwidth of 350 Hz/pixel or higher and echo trains shorter than T are recommended. J. Magn. Reson. Imaging 2009;29:198–204. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
13.
14.
15.
16.
The assessment of both geometry and hemodynamics of the intracranial arteries has important diagnostic value in internal carotid occlusion, sickle cell disease, and aneurysm development. Provided that signal to noise ratio (SNR) and resolution are high, these factors can be measured with time‐resolved three‐dimensional phase contrast MRI. However, within a given scan time duration, an increase in resolution causes a decrease in SNR and vice versa, hampering flow quantification and visualization. To study the benefits of higher SNR at 7 T, three‐dimensional phase contrast MRI in the Circle of Willis was performed at 3 T and 7 T in five volunteers. Results showed that the SNR at 7 T was roughly 2.6 times higher than at 3 T. Therefore, segmentation of small vessels such as the anterior and posterior communicating arteries succeeded more frequently at 7 T. Direction of flow and smoothness of streamlines in the anterior and posterior communicating arteries were more pronounced at 7 T. Mean velocity magnitude values in the vessels of the Circle of Willis were higher at 3 T due to noise compared to 7 T. Likewise, areas of the vessels were lower at 3 T. In conclusion, the gain in SNR at 7 T compared to 3 T allows for improved flow visualization and quantification in intracranial arteries. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Functional magnetic resonance imaging (fMRI) has become the primary non-invasive method for investigating the human brain function. With an increasing number of ultra-high field MR systems worldwide possibilities of higher spatial and temporal resolution in combination with increased sensitivity and specificity are expected to advance detailed imaging of distinct cortical brain areas and subcortical structures. One target region of particular importance to applications in psychiatry and psychology is the amygdala. However, ultra-high field magnetic resonance imaging of these ventral brain regions is a challenging endeavor that requires particular methodological considerations. Ventral brain areas are particularly prone to signal losses arising from strong magnetic field inhomogeneities along susceptibility borders. In addition, physiological artifacts from respiration and cardiac action cause considerable fluctuations in the MR signal. Here we show that, despite these challenges, fMRI data from the amygdala may be obtained with high temporal and spatial resolution combined with increased signal-to-noise ratio. Maps of neural activation during a facial emotion discrimination paradigm at 7 T are presented and clearly show the gain in percental signal change compared to 3 T results, demonstrating the potential benefits of ultra-high field functional MR imaging also in ventral brain areas.  相似文献   

18.
Signal-to-noise ratio (SNR), RF field (B(1)), and RF power requirement for human head imaging were examined at 7T and 4T magnetic field strengths. The variation in B(1) magnitude was nearly twofold higher at 7T than at 4T ( approximately 42% compared to approximately 23%). The power required for a 90 degrees pulse in the center of the head at 7T was approximately twice that at 4T. The SNR averaged over the brain was at least 1.6 times higher at 7T compared to 4T. These experimental results were consistent with calculations performed using a human head model and Maxwell's equations. Magn Reson Med 46:24-30, 2001.  相似文献   

19.

Purpose

To describe an initial experience imaging the human hippocampus in vivo using a 7T magnetic resonance (MR) scanner and a protocol developed for very high field neuroimaging.

Materials and Methods

Six normal subjects were scanned on a 7T whole body MR scanner equipped with a 16‐channel head coil. Sequences included a full field of view T1‐weighted 3D turbo field echo (T1W 3D TFE: time of acquisition (TA) = 08:58), T2*‐weighted 2D fast field echo (T2*W 2D FFE: TA = 05:20), and susceptibility‐weighted imaging (SWI: TA = 04:20). SWI data were postprocessed using a minimum intensity projection (minIP) algorithm. Total imaging time was 23 minutes.

Results

T1W 3D TFE images with 700 μm isotropic voxels provided excellent anatomic depiction of macroscopic hippocampal structures. T2*W 2D FFE images with 0.5 mm in‐plane resolution and 2.5 mm slice thickness provided clear discrimination of the Cornu Ammonis and the compilation of adjacent sublayers of the hippocampus. SWI images (0.5 mm in‐plane resolution, 1.0 mm slice thickness) delineated microvenous anatomy of the hippocampus.

Conclusion

In vivo 7T MR imaging can take advantage of higher signal‐to‐noise and novel contrast mechanisms to provide increased conspicuity of hippocampal anatomy. J. Magn. Reson. Imaging 2008;28:1266–1272. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Fast high-resolution T1 mapping of the human brain.   总被引:1,自引:0,他引:1  
A sequence for the acquisition of high-resolution T1 maps, based on magnetization-prepared multislice fast low-angle shot (FLASH) imaging, is presented. In contrast to similar methods, no saturation pulses are used, resulting in an increased dynamic range of the relaxation process. Furthermore, it is possible to acquire data during all relaxation delays because only slice-selective radiofrequency (RF) pulses are used for inversion and excitation. This allows for a reduction of the total acquisition time, or scanning with a reduced bandwidth, which improves the signal-to-noise ratio (SNR). The method generates quantitative T1 maps with an in-plane resolution of 1 mm, slice thickness of 4 mm, and whole-brain coverage in a clinically acceptable imaging time of about 19 s per slice. It is shown that the use of off-center RF pulses does not result in imperfect inversion or magnetization transfer (MT) effects. In addition, an improved fitting algorithm based on smoothed flip angle maps is presented and tested successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号