首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta biomaterialia》2014,10(9):3827-3843
Eggshell membrane (ESM) is a unique biomaterial, which is generally considered as waste. However, it has extraordinary properties which can be utilized in various fields and its potential applications are therefore now being widely studied. The first part of this review focuses on the chemical composition and morphology of ESM. The main areas of ESM application are discussed in the second part. These applications include its utilization as a biotemplate for the synthesis of nanoparticles; as a sorbent of heavy metals, organics, dyes, sulfonates and fluorides; as the main component of biosensors; in medicine; and various other applications. For each area of interest, a detailed literature survey is given.  相似文献   

2.
Biosensors for practical in vivo and in vitro applications are dependent on the effective integration of several biological and physical technologies. This review paper was stimulated by an IEE seminar. Some of the more recent advances aimed at taking techniques of fundamental and academic interest to various forms of practical reagentless biochemical analysis are highlighted, with associated clinical and commercial consequences. The paper describes some of the most recent developments in biosensor research, in particular those relating to material aspects of fabrication, including multilayer films for sensor applications, advances in ISFETs, conjugated polymers, new developments in quartz crystal based biosensors, as well as advances in amperometric enzyme electrodes and the application of devices for continuous monitoring.  相似文献   

3.
Nanostructures play important roles in vivo, where nanoscaled features of extracellular matrix (ECM) components influence cell behavior and resultant tissue formation. This review summarizes some of the recent developments in fostering new concepts and approaches to nanofabrication, such as top-down and bottom-up and combinations of the two. As in vitro investigations demonstrate that man-made nanotopography can be used to control cell reactions to a material surface, its potential application in implant design and tissue engineering becomes increasingly evident. Therefore, we present recent progress in directing cell fate in the field of cell mechanics, which has grown rapidly over the last few years, and in various tissue-engineering applications. The main focus is on the initial responses of cells to nanostructured surfaces and subsequent influences on cellular functions. Specific examples are also given to illustrate the potential nanostructures may have for biomedical applications and regenerative medicine.  相似文献   

4.
Conducting polymers have found numerous applications as biomaterial components serving to effectively deliver electrical signals from an external source to the seeded cells. Several cell types including cardiomyocytes, neurons, and osteoblasts respond to electrical signals by improving their functional outcomes. Although a wide variety of conducting polymers are available, polyaniline (PANI) has emerged as a popular choice due to its attractive properties such as ease of synthesis, tunable conductivity, environmental stability, and biocompatibility. PANI in its pure form has exhibited biocompatibility both in vitro and in vivo, and has been combined with a host of biodegradable polymers to form composites having a range of mechanical, electrical, and surface properties. Moreover, recent studies in literature report on the functionalization of polyaniline oligomers with end segments that make it biodegradable and improve its biocompatibility, two properties which make these materials highly desirable for applications in tissue engineering. This review will discuss the features and properties of PANI based composites that make them effective biomaterials, and it provides a comprehensive summary of studies where the use of PANI as a biomaterial component has enhanced cellular function and behavior. We also discuss recent studies utilizing functionalized PANI oligomers, and conclude that electroactive PANI and its derivatives show great promise in eliciting favorable responses from various cell lines that respond to electrical stimuli, and are therefore effective biomaterials for the engineering of electrically responsive biological tissues and organs.  相似文献   

5.
The advancement of elastomeric patterning techniques in recent years has significantly enhanced our ability to spatially control biomaterial surface chemistry at the micrometre level. The application of this technology to the patterning of biomolecules onto solid surfaces has created many potential applications including the development of advanced biosensors, combinatorial library screening and the formation of tissue engineering templates. In this paper, we describe the direct patterning of protein by microcontact printing. An important consideration for the fabrication of protein micropatterns intended for these applications is the nature of the protein immobilization to a substrate. To date, the patterning of proteins by direct microcontact printing (microCP) has relied on the non-covalent adsorption to a substrate. Ideally, the proteins need to be firmly anchored onto a surface without adversely effecting their activity. Here, the high affinity avidin-biotin receptor-ligand interaction has been exploited to form arrays of avidin molecules onto a polymeric substrate expressing biotin moieties. This has created a generic technique by which any biotinylated species can be subsequently immobilized into defined patterns. Utilizing atomic force microscopy (AFM), the patterned surfaces have been characterized to molecular resolution. The micropatterned sample supported cell adhesion when biotin-(G)11-GRGDS was bound to the avidin bearing arrays.  相似文献   

6.
The advancement of elastomeric patterning techniques in recent years has significantly enhanced our ability to spatially control biomaterial surface chemistry at the micrometre level. The application of this technology to the patterning of biomolecules onto solid surfaces has created many potential applications including the development of advanced biosensors, combinatorial library screening and the formation of tissue engineering templates. In this paper, we describe the direct patterning of protein by microcontact printing. An important consideration for the fabrication of protein micropatterns intended for these applications is the nature of the protein immobilization to a substrate. To date, the patterning of proteins by direct microcontact printing (μCP) has relied on the non-covalent adsorption to a substrate. Ideally, the proteins need to be firmly anchored onto a surface without adversely effecting their activity. Here, the high affinity avidin-biotin receptor-ligand interaction has been exploited to form arrays of avidin molecules onto a polymeric substrate expressing biotin moieties. This has created a generic technique by which any biotinylated species can be subsequently immobilized into defined patterns. Utilizing atomic force microscopy (AFM), the patterned surfaces have been characterized to molecular resolution. The micropatterned sample supported cell adhesion when biotin-(G)11-GRGDS was bound to the avidin bearing arrays.  相似文献   

7.
8.
细菌纤维素作为一种新兴的材料,因其具有独特的纳米纤维网格结构以及良好的纯度、机械强度、持水能力等物理、化学特性、生物相容性及适应性,已被广泛地应用于医学、食品、造纸、纺织和声学材料等各个行业,尤其在医学领域近年得到了突飞猛进的发展.就目前细菌纤维素及其性能优化产物在医学领域中的应用作一综述.  相似文献   

9.
炭材料在生物医学领域的应用和进展   总被引:1,自引:0,他引:1  
近年来,炭材料由于它的独特的结构、优异的性能特点在生物医学领域显示了广泛的应用前景,研究表明炭材料作为生物医学材料具有良好的生物和力学相容性,因此炭材料在生物医学领域的应用有它独特的优势。炭材料作为人工生物材料已经被广泛地研究。本文阐述了炭/炭复合材料、石墨、碳纤维、纳米碳管在生物医学领域的应用和发展前景。  相似文献   

10.
Silsesquioxanes (SSQs), with the general formula, (RSiO1.5)n—where R stands for an organic group, such as alkyl, aryl, alkoxy, or H—are a type of molecular‐level organic/inorganic hybrid silica‐based material. These materials contain reactive or nonreactive organic moieties as well as inorganic Si–O–Si frameworks. In the past few years, extensive efforts have been made using SSQs to construct multifunctional nanocomposites with suitable properties for a range of applications. In this review, the recent various applications of SSQ‐containing hybrid materials are discussed, in addition to updates of the nanocomposite applications. Various physical structures and chemical reactions in SSQ‐based hybrid nanomaterials are emphasized with regard to applications in the field of polymer nanocomposites, catalysts, adsorption, sensors, and biomedicine. This review focuses on results reported in the recent five years (2013–2018).  相似文献   

11.
Bioactive glass in tissue engineering   总被引:4,自引:0,他引:4  
This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed.  相似文献   

12.
Potential of nanofiber matrix as tissue-engineering scaffolds   总被引:13,自引:0,他引:13  
Tissue-engineering scaffolds should be analogous to native extracellular matrix (ECM) in terms of both chemical composition and physical structure. Polymeric nanofiber matrix is similar, with its nanoscaled nonwoven fibrous ECM proteins, and thus is a candidate ECM-mimetic material. Techniques such as electrospinning to produce polymeric nanofibers have stimulated researchers to explore the application of nanofiber matrix as a tissue-engineering scaffold. This review covers the preparation and modification of polymeric nanofiber matrix in the development of future tissue-engineering scaffolds. Major emphasis is also given to the development and applications of aligned, core shell-structured, or surface-functionalized polymer nanofibers. The potential application of polymer nanofibers extends far beyond tissue engineering. Owing to their high surface area, functionalized polymer nanofibers will find broad applications as drug delivery carriers, biosensors, and molecular filtration membranes in future.  相似文献   

13.
For many years biosensors have been hailed as the solution to many analytical problems. There is general agreement that biosensors offer the potential for easy-to-use, low-cost, rapid analysis. With such versatile, economic, reliable and cheap analytical devices at their disposal, manufacturers in industries as diverse as pharmaceuticals, food and drink, medical diagnostics and defence must surely be reaping vast profits from their biosensor-based products? In fact, biosensors have made only a very modest impact and this article attempts to present a realistic review of their current commercial potential. Consideration is given to the features and benefits of biosensors, the potential application markets, the impact of legislation, the needs of the user and the real commercial potential in the light of these factors and the existing competition.  相似文献   

14.
《Acta biomaterialia》2014,10(4):1601-1611
Resilin is an elastomeric protein found in insect cuticles and is remarkable for its high strain, low stiffness, and high resilience. Since the first resilin sequence was identified in Drosophilia melanogaster (fruit fly), researchers have utilized molecular cloning techniques to construct resilin-based proteins for a number of different applications. In addition to exhibiting the superior mechanical properties of resilin, resilin-based proteins are autofluorescent, display self-assembly properties, and undergo phase transitions in response to temperature. These properties have potential application in designing biosensors or environmentally responsive materials for use in tissue engineering or drug delivery. Furthermore, the capability of resilin-based biomaterials has been expanded by designing proteins that include both resilin-based sequences and bioactive domains such as cell-adhesion or matrix metalloproteinase sequences. These new materials maintain the superior mechanical and physical properties of resilin and also have the added benefit of controlling cell response. Because the mechanical and biological properties can be tuned through protein engineering, a wide range of properties can be achieved for tissue engineering applications including muscles, vocal folds, cardiovascular tissues, and cartilage.  相似文献   

15.
This study investigates the mechanical and long-term electrical properties of parylene-caulked polydimethylsiloxane (PDMS) as a substrate for implantable electrodes. The parylene-caulked PDMS is a structure where particles of parylene fill the porous surface of PDMS. This material is expected to have low water absorption and desirable mechanical properties such as flexibility and elasticity that are beneficial in many biomedical applications. To evaluate the mechanical property and electrical stability of parylene-caulked PDMS for potential in-vivo uses, tensile tests were conducted firstly, which results showed that the mechanical strength of parylene-caulked PDMS was comparable to that of native PDMS. Next, surface electrodes based on parylene-caulked PDMS were fabricated and their impedance was measured in phosphate-buffered saline (PBS) solution at 36.5 °C over seven months. The electrodes based on parylene-caulked PDMS exhibited the improved stability in impedance over time than native PDMS. Thus, with improved electrical stability in wet environment and preserved mechanical properties of PDMS, the electrodes based on parylene-caulked PDMS are expected to be suitable for long-term in-vivo applications.  相似文献   

16.
Micro/nanomechanical and tribological characterization of SiC has been carried out. For comparison, measurements on SiC, CoCrMo, Ti-6Al-4V, and stainless steel have also been made. Hardness and elastic modulus of these materials were measured by nanoindentation using a nanoindenter. The nanoindentation impressions were imaged using an atomic force microscope (AFM). Scratch, friction, and wear properties were measured using an accelerated microtribometer. Scratch and wear damages were studied using a scanning electron microscope (SEM). It is found that SiC exhibits higher hardness, elastic modulus, scratch resistance as well as lower friction with fewer and smaller debris particles compared to other materials. These results show that SiC possesses superior mechanical and tribological properties that make it an ideal material for use in orthopedic and other biomedical applications.  相似文献   

17.
We have characterized the biocompatibility of nanostructured TiO2 films produced by the deposition of a supersonic beam of TiOx clusters. Physical analysis shows that these films possess, at the nanoscale, a granularity and porosity mimicking those of typical extracellular matrix structures and adsorption properties that could allow surface functionalization with different macromolecules such as DNA, proteins, and peptides. To explore the biocompatibility of this novel nanostructured surface, different cancer and primary cells were analyzed in terms of morphological appearance (by bright field microscopy and immunofluorescence) and growth properties, with the aim to evaluate cluster-assembled TiO2 films as substrates for cell-based and tissue-based applications. Our results strongly suggest that this new biomaterial supports normal growth and adhesion of primary and cancer cells with no need for coating with ECM proteins; we thus propose this new material as an optimal substrate for different applications in cell-based assays, biosensors or microfabricated medical devices.  相似文献   

18.
Evaluation of sodium alginate for bone marrow cell tissue engineering   总被引:11,自引:0,他引:11  
Sodium alginate has applications as a material for the encapsulation and immobilisation of a variety of cell types for immunoisolatory and biochemical processing applications. It forms a biodegradable gel when crosslinked with calcium ions and it has been exploited in cartilage tissue engineering since chondrocytes do not dedifferentiate when immobilised in it. Despite its attractive properties of degradability, ease of processing and cell immobilisation, there is little work demonstrating the efficacy of alginate gel as a substrate for cell proliferation, except when RGD is modified. In this study we investigated the ability of rat bone marrow cells to proliferate and differentiate on alginates of differing composition and purity. The mechanical properties of the gels were investigated. It was found that high purity and high G-type alginate retained 27% of its initial strength after 12 days in culture and that comparable levels of proliferation were observed on this material and tissue culture plastic. Depending on composition, calcium crosslinked alginate can act as a substrate for rat marrow cell proliferation and has potential for use as 3D degradable scaffold.  相似文献   

19.
Mesenchymal stromal cells (MSCs) have long been considered a potential tool for treatment of allergic inflammatory diseases, owing to their immunomodulatory characteristics. In recent decades, the medical utility of MSCs has been evaluated both in vitro and in vivo, providing a foundation for therapeutic applications. However, the existing limitations of MSC therapy indicate the necessity for novel therapies. Notably, small extracellular vesicles (sEV) derived from MSCs have emerged rapidly as candidates instead of their parental cells. The acquisition of abundant and scalable MSC-sEV is an obstacle for clinical applications. The potential application of MSC-sEV in allergic diseases has attracted increasing attention from researchers. By carrying biological microRNAs or active proteins, MSC-sEV can modulate the function of various innate and adaptive immune cells. In this review, we summarise the recent advances in the immunomodulatory properties of MSCs in allergic diseases, the cellular sources of MSC-sEV, and the methods for obtaining high-quality human MSC-sEV. In addition, we discuss the immunoregulatory capacity of MSCs and MSC-sEV for the treatment of asthma, atopic dermatitis, and allergic rhinitis, with a special emphasis on their immunoregulatory effects and the underlying mechanisms of immune cell modulation.  相似文献   

20.
Alpha-1 antitrypsin (AAT) has long been thought of as an important anti-protease in the lung where it is known to decrease the destructive effects of major proteases such as neutrophil elastase. In recent years, the perception of this protein in this simple one dimensional capacity as an anti-protease has evolved and it is now recognised that AAT has significant anti-inflammatory properties affecting a wide range of inflammatory cells, leading to its potential therapeutic use in a number of important diseases. This present review aims to discuss the described anti-inflammatory actions of AAT in modulating key immune cell functions, delineate known signalling pathways and specifically to identify the models of disease in which AAT has been shown to be effective as a therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号