首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary The mitochondrial chromosome of Cochliobolus heterostrophus is a circle approximately 115 kb in circumference, among the largest known from fungi. A physical map of C. heterostrophus mtDNA was constructed using the restriction enzymes BamHI, EcoRI, and PvulI by DNA-DNA hybridizations with cloned or purified mtDNA BamHI fragments. The following sequences were located on the mtDNA map: (1) the large and small mitochondrial ribosomal RNA genes (identified by heterologous hybridization to cloned Neurospora crassa rRNA genes); (2) the sequence homologous to a mitochondrial plasmid present in one field isolate of C. heterostrophus; and (3) a 1.05 kb EcoRI fragment that functions as an autonomously replicating sequence in Saccharomyces cerevisiae. An examination of mtDNA from 23 isolates of C. heterostrophus collected worldwide revealed polymorphisms in restriction enzyme sites. One such polymorphism, coupled with data on a polymorphism in nuclear rDNA, suggests that there are two genetically distinct but geographically overlapping mating populations of C. heterostrophus in the world.  相似文献   

2.
We found that mitochondrial DNA (mtDNA) isolated from Physarum polycephalum fragmented itself in weak ionic solutions. The mtDNA was dissolved in STE (saline Tris-EDTA: 150 mM NaCl, 10 mM Tris-HCl, 1 mM EDTA), TE (10 mM Tris-HCl, 1 mM EDTA) and DW, and then electrophoresed in an agarose gel. The intact 86-kbp mtDNA band was seen in STE, but several novel bands appeared in TE and DW. In TE, two discrete bands appeared at 6.7-kbp (α-band) and 5.0-kbp (β-band), whereas at least 17 discrete bands were observed in distilled water (DW). These fragmentation patterns were not stoichiometric, as seen when using restriction endonucleases, but were clearly different from the degradation of DNA caused by a physical shearing force or a contaminating nuclease. In this paper, we characterize this in vitro fragmentation of mtDNA from P. polycephalum. We located 19 fragments, including the α and β fragments, on a mtDNA restriction map, and demonstrated that these cleavage sites were S1 nuclease-sensitive regions, which are single-stranded DNA regions such as nicks and gaps in the mtDNA. The α and β fragments are derived from the region encoding ribosomal RNAs (rRNAs) and the ATP synthase (atpA) gene, while the other 17 fragments are not derived from any specific region, but the cleavage sites are located throughout the mtDNA molecule. In P. polycephalum, it is well known that the growth rate of macroplasmodia decreases with aging. Equal amounts of mtDNA from juvenile and aged macroplasmodia were electrophoresed and the frequency of the β fragment in each sample was measured. The ratio of the β band to the total signal including background was estimated to be 3.3–4.0% in juvenile macroplasmodia, whereas it increased to 8.3–28.2% in aged macroplasmodia. This result suggests that the in vitro fragmentation of mtDNA is associated with macroplasmodial senescence. The single-stranded breakage of mtDNA of P. polycephalum may accumulate with age. Received: 16 April / 2 September 1999  相似文献   

3.
Summary We report the cloning and physical mapping of the mitochondrial genome of Chlamydomonas eugametos together with a comparison of the overall sequence structure of this DNA with the mitochondrial genome of Chlamydomonas moewusii, its closely related and interfertile relative. The C. eugametos mitochondrial DNA (mtDNA) has a 24 kb circular map and is thus 2 kb larger than the 22 kb circular mitochondrial genome of C. moewusii. Restriction mapping and heterologous fragment hybridization experiments indicate that the C. eugametos and C. moewusii mtDNAs are colinear. Nine cross-hybridizing restriction fragments common to the C. eugametos and C. moewusii mtDNAs, and spanning the entirety of these genomes, show length differences between homologous fragments which vary from 0.1 to 2.3 kb. A 600 bp subfragment of C. moewusii mtDNA, within one of these conserved fragments, showed no hybridization with the C. eugametos mtDNA. Of the 73 restriction sites identified in the C. eugametos and C. moewusii mtDNAs, five are specific to C. moewusii, eight are specific to C. eugametos and 30 are common to both species. Hybridization experiments with gene probes derived from protein-coding and ribosomal RNA-coding regions of wheat and Chlamydomonas reinhardtii mtDNAs support the view that the small and large subunit ribosomal RNA-coding regions of the C. eugametos and C. moewusii mtDNAs are interrupted and interspersed with each other and with protein-coding regions, as are the ribosomal RNA-coding regions of C. reinhardtii mtDNA; however, the specific arrangement of these coding elements in the C. eugametos and C. moewusii mtDNAs appears different from that of C. reinhardtii mtDNA.  相似文献   

4.
Summary Southern hybridization of the total DNA of Agrocybe aegerita with cloned mitochondrial (mt) probes revealed a sequence homology between two distant mitochondrial restriction fragments. From the mtDNA restriction map and the distribution of restriction sites on the cross-hybridizing mitochondrial fragments, two copies of a large inverted repeated sequence (IR) of 3 kbp were located on the mitochondrial genome. These IR sequences divided the 80 kbp mtDNA into two singlecopy regions of 24 kbp (SSC) and 50 kbp (LSC). For the first time in higher fungi, this IR sequence has been shown to be involved in an intramolecular homologous recombinational event. Such a rearrangement led to an inversion of the orientation of the two unique-copy regions, without any change in mtDNA complexity. The location of the recombinational event was compared with previously reported plant and fungal mitochondrial rearrangements and the potential role of the IR sequence was discussed.  相似文献   

5.
6.
Summary A mitochondrial plasmid was isolated from Physarum polycephalum and characterized by restriction mapping. Cloned fragments of the plasmid were assembled and used to construct a restriction map. This plasmid was a linear molecule with telomeric structures at each end. Southern hybridization with the ends of the plasmid as probes revealed that the plasmid included repeating units at both ends, with each unit being approximately 125 bp in length. The most extensive array of repeats consisted of at least 17 repetitions of the 125-bp unit. The sensitivity of these repeats to Bal31 exonuclease confirmed that they were at, or very near to, the ends of the plasmid. From the extent of the repetitions, the size of the plasmid was estimated to vary from 13.3 kbp to more than 18.3 kbp.  相似文献   

7.
Summary Mitochondrial (mt) DNA of the ascomycetous yeast Candida maltosa was isolated and characterized. The mtDNA is circular and the size estimated from restriction analysis performed with 7 endonucleases was 52 kb pairs. A restriction map was constructed, using the cleavage data of four endonucleases. Using mt genes from Saccharomyces cerevisiae, six structural genes (large rRNA, apocytochrome b, cytochrome c oxidase subunit I and subunit 11, ATPase subunit 6 and subunit 9) were located on the C. maltosa chondriome by cross hybridization experiments. The comparison between the mt genomes of C. maltosa and six other yeasts showed differences in the overall genome organization.  相似文献   

8.
Mitochondrial DNA was isolated from a yeast-like microorganism, Endomyces (Dipodascus) magnusii. The mtDNA consisted of circular molecules 40.4 kb long. A restriction map was constructucted using the cleavage data of seven endonuclease. The arrangement of several genes within the mitochondrial genome of E. magnusii was established by specific hybridization with probes prepared from the mtDNA of Saccharomyces cerevisiae.  相似文献   

9.
 In the chestnut-blight fungus, Cryphonectria parasitica, a cytoplasmically transmissible (infectious) form of hypovirulence is associated with mitochondrial DNA (mtDNA) mutations that cause respiratory deficiencies. To facilitate the characterization of such mutations, a restriction map including the probable location of 13 genes was constructed for a relatively well-characterized virulent strain of the fungus, Ep155. The physical map is based on the order of all fragments generated by cleavage of the mtDNA by the PstI restriction endonuclease and includes some of the cleavage sites for HindIII, EcoRI, and XbaI. It was constructed from hybridization patterns of cloned mtDNA fragments with Southern blots of mtDNA digested with the four restriction enzymes. On this map, the probable locations of genes commonly found in the mitochondrial genomes of ascomycetes were determined by low-stringency hybridization of cloned Neurospora crassa mitochondrial gene probes to Southern blots of C. parasitica mtDNA. The data indicate that the mtDNA of strain Ep155 is a circular molecule of approximately 157 kbp and ranks among the largest mitochondrial chromosomes observed so far in fungi. The mtDNAs of 11 different C. parasitica isolates range in size from 135 to 157 kbp and in relatedness from 68 to 100 percent, as estimated from restriction-fragment polymorphisms. In addition to the typical mtDNA, the mitochondria of some isolates of the fungus contain double-stranded DNA plasmids consisting of nucleotide sequences not represented in the mtDNA of Ep155. Received: 19 September 1995/4 January 1996  相似文献   

10.
Summary Mitochondrial (mt) DNA from the commercial mushroom Agaricus brunnescens Peck [= A. bisporus (Lange) Imbach] was purified by cesium chloride/bisbenzimide gradient centrifugation. A physical map of the mtDNA fragments produced by BamHI, EcoRl, and PvuII digestion was generated by filter hybridizations with radiolabelled BamHI mtDNA probes. The A. brunnescens mtDNA was a circular molecule 136 kilo-basepairs (kbp) in length and contained an inverted repeat between 4.6 and 9.2 kbp in size. Orientational isomers of the mitochondrial genome were not detected. The positions of six genes were located on the A. brunnescens mtDNA map by heterologous hybridization. No coding function has yet been ascribed to the inverted repeat. The large rRNA gene was located on the smaller single copy region. The genes for cytochrome b, cytochrome oxidase (subunit III), ATPase (subunits 8 and 6) and the small rRNA were located on different regions of the larger single copy region.  相似文献   

11.
Summary The mtDNA of a wild-type strain of Agrocybe aegerita was purified from mitochondria isolated by cellular fractionation. A representative library was constructed in E. coli by molecular cloning at the HindIII restriction site of pBR322. Southern hybridizations between total DNA of the fungal strain and cloned mitochondrial insert probes were used to establish the restriction map of the mtDNA molecule. Its size was assessed at about 80 500 bp. Four structural genes (for Cox 1, Cox 2, Atp 6, and Atp 8) were located on the map by heterologous hybridizations with oligonucleote probes specific for yeast mitochondrial genes. The location of the genes coding for the large and the small RNAs of the mitochondrial ribosome was determined by hybridization with the E. coli rrnB operon. A comparison of A. aegerita mtDNA organization with that of both phylogenetically close and distant fungi is discussed.  相似文献   

12.
Summary A detailed restriction map of squash chloroplast DNA (cpDNA) was constructed with five restriction endonuclease, SalI, PvuII, BglI, SacII, and PstI. The cleavage sites were mapped by sequential digestion of cpDNA using low-gelling temperature agarose. The restriction map shows that squash cpDNA is an approximately 153 kilobase (kb) circle with a large inverted repeat sequence of 23.3 kb, separated by a large (83.7 kb) and a small (22.7 kb) single copy region. Genes for a number of chloroplast polypeptides were localized on the map by hybridizing the cpDNA restriction fragments to heterologous gene-specific probes from tobacco, pea, tomato, maize, and spinach chloroplasts. The gene locations and organization of squash cpDNA are highly conserved and similar to chloroplast genomes of tomato, pepper, and Ginkgo.Abbreviations cpDNA chloroplast DNA - kb kilobases - IR inverted repeat. Gene names follow the nomenclature recommendation of Hallick and Bottomley (1983)  相似文献   

13.
Summary Large and small rRNAs have been isolated from mitochondria of the yeast Torulopsis glabrata and have been shown to have lengths of 2,700 bases and 1,400 bases respectively. Construction of a restriction endonuclease site map of mitochondria) DNA has enabled us to position these rRNAs by hybridization of labelled RNA to DNA fragments transferred to nitrocellulose. The large and small mt rRNA genes are separated by a minimum of 1,820 by and a maximum of 2,765 by on the 18,870 by mitochondria1 genome. tRNA genes map within this separating sequence but they are also located distal to both rRNA genes. The implication of these results to the structural relationships of mitochondrial DNAs from yeasts is discussed.  相似文献   

14.
Summary We cloned all of Adiantum capillus-veneris chloroplast DNA PstI fragments longer than 1.0 kb, which cover 98% of the genome. These cloned fragments were used to construct a physical map for five restriction enzymes. The genome of A. capillus-veneris is approximately 153 kb long and contains a 24 kb inverted repeat. Mapping of 12 chloroplast DNA genes and heterologous hybridization, involving A. capillus-veneris chloroplast DNA and angiosperm chloroplast DNA probes, demonstrated that chloroplast DNA of A. capillus-veneris has a different gene order from typical angiosperm cpDNA (e.g., tobacco) in the inverted repeat region and the flanking segment of the large single copy region.  相似文献   

15.
Mitochondria were isolated from the dimorphic zygomycete Mucor racemosus by differential centrifugation. DNA from the organelles was purified by cesium chloride-ethidium bromide isopycnic centrifugation. Examination of the mitochondrial DNA by electron microscopy revealed a circular chromosome approximately 63.8 kbp in circumference. The chromosome was digested with restriction endonucleases and the resulting DNA fragments were separated by agarose-gel electrophoresis. Electrophoretic mobilities and stoichiometry of the fragments indicated a mixed population of mtDNA molecules each with a size of about 63.4 kbp. Physical maps were constructed from analyses of fragments generated in single and double restriction digests and from the hybridization of fragments to probes for the large and small mitochondrial rRNA genes from Saccharomyces cerevisiae. The Mucor mitochondrial chromosome was found to exist in the form of two flip-flop isomers with inverted repeat sequences encoding both rRNA genes.  相似文献   

16.
Summary A physical map of the mitochondrial DNA isolated from B. oleracea (cauliflower) inflorescences was constructed with the restriction endonucleases Sall, Kpnl and Bgll. Physical mapping was made using the multi enzyme method with either unlabeled or labeled DNA fragments isolated by preparative electrophoresis and a clone bank prepared by inserting incomplete Sall restriction digests of mitochondrial DNA into a cosmid vector.The different mapping studies led to a circular map, about 217 kb in size, containing the entire sequence complexity of the genome. The 26S and 18S – 5S ribosomal RNA genes appeared to be separated by about 75 kb in this map. However, the particular cross-hybridization between several restriction fragments and the sequential diversity of some cosmids indicated that intra molecular recombination may occur naturally in higher plant mitochondria. Namely, one recombinational event resulted in the ribosomal RNA genes mapping closer together.Abbreviations mtDNA mitochondrial DNA - kb kilobasepairs - rRNA ribosomal RNA - LGT agarose low gelling temperature agarose  相似文献   

17.
Pulsed-field gel electrophoresis (PFGE) of isolates of Pythium oligandrum with linear mitochondrial genomes revealed a distinct band in ethidium bromide-stained gels similar in size to values estimated by restriction mapping of mitochondrial DNA (mtDNA). Southern analysis confirmed that these bands were mtDNA and indicated that linear genomes were present in unit-length size as well as multimers. Isolates of this species with circular mtDNA restriction maps also had low levels of linear mono- and multimers. visualized by Southern analysis of PFGE gels. Examination of 17 additional species revealed similar results; three species had distinct linear mtDNA bands in ethidium bromide-stained gels while the remainder had linear mono- and multi-mers in lower amounts detected only by Southern analysis. Sequence analysis of an isolate of P. oligandrum with a primarily circular mitochondrial genomic map and a low amount of linear molecules revealed that the small unique region of the circular map (which corresponded to the terminal region of linear genomes) was flanked by palindromic intrastrand complementary sequences separated by a unique 194-bp sequence. Sequences with similarity to ATPase9 coding regions from other organisms were located adjacent to this region. Sequences with similarity to mitochondrial origins of replication and autonomously replicating sequences were also located in this region: their potential involvement in the generation of linear molecules is discussed.  相似文献   

18.
Summary To provide for thorough sampling of the Neurospora crassa mitochondrial genome for evolutionary studies, recombinant plasmids containing each of the EcoRI digestion fragments of the genome were assembled and used to map the locations of 89 additional restriction endonuclease cleavage sites, representing 10 newly mapped enzymes and 2 previously unmapped HincII sites. Data used to locate new restriction sites were obtained from digestions of whole mitochondrial DNA, digestions of the cloned EcoRI mitochondrial DNA fragments and hybridizations between new restriction fragments and the cloned fragments. Length measurements of the total genome and of EcoRI fragment 1 are larger than commonly reported.  相似文献   

19.
This paper describes the analysis of chloroplast (cp) DNA and mitochondrial (mt) DNA in 21 somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia by means of Southern-blot hybridization. Each of these calli contained only one type of cpDNA; 14 had the N. plumbaginifolia (Np) type and seven the S. tuberosum (St) type. N. plumbaginifolia cpDNA was present in hybrids previously shown to contain predominantly N. plumbaginifolia chromosomes whereas hybrids in which S. tuberosum chromosomes predominated possessed cpDNA from potato. We have analyzed the mtDNA of these 21 somatic hybrid calli using four restriction enzyme/probe combinations. Most fusion products had only, or mostly, mtDNA fragments from the parent that predominated in the nucleus. The hybrids containing mtDNA fragments from only one parent (and new fragments) also possessed chloroplasts from the same species. The results suggest the existence of a strong nucleo-cytoplasmic incongruity which affects the genome composition of somatic hybrids between distantly related species.  相似文献   

20.
Summary A fragment of DNA which functions as an autonomous replication sequence in yeast was cloned from Cephalosporium acremonium. Mitochondrial DNA (mtDNA) was isolated from an industrial strain of C. acremonium (08G-250-21) highly developed for the production of the antibiotic, cephalosporin C. Size, 27 kb, and restriction pattern indicated this DNA was identical to mtDNA previously isolated (Minuth et al. 1982) from an ancestral strain (ATTC 14553) which produces very low amounts of cephalosporin C. A 1.9 kb Pst1 fragment of the Cephalosporium mtDNA was inserted into a Pst1 site of the yeast integrative plasmid, Ylp5, to produce a 7.5 kb plasmid, designated pPS1. The structure of pPS1 was verified by restriction analysis and hybridization.PS1 transformed Saccharomyces cerevisiae (DBY-746) to uracil prototrophy at a frequency of 272 transformants/g DNA. Transformation frequencies of 715 transformants/g DNA and zero were obtained for the replicative plasmid, YRp7, and the integrative plasmid YIp5, respectively. Southern hybridization and transformation of E. coli by DNA from yeast transformed by pPS1 verified that pPS1 replicates autonomously in yeast.The uracil-independent pPS1-yeast transformants were mitotically unstable. The average retention of pPS1 after three days growth in selective and non-selective medium was 4.5% and 0.4%, respectively, compared to retentions of 4.6% and 0.5% for YRp7. The properties of pPS1 were compared to those of a related plasmid, pCP2. pCP2 was constructed (Tudzynski et al. 1982) by inserting the C. acremonium 1.9 kb Pst1 fragment into the yeast integrative plasmid, pDAM1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号