首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Dendritic cells (DCs) isolated from patients with chronic hepatitis C virus (HCV) infection display an impaired capacity to generate type 1 CD4(+) T cell immunity. Several reports have described an immunomodulatory function for the HCV core protein, and circulating core has been shown to associate with the putative gC1q receptor, gC1qR, expressed on host immune cells. However, the molecular mechanism(s) of HCV core-mediated DC dysfunction has not been defined. Herein, ligation of gC1qR on human monocyte-derived DCs (MDDCs) with HCV core or anti-gC1qR agonist antibody was shown to inhibit TLR-induced IL-12 production but not the production of other TLR-stimulated cytokines. Furthermore, engagement of gC1qR on MDDCs resulted in reduced IFN-gamma secretion by allogeneic CD4(+) T lymphocytes during mixed lymphocyte culture. Differentiation of CD4(+) T cells cocultured with HCV core- or anti-gC1qR antibody-treated MDDCs was also skewed toward production of Th2 cytokines, including IL-4. Importantly, that addition of IL-12 rescued IFN-gamma production and Th1 differentiation by CD4(+) T cells. Therefore, engagement of gC1qR on DCs by HCV core limits the induction of Th1 responses and may contribute to viral persistence.  相似文献   

2.
BACKGROUND: The yeast Malassezia furfur (M. furfur), present in the normal microflora of human skin, can act as an allergen that incites specific IgE reactivity and T cell proliferation in atopic dermatitis (AD) patients. The role of antigen presenting dendritic cells (DCs) in the onset and maintenance of AD is not well established. OBJECTIVE: The objective of the present study was to assess whether the interaction of M. furfur with human DCs will result in DC maturation, cytokine production and lymphocyte proliferation. METHODS: Monocyte-derived dendritic cells (MDDCs) were generated from human peripheral blood. Immature MDDCs were cultured with or without M. furfur or plastic beads, and with or without CD40L stimulation. Interaction of yeast cells by MDDCs was studied by time-lapse photography and cytokines were detected in culture supernatants with ELISA. The ability of MDDCs pre-incubated with M. furfur to induce proliferation in autologous lymphocytes was measured by [(3)H]-thymidine incorporation. RESULTS: Time-lapse photography showed that the majority of immature MDDCs internalized whole M. furfur yeast cells within 1 h. The presence of M. furfur induced maturation (CD83 expression) of MDDCs, and up-regulation of the costimulatory molecules CD80 and CD86. Production of TNF-alpha, IL-1 beta and IL-18 by MDDCs increased significantly (P < 0.05 for TNF-alpha and IL-1 beta, and P < 0.01 for IL-18) after the addition of M. furfur, while IL-10 and IL-12p70 levels remained unaltered. The CD40L-stimulated IL12p70 production by MDDCs was decreased in the presence of M. furfur (P < 0.05). Finally, immature MDDCs pre-incubated with M. furfur induced a proliferative response in autologous CD14-depleted peripheral blood mononuclear cells, in a dose-dependent manner. CONCLUSION: The data indicate that immature MDDCs can internalize the opportunistic yeast M. furfur. This process was associated with MDDC maturation, production of pro-inflammatory and immunoregulatory cytokines, which might favour induction of a Th2-type immune response, and a capacity to stimulate lymphocyte proliferation. This chain of events most likely contributes to the inflammatory reaction in AD.  相似文献   

3.
We previously demonstrated that tumor necrosis factor (TNF)-alpha-matured CD16- and CD16+ human monocyte-derived dendritic cells (16-mDC and 16+mDC) differentially stimulate naive CD4+ lymphocytes by inducing Th1- and Th2-like responses, respectively. Here, we further characterized the role of different DC maturation factors on Th polarization. Immature 16+mDC and 16-mDC (iDC) obtained by culture of purified monocytes with GM-CSF and IL-4 were maturated with (i) Toll-like receptor (TLR) ligands [lipopolysaccharide (LPS)], (ii) lymphocyte-derived (soluble CD40 ligand, IFN-gamma) and (iii) endogenous inflammatory stimuli [TNF-alpha, prostaglandin (PG)E2]. After activation with these stimuli, DC secrete IL-12 only in presence of LPS, and 16+mDC produced lower amounts of IL-12 and IL-10 than 16-mDC. Allogeneic CD4+CD45RO- lymphocytes co-cultured with 16+mDC secreted higher levels of IL-4 and IL-10 than those co-cultured with 16-mDC, regardless of the maturation stimuli. Results were similar when DC were activated with TLR-2 or TLR-3 ligands. The higher induction of IL-4 by 16+mDC was primarily dependent on IL-12, IL-4 and IL-10. IFN-gamma production by CD4+ T cells was similar with all the conditions except with LPS-16+mDC, which induced reduced amounts of this cytokine. Those differences were totally eliminated by neutralization of IL-12, IL-4 or IL-10. Finally, 16-mDC could reverse the Th2 phenotype of already committed lymphocytes toward a Th1 pattern in short-term cultures, whereas 16+mDC had less ability to skew this phenotype. These results indicate that 16+mDC elicit superior Th2 responses independently of the maturation factors that they received, and suggest that they could represent an important population of regulatory DC.  相似文献   

4.
CLRs on DCs play important roles in immunity and are expressed selectively on certain DC subsets. Murine DCAL2 (myeloid inhibitory C-type lectin/Clec12a) is a type-II CLR with an ITIM. Using a mouse DCAL2-specific mAb, we found that DCAL2 is expressed at relatively high levels on APCs and that DCAL2 expression can be used to divide CD8α- DCs into DCAL2+DCIR2- and DCAL2-DCIR2+ subpopulations. CD8α-DCAL2+ DC, CD8α-DCIR2+ DC, and CD8α+DCAL2+ DC subsets each express different levels of TLRs and respond to unique classes of TLR ligands by producing distinct sets of cytokines. Whereas CD8α-DCAL2+ DCs robustly produce cytokines, including IL-12, in response to CpG, CD8α-DCIR2+ DCs produce only TNF-α and IL-10 in modest amounts when stimulated with zymosan. However, CD8α-DCIR2+DCs, unlike the other DC subsets, strongly up-regulate OX40L when stimulated with bacterial flagellin. As predicted from their cytokine expression, CD8α-DCAL2+ DCs efficiently induced Th1 responses in the presence of CpG in vitro and in vivo, whereas CD8α-DCIR2+ DCs induced Th2 cells in response to flagellin. Thus, CD8α-DCAL2+ DCs comprise a distinct CD8α- DC subset capable of supporting Th1 responses. DCAL2 is a useful marker to identify a Th1-inducing CD8α- DC population.  相似文献   

5.
The suppressor of cytokine signaling (SOCS) 1 is a negative regulator in multiple cytokine-related aspects to maintain immunological homeostasis. Here, we studied a role of SOCS1 on dendritic cell (DC) maturation in the mice lacking either TCRalpha chain or CD28 in SOCS1-deficient background, and found that the SOCS1 could restore acute phase of inflammatory response in SOCS1-deficient mice. The CD11c+ CD8- DC population in freshly isolated splenic DCs from normal mice highly expressed SOCS1. However, in SOCS1-deficient environment, the proportion of CD8alpha+ DCs (CD8 DCs) noticeably increased without affecting the cell number of conventional and plasmacytoid DC populations. This population revealed the CD11cdull CD8alpha+ CD11b- CD45RA- B220- phenotype, which is a minor population in normal mice. Localization of the abnormal CD8 DCs in splenic microenvironments was mainly restricted to deep within red pulp. The CD8 DCs secrete a large amount of IFN-gamma, IL-12 and B lymphocyte stimulator/B cell activation factor of the tumor necrosis factor family in response to LPS and CpG stimulation. This is responsible for the development of DC-mediated systemic autoimmunity in the old age of SOCS1-deficient mice. Moreover, the CD8 DC subsets expressed more indoleamine 2,3-dioxygenase and IL-10, and hence inhibit the allogeneic proliferative T cell response and antigen-induced Th1 responses. Therefore, SOCS1 expression during DC maturation plays a role in surveillance in controlling the aberrant expansion of abnormal DC subset to maintain homeostasis of immune system.  相似文献   

6.
BACKGROUND: Different subsets of dendritic cells (DCs), identified in mouse spleen by their differential expression of CD8 alpha, can induce different T-helper (Th) responses after systemic administration. CD8 alpha(-) DCs have been shown to preferentially induce Th type 2 (Th2) responses whereas CD8 alpha(+) DCs induce Th1 responses. OBJECTIVE: To study if these DC subsets can still induce different Th responses in the Th2-prone milieu of the lung and differentially prime for eosinophilic airway inflammation, typical of asthma. METHODS: Donor mice first received daily Flt3L injections to expand DC numbers. Purified CD8 alpha(+) or CD8 alpha(-) splenic DCs were pulsed with ovalbumin (OVA) or phosphate-buffered saline and injected intratracheally into recipient mice in which carboxyfluorescein diacetate succinimidyl ester-labelled OVA-specific T cell receptor transgenic T cells had been injected intravenously 2 days earlier. T cell proliferation and cytokine production of Ag-specific T cells were evaluated in the mediastinal lymph nodes (MLNs) 4 days later. The capacity of both subsets of DCs, to prime for eosinophilic airway inflammation was determined by challenging the mice with OVA aerosol 10 days later. RESULTS: CD8 alpha(-) DCs migrated to the MLN and induced a vigorous proliferative T cell response accompanied by high-level production of IL-4, IL-5, IL-10 and also IFN-gamma during the primary response and during challenge with aerosol, leading to eosinophilic airway inflammation. In the absence of migration to the MLN, CD8 alpha(+) DCs still induced a proliferative response with identical levels of IFN-gamma but reduced Th2 cytokines compared with CD8 alpha(-) DCs, which led to weak eosinophilic airway inflammation upon OVA aerosol challenge. Unpulsed DCs did not induce proliferation or cytokine production in Ag-specific T cells. CONCLUSION: CD8 alpha(-) DCs are superior compared with CD8 alpha(+) DCs in inducing Th2 responses and eosinophilic airway inflammation in the Th2-prone environment of the lung.  相似文献   

7.
Human blood myeloid DCs can be subdivided into CD1c (BDCA-1)(+) and CD141 (BDCA-3)(+) subsets that display unique gene expression profiles, suggesting specialized functions. CD1c(+) DCs express TLR4 while CD141(+) DCs do not, thus predicting that these two subsets have differential capacities to respond to Escherichia coli. We isolated highly purified CD1c(+) and CD141(+) DCs and compared them to in vitro generated monocyte-derived DCs (MoDCs) following stimulation with whole E. coli. As expected, MoDCs produced high levels of the proinflammatory cytokines TNF, IL-6, and IL-12, were potent inducers of Th1 responses, and processed E. coli-derived Ag. In contrast, CD1c(+) DCs produced only low levels of TNF, IL-6, and IL-12 and instead produced high levels of the anti-inflammatory cytokine IL-10 and regulatory molecules IDO and soluble CD25. Moreover, E. coli-activated CD1c(+) DCs suppressed T-cell proliferation in an IL-10-dependent manner. Contrary to their mouse CD8(+) DC counterparts, human CD141(+) DCs did not phagocytose or process E. coli-derived Ag and failed to secrete cytokines in response to E. coli. These data demonstrate substantial differences in the nature of the response of human blood DC subsets to E. coli.  相似文献   

8.
The hygiene hypothesis has suggested an inhibitory effect of infections on allergic diseases, but the related mechanism remains unclear. We recently reported that DCs played a critical role in Mycobacterium bovis Bacille Calmette-Guérin (BCG)-mediated inhibition of allergy, which depended on IL-12 and IL-10-related mechanisms. Here, we tested the hypothesis that BCG infection could modulate the function of DC subsets, which might in turn inhibit allergic responses through different mechanisms. We sorted CD8α(+) and CD8α(-) DCs from BCG-infected mice and tested their ability to modulate Th2-cell responses to ovalbumin (OVA) using in vitro and in vivo approaches. We found that both DC subsets could inhibit the allergic Th2-cell response in both a DC:T-cell co-culture system and after adoptive transfer. These subsets exhibited different co-stimulatory marker expression and cytokine production patterns and were different in inducing Th1 and Treg cells. Specifically, we found that CD8α(+) DCs produced higher IL-12, inducing higher Th1 cell response, while CD8α(-) DCs expressed higher ICOS-L and produced higher IL-10, inducing CD4(+) CD25(+) FoxP3(+) Treg cells with IL-10 production and membrane-bound TGF-β expression. The finding suggests that one infection may inhibit allergy by both immune deviation and regulation mechanisms through modulation of DC subsets.  相似文献   

9.
Expression of CD1a proteins in human monocyte-derived dendritic cells (DCs) specifies functionally distinct subsets with different inflammatory properties. Histamine is recognized as an inflammatory mediator released by various cell types including DCs. The diverse biological effects of histamine are mediated by G-protein-coupled histamine receptors (HRs), which are able to modulate the functional activities of DC subsets. The goal of the present study was to compare the expression and activity of HRs in the CD1a(-) and CD1a(+) monocyte-derived DC subsets and to test the effects of histamine on the differentiation, activation and functional activities of these subsets. We show that H2R is present at high levels in both DC subsets, whereas H1R and H4R are expressed in a subset-specific manner. Histamine shifts DC differentiation to the development of CD1a(-) DCs and modulates DC activation through its inhibitory effect on CD1a(+) DC differentiation. Histamine-induced reduction of CD1a(+) DCs is associated with increased secretion of IL-6 and IL-10, up-regulation of a typical combination of chemokines, expression C5aR1 by the CD1a(-) DC subset and enhanced migration of both activated DC subsets supported by the production of MMP-9 and MMP-12 enzymes. All these effects were shown to be mediated in a H2R-specific manner as revealed by the specific antagonist of the receptor. As H2R is expressed at high levels in both DC subsets, we propose that it may dominate the regulation of multiple DC functions. In contrast, H1R and H4R with opposing subset-related expression may have a regulatory or fine-tuning role in histamine-induced functional activities.  相似文献   

10.
Sun CM  Deriaud E  Leclerc C  Lo-Man R 《Immunity》2005,22(4):467-477
The susceptibility to infections and the strong Th2 bias observed in neonates are thought to be due to the immaturity of the dendritic cell (DC) compartment. We show that neonatal DCs, like their adult counterparts, elicit Th1 responses. We also demonstrate that during potentially harmful systemic inflammation, after Toll-like receptor (TLR) 9 triggering, neonatal B cells produce high concentrations of IL-10, preventing optimal IL-12 secretion by neonatal DCs and, thus, Th1 priming. Although both CD5+ and CD5- B cell subsets respond to CpG ODN stimulation, we found that only CD5+ B cells produce IL-10. Therefore, these results show the regulatory role of CD5+ B cells on DC activation in vivo for Th1/Th2 polarization and highlight the paradoxical effects of TLR triggering in vivo.  相似文献   

11.
Porphyromonas gingivalis is a fimbriated mucosal pathogen implicated in chronic periodontitis (CP). The fimbriae are required for invasion of the gingival mucosa and for induction of CP in animal models of periodontitis. CP is associated with infection of immature dendritic cells (DCs) by P. gingivalis in situ and with increased numbers of dermal DCs (DDCs) and mature DCs in the lamina propria. The role of fimbriae in gaining entry into human DCs and how this modulates the inflammatory and effector immune responses, however, have not been explored. To address this, we generated monocyte-derived DCs (MDDCs) in vitro which phenotypically and functionally resemble DDCs. We show here that virulent fimbriated P. gingivalis 381, in contrast to its fimbria-deficient mutant, P. gingivalis DPG3, efficiently gains entry to MDDCs in a manner dependent on active cell metabolism and cytoskeletal rearrangement. In addition, uptake of 381, unlike DPG3, induces DCs to undergo maturation, upregulate costimulatory molecules, and secrete inflammation cytokines interleukin-1beta (IL-1beta), IL-6, tumor necrosis factor alpha, IL-10, and IL-12. Moreover, MDDCs pulsed with 381 also stimulated a higher autologous mixed lymphocyte reaction and induced a Th1-type response, with gamma interferon (IFN-gamma) being the main cytokine. Monocytes used as controls demonstrated fimbria-dependent uptake of 381 as well but produced low levels of inflammatory cytokines compared to MDDCs. When MDDCs were pulsed with recombinant fimbrillin of P. gingivalis (10 micro g/ml), maturation of MDDCs was also induced; moreover, matured MDDCs induced proliferation of autologous CD4(+) T cells and release of IFN-gamma. Thus, these results establish the significance of P. gingivalis fimbriae in the uptake of P. gingivalis by MDDCs and in induction of immunostimulatory Th1 responses.  相似文献   

12.
13.
Mast cells (MCs) play an important role in the regulation of protective adaptive immune responses against pathogens. However, it is still unclear whether MCs promote such host defense responses via direct effects on T cells or rather by modifying the functions of antigen-presenting cells. To identify the underlying mechanisms of the immunoregulatory capacity of MCs, we investigated the impact of MCs on dendritic cell (DC) maturation and function. We found that murine peritoneal MCs underwent direct crosstalk with immature DCs that induced DC maturation as evidenced by enhanced expression of costimulatory molecules. Furthermore, the MC/DC interaction resulted in the release of the T-cell modulating cytokines IFN-γ, IL-2, IL-6 and TGF-β into coculture supernatants and increased the IL-12p70, IFN-γ, IL-6 and TGF-β secretion of LPS-matured DCs. Such MC-"primed" DCs subsequently induced efficient CD4+ T-cell proliferation. Surprisingly, we observed that MC-primed DCs stimulated CD4+ T cells to release high levels of IFN-γ and IL-17, demonstrating that MCs promote Th1 and Th17 responses. Confirming our in vitro findings, we found that the enhanced disease progression of MC-deficient mice in Leishmania major infection is correlated with impaired induction of both Th1 and Th17 cells.  相似文献   

14.
Primary murine CD4+ and CD8+ T helper (Th) cells provide help for various immune responses by secreting lymphokines which activate effector cells. The purpose of the present study was to investigate the co-stimulatory signals that, together with T cell receptor (TCR) cross-linking, induce phenotypically distinct primary Th cells to secrete IL-2 and proliferate. We isolated highly purified populations of primary CD4+ or CD8+ T cells and stimulated them in vitro with platebound anti-CD3 mAb. TCR cross-linking by anti-CD3 mAb induced both IL-2 receptor expression and responsiveness to exogenous IL-2, but was not sufficient to induce either IL-2 secretion or T cell proliferation. Rather, for both CD4+ and CD8+ primary Th cells, IL-2 secretion and proliferation required both TCR cross-linking and antigen presenting cell (APC)-derived co-stimulatory signals. Based on G-10 adherence and sensitivity to gamma-irradiation, the APC populations able to induce primary CD4+ Th cells and primary CD8+ Th cells to secrete IL-2 were indistinguishable. In addition, we found that either IL-1 or IL-6 could replace the requirement for APC-derived co-stimulatory signals for IL-2 secretion and proliferation by both primary CD4+ Th cells and primary CD8+ Th cells. Thus, the present study has examined and compared the co-stimulatory requirements of rigorously purified subsets of IL-2-secreting primary CD4+ and primary CD8+ T cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Dendritic cells (DCs) have been proposed to play a pivotal role in the initiation and perpetuation of rheumatoid arthritis (RA) by presentation of arthritogenic antigens to T cells. We investigated the in vivo characteristics of two major DC subsets, myeloid DCs (mDCs) and plasmacytoid DCs (pDCs), in RA synovial tissue (ST) by measuring their frequency, phenotype, distribution, and cytokine expression. ST was obtained by arthroscopy from 20 RA, 8 psoriatic arthritis, and 10 inflammatory osteoarthritis patients. Levels of CD1c(+) mDCs and CD304(+) pDCs present in ST were quantified by digital image analysis, and their distribution was assessed by double immunolabeling with antibodies against CD3 and CD8. The maturation status and cytokine profile of mDCs and pDCs were quantified by double-immunofluorescence microscopy. In RA patients, the number of CD304(+) pDCs exceeded that of CD1c(+) mDCs, with the majority of infiltrating DCs being CD83(-) or DC-LAMP(-). Synovial pDC numbers were especially increased in RA patients who were positive for rheumatoid factor and anti-citrullinated peptide antibody. mDCs and pDCs were localized adjacent to lymphocyte aggregates. In ST from RA patients, both mDCs and pDCs expressed interleukin (IL)-15. IL-18 and interferon (IFN)-alpha/beta were mainly expressed by pDCs whereas IL-12p70 and IL-23p19 expression was predominant in mDCs. These data characterize the phenotypes of mDCs and pDCs in inflammatory synovitis and define for the first time the cytokine expression profile of these DC subsets.  相似文献   

16.
Interleukin (IL)-2 plays an important role in the control of the immune responses, and it is released in a variety of tissues in response to inflammatory stimuli. As monocytes and mature dendritic cells (DCs) express CD25, the high-affinity subunit of IL-2 receptor, we examined the effect of exogenous IL-2 on the in vitro generation and maturation of DCs from monocytes. Human monocyte-derived DCs (MDDCs) were generated by culturing monocytes with granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-4 in the presence or absence of IL-2. The cytokine was added at the beginning and after 5 days of culture. Our findings indicate that IL-2 does induce monocytes to differentiate into DCs with the same morphology and phenotype of that obtained in the presence of GM-CSF and IL-4 alone, but with some distinctive functional properties. DCs differentiated in the presence of IL-2 secreted significantly more IL-1beta, TNF-alpha, and IL-12 p70 in response to lipopolysaccharide stimulation and induced allogeneic, na?ve T cells to release a significantly higher amount of interferon-gamma if compared with DCs obtained by culturing monocytes with GM-CSF and IL-4. These results indicate unrecognized effects of IL-2 on human MDDCs and suggest that an IL-2-rich environment during differentiation and maturation of DCs can modify their T helper cell-inducing properties.  相似文献   

17.
The specific function of human skin-resident dendritic cell (DC) subsets in the regulation of immunity or tolerance is still a matter of debate. Langerhans cells (LC) induce anti-viral immune responses but, conversely to dermal DC, maintain tolerance to bacteria. However, the definite function of epidermal LC and cutaneous DC appears even more complex under inflammatory conditions. Here we investigated the immune responses of human immature monocyte-derived DC (MoDC) and LC-like cells (MoLC) upon stimulation with different Toll-like receptor ligands in the presence or absence of pro-inflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In MoDC, bacterial antigens selectively up-regulated CD83 and CD86 expression and induced the release of T helper type 1 (Th1) and Th17 cytokines and led to a higher CCR7-dependent migratory capacity compared with a low responsiveness of MoLC. Importantly, MoLC activation with lipopolysaccharide under inflammatory conditions strongly enhanced a phenotypically mature state, increased IL-12p70, IL-23 and IL-6 production and Th1 cytokine secretion by CD4+ T cells. Treatment with poly(I:C) specifically up-regulated surface expression of co-stimulatory molecules and increased release of IL-12p70 in MoLC and co-stimulation with TNF-α and IL-1β further elevated Th1 and Th17 cytokine production. Poly(I:C)-induced up-regulation of type I interferon mRNA levels in MoLC and MoDC was Toll-like receptor 3-dependent but not, or only weakly, modulated by pro-inflammatory cytokines. Our results indicate that inflammatory conditions greatly facilitate recognition of bacteria by MoLC. Furthermore, we suggest a critical involvement of both subsets in innate defence against viruses, whereas inflammatory skin environments additionally favour MoLC as potent inducers of Th1 and Th17 cytokines.  相似文献   

18.
Dendritic cells (DCs) generated in the presence of IFN-alpha (IFN-DCs) exhibit high expression of major histocompatibility and co-stimulatory molecules and a potent ability to stimulate CD8(+) T-cell responses. Here, we found that IFN-DCs were more potent stimulators of bulk and purified CD8(+) T-cell proliferation, as compared with IL-4-DCs. In contrast, IFN-DCs were less efficient than IL-4-DCs in stimulating allogeneic CD4(+) T-cell proliferation, due to a weak induction of naive CD4(+)CD45RO(-) T-cell proliferation by these DCs. However, both DC populations induced similar levels of proliferation of memory CD4(+)CD45RO(+) T cells. IFN-DCs and IL-4-DCs exhibited a similar phenotype and production of IL-10 following maturation induced by CD40 ligation. In contrast, IFN-DCs produced higher levels of IL-10 during the first days of differentiation. In addition, neutralization of IL-10 during the differentiation of DCs increased the expression of DC-LAMP and MHC class II by IFN-DCs, and the ability of IFN-DCs to stimulate allogeneic CD4(+) T-cell proliferation at similar levels, than IL-4-DCs. Independently of IL-10 production, IFN-DCs were found to induce higher levels of CD4(+)T-cell apoptosis, this effect being more sticking on naive T cells. Finally, we demonstrated that IFN-DCs induced a differentiation bias of naive CD4(+) T cells towards Th1 and Tr1 cells, compared to IL-4-DCs. Taken together, these results indicate that, despite the induction of Tr1 cells and enhanced apoptosis of naive CD4(+) T cells, IFN-DCs are potent stimulators of CD8(+) and memory CD4(+) T cells, and induce a strong polarization of naive CD4(+) T cells towards Th1 cells, further supporting their use in immune-based therapy.  相似文献   

19.
Lee PK  Chang CJ  Lin CM 《Immunology letters》2003,90(2-3):215-221
Dendritic cells (DCs) represent a promising tool for immunotherapy. A key feature in their action is to provide co-stimulatory signals for full activation of T cells. In view of recent studies demonstrating the critical role of 4-1BB co-stimulation in T cell response, it is of importance to optimize 4-1BB ligand (4-1BBL) expression on human monocyte-derived DCs (MDDCs), the DC source of many clinical studies. In this study, two types of MDDCs, generated in granulocyte-macrophage colony-stimulating factor and interleukin-4 (GM-CSF/IL-4-DCs) or in interferon-β and IL-3 (IFN-β/IL-3-DCs), were analyzed for 4-1BBL expression in response to several known DC activators. Immature MDDCs expressed 4-1BBLs at very low levels. Lipopolysaccharide (LPS) was the only activator that preferentially triggered 4-1BBL expression on either MDDCs, but 4-1BBL-positive cells were significantly more frequently observed on LPS-activated GM-CSF/IL-4-DCs (30.2±2.6% versus 14.3±1.2%). Combinations of multiple activating signals did not bring about enhanced 4-1BBL stimulatory capacity. In addition, plasmid DNA transfection and necrotic cell pulsing of GM-CSF/IL-4-DCs for antigen loading also resulted in 4-1BBL up-regulation. However, in all circumstances, the induced 4-1BBL levels were low in comparison with CD80 co-stimulatory molecule. Finally, by demonstrating LPS-matured GM-CSF/IL-4-DCs from sorted 4-1BBLhigh population augmented T cell expansion and survival, we propose that efforts are required to increase 4-1BBL levels on MDDCs achieved by current activation schemes.  相似文献   

20.
目的观察TLR4(Toll—likereceptor4)在卡介苗来源的热休克蛋白70(heat shock protein 70,HSP70DCG)冲激的小鼠骨髓来源树突状细胞(dendritic cells,DCs)的IL-12分泌的作用。方法用rmGM—CSF和rmIL-4诱导小鼠骨髓来源的DCs,在HSP70BCG冲激前加入抗TLR4抗体,用流式细胞仪检测DCs的CIM0和CD86表达;用ELISA法检测DCs上清液中的IL-12和脾T细胞上清液中的IL-2浓度。结果抗TLR4抗体对CIMO和CD86的表达无明显影响,但明显抑制DCs分泌IL-12并进而抑制DCs致敏的脾细胞分泌IL-2。结论HSP70BCG可通过TLR4途径诱导DCs分泌IL-12。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号