首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hypoxic preconditioning is thought to rely on gene products regulated by hypoxia-inducible factor (HIF)-1. Here, we show that the HIF-1 target gene cyclin-dependent kinase inhibitor 1, p21WAF1/CIP1, is essential for neuroprotection by hypoxic/aglycemic or erythropoietin preconditioning using wild-type and p21WAF1/CIP1-deficient neurons. Furthermore, overexpression of wild-type p21WAF1/CIP1 or phospho-mutants significantly increased cell death after hypoxia/aglycemia. Moreover, deferoxamine-induced endogenous tolerance did not involve p21WAF1/CIP1 expression in cortical neurons. Our data suggest that balanced expression and potentially posttranslational regulation of p21WAF1/CIP1 is required for hypoxic preconditioning.  相似文献   

3.
A growing body of evidence suggests that neurons undergo apoptotic cell death following traumatic brain injury (TBI). Since the expression of several tumor suppressor and cell cycle genes have been implicated in neuronal apoptosis, the present study used in situ hybridization (ISH) histochemistry to evaluate the regional and temporal patterns of expression of the mRNAs for the tumor suppressor gene, p53, and the cell cycle gene, cyclin D1, following lateral fluid-percussion (FP) brain injury in the rat. Anesthetized adult male Sprague-Dawley rats (n=16) were subjected to lateral FP brain injury of moderate severity (2.4-2.7 atm), while sham controls (n=6) were surgically prepared but did not receive brain injury. Animals were killed by decapitation at 6 h (n=6 injured and 2 sham), 24 h (n=6 injured and 2 sham), or 3 days (n=4 injured and 2 sham), and their brains processed for ISH. Little to no expression of p53 mRNA was observed in sham brains. At 6 h post-injury, p53 mRNA was induced predominantly in cells that are vulnerable to TBI, such as those in the contused cortex, lateral and medial geniculate nuclei of the thalamus, and the CA(3) and hilar neurons of the hippocampus. Increased p53 mRNA was also detected in hippocampal CA(1) neurons, cells that are relatively resistant to FP brain injury. Levels of p53 mRNA returned to sham levels in all regions of the injured brain by 24 h. In contrast to p53, cyclin D1 mRNA was detectable in the brains of uninjured animals and was not altered by brain injury. These results suggest that the tumor suppressor gene p53, but not cyclin D1, is upregulated and may participate in molecular response to TBI.  相似文献   

4.
5.
6.
Interleukin-1 beta (IL-1β) is a major mediator of inflammation and a growth promoter for many cell types that could play an important role in the consequences of traumatic spinal cord injury (SCI). In the present study, the expression of IL-1β and its mRNA was determined in the rat spinal cord following a standardized contusion injury. IL-1β mRNA, measured with quantitative RT-PCR, was significantly increased in the lesion site by 1 h after SCI (35.2±5.9 vs. 9.1±2.1 pg/mg RNA, n=3, P<0.05) and remained significantly higher than in the normal spinal cord for at least 72 h post-injury (p.i.). IL-1β mRNA levels in tissue immediately caudal to the lesion site did not change after the injury. IL-1β protein levels, measured by an ELISA, were determined at the lesion site and in cerebrospinal fluid (CSF) and serum samples. IL-1β levels in the CSF and serum were much lower than in the spinal cord. At the lesion site, IL-1β was increased significantly by 1 h p.i., peaked at 8 h (32.3±0.1 vs. 7.6±1.9, ng/g tissue, n=5, P<0.05) and remained significantly higher than normal through at least 7 days p.i. These results suggest that the increased IL-1β mRNA and protein levels are an early and local response at the lesion site that could trigger other, later, responses to traumatic SCI.  相似文献   

7.
8.
Yi JH  Hazell AS 《Brain research》2005,1033(1):13-19
Traumatic brain injury (TBI) results in a cascade of events that includes the production of reactive oxygen species. Heme oxygenase-1 (HO-1) is induced in glial cells following head trauma, suggestive of oxidative stress. We have studied the temporal and spatial effects of the antioxidant N-acetylcysteine (NAC) on HO-1 levels following lateral fluid-percussion injury by immunoblotting and immunohistochemistry. In the injured cerebral cortex, maximal HO-1 induction was seen 6 h post-TBI and was maintained for up to 24 h following the insult, while the ipsilateral hippocampus and thalamus showed marked induction at 24 h postinjury. In all three brain regions, little or no HO-1 immunoreactivity was observed on the contralateral side. Astrocytes exhibited positive immunoreactivity for HO-1 in the injured cerebral cortex, hippocampus, and thalamus, while some neurons and microglia were also immunoreactive in the injured cortex. The administration of NAC 5 min following TBI resulted in a marked reduction in this widespread induction of HO-1, concomitant with a decrease in the volume of injury in all three brain regions. Together, these findings indicate that HO-1 induction is related to both oxidative and injury characteristics of the affected tissue, suggesting that protein expression of this gene is a credible marker of oxidative damage in this model of TBI.  相似文献   

9.
Pathological processes affecting presynaptic terminals may contribute to morbidity following traumatic brain injury (TBI). Posttraumatic widespread neuronal depolarization and elevated extracellular potassium and glutamate are predicted to alter the transduction of action potentials in terminals into reliable synaptic transmission and postsynaptic excitation. Evoked responses to orthodromic single- and paired-pulse stimulation were examined in the CA1 dendritic region of hippocampal slices removed from adult rats following fluid percussion TBI. The mean duration of the extracellularly recorded presynaptic volley (PV) increased from 1.08 msec in controls to 1.54 msec in slices prepared at 1 hr postinjury. There was a time-dependent recovery of this injury effect, and PV durations at 2 and 7 days postinjury were not different from controls. In slices removed at 1 hr postinjury, the initial slopes of field excitatory postsynaptic potentials (fEPSPs) were reduced to 36% of control values, and input/output plots revealed posttraumatic deficits in the transfer of excitation from pre- to postsynaptic elements. Manipulating potassium currents with 1.0 mM tetraethylammonium or elevating potassium ion concentration to 7.5 mM altered evoked responses but did not replicate the injury effects to PV duration. Paired-pulse facilitation of fEPSP slopes was significantly elevated at all postinjury survivals: 1 hr, 2 days, and 7 days. These results suggest two pathological processes with differing time courses: 1) a transient impairment of presynaptic terminal functioning affecting PV durations and the transduction of afferent activity in the terminals to reliable synaptic excitation and 2) a more protracted deficit to the plasticity mechanisms underlying paired-pulse facilitation.  相似文献   

10.
Treatment of cultured ventricular zone (VZ) progenitor cells with bone morphogenetic protein-4 (BMP4) promoted cell death in a dose-dependent manner. VZ progenitor cells became progressively more resistant to the proapoptotic effects of BMP4 between E10 and E16, and, by E18 and thereafter, BMP4 treatment no longer led to progenitor cell death. BMP4 treatment of E13 progenitor cells promoted expression of msx2 and p21(CIP1/WAF1) (p21) and inhibition of expression of either gene prevented BMP4-mediated apoptosis. Treatment of E18 cells with BMP4 failed to induce apoptosis but still induced expression of low levels of msx2 and p21. Knockout of bax significantly reduced but did not prevent BMP4-mediated death of E13 murine progenitor cells. These observations indicate that msx2 and p21 mediate the proapoptotic effects of BMP4 on VZ progenitor cells and that each gene is necessary but insufficient to promote apoptosis.  相似文献   

11.
Activation of the tumor suppressor gene, p53, has been strongly implicated in selective neuronal cell death. This study investigated p53 expression in the immature and adult rat brain following status epilepticus induced by the administration of lithium-pilocarpine (LPSE). Both p53 mRNA and protein were examined in relation to neuronal degeneration using in situ hybridization and immunohistochemistry, respectively. Injured cells with eosinophilic cytoplasm with increased p53 mRNA were observed in hippocampal subfields, piriform cortex, amygdala and thalamus. p53 mRNA levels reached a peak by 8 h and returned to baseline by 24 h after the onset of LPSE. The magnitude of p53 mRNA induction was greatest in 21-day-old rats. In contrast to the cellular expression pattern of p53 mRNA, immunohistochemistry demonstrated that p53 protein was increased in all of the eosinophilic cells. Further, double-labeling studies revealed that p53 protein was elevated in neurons that were degenerating. This was supported by colocalization of activated caspase 3 in some cells with damaged DNA. These results provide additional evidence for a critical role for the p53 pathway in excitotoxic neuronal cell death due to status epilepticus.  相似文献   

12.
Recent evidence suggests that excessive activation of muscarinic cholinergic receptors (mAChRs) contributes significantly to the pathophysiological consequences of traumatic brain injury (TBI). To examine possible alterations in mAChRs after TBI, the affinity (Kd) and maximum number of binding sites (Bmax) of mAChRs in hippocampus, neocortex, brain stem and cerebellum were determined by [3H]QNB binding. Three groups of rats were examined: 1 h post-TBI (n = 21), 24 h post-TBI (n = 21) and sham-injured rats (n = 21). Kd values were significantly higher in hippocampus and brain stem at 1 but not 24 h post-TBI compared with sham-injured controls (P < 0.05). Kd values did not significantly differ in neocortex and cerebellum at 1 or 24 h post-TBI compared with sham-injured controls. Bmax values did not significantly differ in any brain areas at 1 or 24 h post-TBI compared with sham-injured controls These results show that TBI significantly decreases the affinity of mAChRs in hippocampus and brain stem at an early stage post-TBI, which may contribute to desensitization of mAChRs after TBI. The findings of no change in Bmax values are consistent with a transient elevation in ACh concentrations after TBI.  相似文献   

13.
The heme released following subarachnoid hemorrhage is metabolized by heme-oxygenase (HO) to biliverdin and carbon monoxide (CO) with the release of iron. The HO reaction is important since heme may contribute to vasospasm and increase oxidative stress in cells. HO is comprised of at least two isozymes, HO-2 and HO-1. HO-1, also known as heat shock protein HSP32, is inducible by many factors including heme and heat shock. HO-2 does not respond to these stresses. To begin to examine HO activity following subarachnoid hemorrhage (SAH), the expression of HO-1 and HO-2 was investigated after experimental SAH in adult rats. Immunocytochemistry for HO-1, HO-2 and HSP70 proteins was performed at 1, 2, 3 and 4 days after injections of lysed blood, whole blood, oxyhemoglobin and saline into the cisterna magna. A large increase in HO-1 immunoreactivity was seen in cells throughout brain following injections of lysed blood, whole blood, and oxyhemoglobin but not saline. Lysed blood, whole blood and oxyhemoglobin induced HO-1 in all of the cortex, hippocampus, striatum, thalamus, forebrain white matter and in cerebellar cortex. HO-1 immunoreactivity was greatest in those regions adjacent to the basal subarachnoid cisterns where blood and oxyhemoglobin concentrations were likely highest. Double immunofluorescence studies showed the HO-1 positive cells to be predominately microglia, though HO-1 was induced in some astrocytes. HO-1 expression resolved by 48 h. HO-2 immunoreactivity was abundant but did not change following injections of blood. A generalized induction of HSP70 heat shock protein was not observed following injections of lysed blood, whole blood, oxyhemoglobin, or saline. These results suggest that HO-1 is induced in microglia throughout rat brain as a general, parenchymal response to the presence of oxyhemoglobin in the subarachnoid space and not as a stress response. This microglial HO-1 response could be protective against the lipid peroxidation and vasospasm induced by hemoglobin, by increasing heme clearance and iron sequestration, and enhancing the production of the antioxidant bilirubin.  相似文献   

14.
Although gait disturbance is frequently documented among patients with traumatic brain injury (TBI), gait data from animal models of TBI are lacking. To determine the effect of TBI on gait function in adult mice, we assessed gait changes following unilateral controlled cortical impact (CCI) using a computer-assisted automated gait analysis system. Three days after CCI, intensity, area or width of paw contact were significantly decreased in forepaw(s) while the relative paw placement between the fore and hindpaws altered, suggesting that TBI affected sensorimotor status and reduced interlimb coordination. Similar to TBI patients, CCI decreased gait velocity and stride length, and prolonged stance and swing phase in mice. Following CCI, step pattern was also changed with increasing use in the ipsilateral-diagonal limb sequence. Our results indicate that gait analysis provides great insight into both spatial and temporal aspects of limb function changes during overground locomotion in quadruped species with head injury that are valuable for the purpose of treatment and rehabilitation. Our study also provides additional functional validation for the established mouse CCI model that is relevant to human head injury.  相似文献   

15.
Purpose of this study was to investigate the effects of low molecular weight heparin, enoxaparin, on different parameters of the hippocampal damage following traumatic brain injury (TBI) in the rat. TBI of moderate severity was performed over the left parietal cortex using the lateral fluid percussion brain injury model. Animals were s.c. injected with either enoxaparin (1 mg/kg) or vehicle 1, 7, 13, 19, 25, 31, 37, and 43 h after the TBI induction. Sham-operated, vehicle-treated animals were used as the control group. Rats were sacrificed 48 h after the induction of TBI. Hippocampi were processed for spectrophotometric measurements of the products of oxidative lipid damage, thiobarbituric acid-reactive substances (TBARS) levels, as well as the activities of antioxidant enzymes, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). Moreover, the Western blotting analyses of the oxidized protein levels, expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), pro- and mature-interleukin-1β (pro-, and mature-IL-1β), and active caspase-3 were performed. COX-2 expressions were also explored by using immunohistochemistry. Glial fibrillary acidic protein immunochistochemistry was performed with the aim to assess the level of astrocytic activity. Fluoro-Jade B staining was used to identify the level and extent of hippocampal neuronal injury. TBI caused statistically significant increases of the hippocampal TBARS and oxidized protein levels as well as COX-2, pro-IL-1β, and active caspase-3 overexpressions, but it did not significantly affect the SOD and GSH-Px activities, the iNOS, and mature-IL-1β expression levels. TBI also induced hippocampal reactive astrocytosis and neurodegeneration. Enoxaparin significantly decreased the hippocampal TBARS and oxidized protein levels, COX-2 overexpression and reactive gliosis, but it did not influence the SOD and GSH-Px activities, pro-IL-1β and active caspase-3 overexpressions as well as neurodegeneration following TBI. These findings demonstrate that enoxaparin may reduce oxidative damage, inflammation and astrocytosis following TBI in the rat and could be a candidate drug for neuroprotective treatment of this injury.  相似文献   

16.
17.
Following traumatic brain injury (TBI), activation of microglia and peripherally derived inflammatory macrophages occurs in association with tissue damage. This neuroinflammatory response may have beneficial or detrimental effects on neuronal survival, depending on the functional polarization of these cells along a continuum from M1-like to M2-like activation states. The mechanisms that regulate M1-like and M2-like activation after TBI are not well understood, but appear in part to reflect the redox state of the lesion microenvironment. NADPH oxidase (NOX2) is a critical enzyme system that generates reactive oxygen species in microglia/macrophages. After TBI, NOX2 is strongly up-regulated in M1-like, but not in M2-like polarized cells. Therefore, we hypothesized that NOX2 drives M1-like neuroinflammation and contributes to neurodegeneration and loss of neurological function after TBI. In the present studies we inhibited NOX2 activity using NOX2-knockout mice or the selective peptide inhibitor gp91ds-tat. We show that NOX2 is highly up-regulated in infiltrating macrophages after injury, and that NOX2 deficiency reduces markers of M1-like activation, limits tissue loss and neurodegeneration, and improves motor recovery after moderate-level control cortical injury (CCI). NOX2 deficiency also promotes M2-like activation after CCI, through increased IL-4Rα signaling in infiltrating macrophages, suggesting that NOX2 acts as a critical switch between M1- and M2-like activation states after TBI. Administration of gp91ds-tat to wild-type CCI mice starting at 24 h post-injury reduces deficits in cognitive function and increased M2-like activation in the hippocampus. Collectively, our data indicate that increased NOX2 activity after TBI drives M1-like activation that contributes to inflammatory-mediated neurodegeneration, and that inhibiting this pathway provides neuroprotection, in part by altering M1-/M2-like balance towards the M2-like neuroinflammatory response.  相似文献   

18.
NF-kappaB is one of the most important modulators of stress and inflammatory gene expression in the nervous system. In the adult brain, NF-kappaB upregulation has been demonstrated in neurons and glial cells in response to experimental injury and neuropathological disorders, where it has been related to both neurodegenerative and neuroprotective activities. Accordingly, the aim of this study was to evaluate the cellular and temporal patterns of NF-kappaB activation and the expression of its endogenous inhibitor IkappaBalpha following traumatic brain injury (TBI) during the early postnatal weeks, when the brain presents elevated levels of plasticity and neuroprotection. Our results showed that cortical trauma to the 9-day-old rat brain induced a very fast upregulation of NF-kappaB, which was maximal within the first 24 hours after injury. NF-kappaB was mainly observed in neuronal cells of the degenerating cortex as well as in astrocytes located in the corpus callosum adjacent to the injury, where a pulse-like pattern of microglial NF-kappaB activation was also found. In addition, astrocytes of the corpus callosum, and microglial cells to a lower extent, also showed de novo expression of IkappaBalpha within the time of NF-kappaB activation. This study suggests an important role of NF-kappaB activation in the early mechanisms of neuronal death or survival, as well as in the development of the glial and inflammatory responses following traumatic injury to the immature rat brain.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF) expression in rat hippocampus is increased after experimental traumatic brain injury (TBI) and may be neuroprotective. Glucocorticoids are important regulators of brain neurotrophin levels and are often prescribed following TBI. The effect of adrenalectomy (ADX) on the expression of BDNF mRNA in the hippocampus after TBI has not been investigated to date. We used fluid percussion injury (FPI) and in situ hybridization to evaluate the expression of BDNF mRNA in the hippocampus 4 h after TBI in adrenal-intact or adrenalectomized rats (with or without corticosterone replacement). FPI and ADX independently increased expression of BDNF mRNA. In animals undergoing FPI, prior ADX caused further elevation of BDNF mRNA and this upregulation was prevented by corticosterone replacement in ADX rats. These findings suggest that glucocorticoids are involved in the modulation of the BDNF mRNA response to TBI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号