首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminal membrane of principal cells of rat cortical collecting duct (CCD) is dominated by a K+ conductance. Two different K+ channels are described for this membrane. K+ secretion probably occurs via a small-conductance Ca2+-independent channel. The function of the second, large-conductance Ca2+-dependent channel is unclear. This study examines properties of this channel to allow a comparison of this K+ channel with the macroscopic K+ conductance of the CCD and with similar K+ channels from other preparations. The channel is poorly active on the cell. It has a conductance of 263±11 pS (n=36, symmetrical K+ concentrations) and of 139±3 pS (n=91) with 145 mmol/l K+ on one side and 3.6 mmol/l K+ on the other side of the membrane. Its open probability is high after excision (0.71±0.03, n=85). The channel flickers rapidly between open and closed states. Its permeability in the cell-free configuration was 7.0±0.2×10–13 cm3/s (n=85). It is inhibited by several typical blockers of K+ channels such as Ba2+, tetraethylammonium, quinine, and quinidine and high concentrations of Mg2+. The Ca2+ antagonists verapamil and diltiazem also inhibit this K+ channel. As is typical for the maxi K+ channel, it is inhibited by charybdotoxin but not by apamin. The selectivity of this large-conductance K+ channel demonstrates significant differences between the permeability sequence (P K > P Rb > P NH4 > P Cs=P Li=P Na=P choline=0) and the conductance sequence (g K > g NH4 > g Rb > g Li=g choline > g Cs=g Na=0). The only other cations that are significantly conducted by this channel besides K+ (g K at V c = is 279±8 pS, n=88) are NH 4 + (g NH4=127±22 pS, n=10) and Rb+ (g Rb=36±5 pS, n=6). The K+ currents through this channel are reduced by high concentrations of choline+, Cs+, Rb+, and NH 4 + . These properties and the dependence of this channel on Ca2+ and voltage classify it as a maxi K+ channel. A possible physiological function of this channel is discussed in the accompanying paper.Supported by DFG Gr 480/10, by Schl 277/2-3 and by GIF 88/II  相似文献   

2.
The basolateral membrane of rabbit straight proximal tubules, which were cannulated and perfused on one side, was investigated with the patch clamp technique. Properties of inward and outward directed single K+ channel currents were studied in cell-attached and insideout oriented cell-excised membrane patches. In cell-attached patches with NaCl Ringer solution both in pipette and bath, outward K+ currents could be detected after depolarization of the membrane patch by about 20–30 mV. The current-voltage (i/V) relationship could be fitted by the Goldman-Hodgkin-Katz (GHK) current equation, with the assumption that these channels were mainly permeable for K+ ions. A permeability coefficientP K of (0.17±0.04) · 10–12 cm3/s was obtained, the single channel slope conductance at infinite positive potentialg(V ) was 50±12 pS and the single channel conductance at the membrane resting potentialg(V bl) was 12±3 pS (n=4). In cell-excised patches, with NaCl in the pipette and KCl in the bath, the data could also be fitted to the GHK equation and yieldedP K = (0.1 ±0.01) ·10–12 cm3/s,g(V ) = 40 ± 4 pS andg(V bl) = 7 ± 1 pS (n=8). In cell-attached patches with KCl in the pipette and NaCl in the bath, inward K+ channels occurred at clamp potentials 60 mV, whereas outward K+ channel current was detected at more positive voltages. The current-voltage curves showed slight inward rectification. The single channel conductance, obtained from the linear part of the i/V curve by linear regression, was 46±3 pS and the reversal potential was 59±6 mV (n=9). In cell-excised patches with KCl in the pipette and NaCl in the bath, inward directed K+ channel currents could again be described by the GHK equation. The single channel parameters were similar to those recorded for outward K+ currents (see above). In inside-out oriented cell-excised patches with NaCl in the pipette and KCl in the bath, reducing bath (i.e. cytosolic) Ca2+ concentration from 10–6 mol/l to less than 10–9 mol/l did not affect the open state probability of single channel currents. These results demonstrate that the observed channels are permeable for K+ ions in both directions and that these basolateral K+ channels in rabbit proximal straight tubule are not directly dependent on Ca2+ ions.  相似文献   

3.
Impalement studies in isolated perfused cortical collecting ducts (CCD) of rats have shown that the basolateral membrane possesses a K+ conductive pathway. In the present study this pathway was investigated at the single-channel level using the patch-clamp technique. Patch-clamp recordings were obtained from enzymatically isolated CCD segments and freshly isolated CCD cells with the conventional cell-free, cell-attached and the cell-attached nystatin method. Two K+ channels were found which were highly active on the cell with a conductance of 67±5 pS (n=18) and 148±4 pS (n=21) with 145 mmol/l K+ in the pipette. In excised patches the first channel had a conductance of 28±2 pS (n=15), whereas the second one had a conductance of 85±1 pS (n=53) at 0 mV clamp voltage with 145 mmol/l K+ on one side and 3.6 mmol/l K+ on the other side of the membrane. So far it has not been possible to characterize the smaller channel further. Excised, and with symmetrical K+ concentrations of 145 mmol/l, the intermediate channel had a linear conductance of 198±19 pS (n=5). After excision in the inside-out configuration the open probability (P o) of this channel was low (0.18±0.05, n=13) whereas in the outside-out configuration this channel had a threefold higher P o (0.57±0.04, n=12). Several inhibitors were tested in excised membranes. Ba2+ (1 mmol/l), tetraethylammonium (TEA+, 10 mmol/l) and verapamil (0.1 mmol/l) all blocked this channel reversibly. Furthermore P o was reversibly reduced by 10 nmol/l charybdotoxin (outside-out). This K+ channel of the basolateral membrane was regulated by cellular pH. P o was reduced to 26±3% at pH 6.5 (n=6) and increased to 216±18% at pH 8.5 (n=7) compared to pH 7.4. Half-maximal inhibition was reached at pH 7.0. The channel had its highest P o at a Ca2+ activity of less than 10–8 mol/l (n=13). Increasing the Ca2+ activity to 1 mmol/l on the cytosolic side of the membrane resulted in a reduction of P o to 13±3% (n=11). Half-maximal inhibition was reached at a Ca2+ activity of 10–5 mol/l. The high activity of both K+ channels of the basolateral membrane on the cell indicates that they may serve for K+ recirculation across the basolateral membrane.  相似文献   

4.
The patch-clamp technique was used to characterize K+ channel activity in the basolateral membrane of isolated crypts from rat distal colon. In cell-attached patches with KCl in the pipette, channels with conductances ranging from 6 pS to 80 pS appeared. With NaCl in the pipette and KCl in the bath in excised inside-out membrane patches a small-conductance channel with a mean conductance of 12±6 pS (n=18) was observed. The channel has been identified as K+ channel by its selectivity for K+ over Na+ and by its sensitivity to conventional K+ channel blockers, Ba2+ and tetraethylammonium (TEA+). Changes of cytosolic pH did not attenuate channel activity. Activity of the 12-pS channel was increased by membrane depolarization and elevated cytosolic Ca2+ concentration. In addition, a maxi K+ channel with a mean conductance of 187±15 pS (n=4) in symmetrical KCl solutions was only occasionally recorded. The maxi K+ channel could be blocked by Ba2+ (5 mmol/l) on the cytosolic side. Using the slow-whole cell recording technique under control conditions, a cell membrane potential of –70±10mV (n=18) was measured. By application of various K+ channel blockers such as glibenclamide, charybdotoxin, apamin, risotilide, Ba2+ and TEA+ in the bath, only Ba2+ and TEA+ depolarized the cell membrane. The present data suggest that the small K+ channel (12 pS) is involved in the maintenance of the cell membrane resting potential.  相似文献   

5.
The conductance properties of the luminal membrane of cells from the thick ascending limb of Henle's loop of rat kidney (TAL) are dominated by K+. In excised membrane patches the luminal K+ channel is regulated by pH changes on the cytosolic side. To examine this pH regulation in intact cells of freshly isolated TAL segments we measured the membrane voltage (V m) in slow-whole-cell (SWC) recordings and the open probability (P o) of K+ channels in the cell-attached nystatin (CAN) configuration, where channel activity and part of V m can be recorded. The pipette solution contained K+ 125 mmol/l and Cl 32 mmol/l. Intracellular pH was determined by 2,7 bis(2-carboxyethyl)-5,(6)-carboxyfluorescein (BCECF) fluorescence. pH changes were induced by the addition of 10 mmol/l NH4 +/NH3 to the bath. In the presence of NH4 +/NH3 intracellular pH acidified by 0.53±0.11 units (n=7). Inhibition of the Na+2Cl K+ cotransporter by furosemide (0.1 mmol/l) reversed this effect and led to a transient alkalinisation by 0.62±0.14 units (n=7). In SWC experiments V m of TAL cells was -72±1 mV (n=70). NH4 +/NH3 depolarised V m by 22±2 mV (n=25). In 11 SWC experiments furosemide (0.1 mmol/l) attenuated the depolarising effect of NH4 + from 24±3 mV to 7±3 mV. Under control conditions the single-channel conductance of TAL K+ channels in CAN experiments was 66±5 pS and the reversal voltage for K+ currents was 70±2 mV (n=35). The P o of K+ channels in CAN patches was reduced by NH4 +/NH3 from 0.45±0.15 to 0.09±0.07 (n=7). NH4 +/NH3 exposure depolarised the zero current voltage of the permeabilised patches by-9.7±3.6 mV (n=5). The results show that TAL K+ channels are regulated by cytosolic pH in the intact cell. The cytosolic pH is acidified by NH4 +/NH3 exposure at concentrations which are physiologically relevant because Na+2ClK+(NH4 +) cotransporter-mediated import of NH4 + exceeds the rate of NH3 diffusion into the TAL. K+ channels are inhibited by this acidification and the cells depolarise. In the presence of furosemide TAL cells alkalinise proving that NH4 + uptake occurs by the Na+2ClK+ cotransporter. The findings that, in the presence of NH4 +/NH3 and furosemide, V m is not completely repolarised and that K+ channels are not activated suggest that the respective K+ channels may in addition to their pH regulation be inhibited directly by NH4 +/NH3.  相似文献   

6.
Membrane electrical properties of freshly isolated rat osteoclasts were studied using patch-clamp recording methods. Characterization of the passive membrane properties indicated that the osteoclast cell membrane behaved as an isopotential surface. The specific membrane capacitance was 1.2±0.3 F/cm2 (mean ±SD), with no difference between cells plated on glass and those adhering to a permeable collagen substrate. The current/voltage (I/V) relationship of all cells showed inward rectification and I/V curves shifted 51 mV positive per tenfold increase of [K+]out, indicating an inwardly rectifying K+ conductance. The voltage dependence of the K+ chord conductance (g K) also shifted positive along the voltage axis, and the maximum conductance increased, with elevation of [K+]out. g K for cells bathed in 4.7 mM [K+]out increased e-fold per 12mV hyperpolarization, and half-maximal activation was at –89 mV. Approximately 18% (50 pS/pF) of the maximum g K was active at –70 mV. Inward single-channel currents were recorded in cell-attached patches at hyperpolarizing potentials. With symmetrical K+, channel conductance was 25±3 pS and reversal was close to the K+ equilibrium potential, consistent with this K+ channel underlying the whole-cell K+ currents. With both conventional whole-cell and perforated-patch recording, no voltage-activated Ca2+ current was detected. In approximately 30% of osteoclasts studied, an outwardly rectifying current was observed, which was reversibly blocked by 4,4-diisothiocyanostilbene-2,2-disulphonic acid (DIDS) and 4-acetamido-4-isothiocyanostilbene2,2-disulphonic acid (SITS). This DIDS- and SITS-sensitive current reversed direction at the chloride equilibrium potential. We conclude that an inwardly rectifying K+ current is present in all rat osteoclasts and that some osteoclasts also exhibit an outwardly rectifying Cl current. Both these membrane conductances may play an important physiological role by dissipating the potential that arises from the electrogenic transport of H+ across the ruffled membrane of the osteoclast.  相似文献   

7.
Vascular smooth muscle cells were obtained from rabbit aorta and were studied in primary culture on days 1–7 after seeding with electrophysiological techniques. In impalement experiments a mean membrane potential difference (PD) of –50±0.3 mV (n=387) was obtained with Ringer-type solution in the bath. PD was depolarized by 6±0.3 mV (n=45) and 16±2 mV (n= 5) when the bath K+ concentration was increased from the control value of 3.6 mmol/l to 13.6 and 23.6 mmol/l, respectively. Ba2+ (0.1–1 mmol/l) depolarized PD. Tetraethylammonium (TEA, 10 mmol/l) depolarized PD only slightly but significantly. Verapamil (0.1 mmol/l) and charybdotoxin (10 nmol/l) had no effect on PD. The conductance properties of these cells were further examined with the patch-clamp technique. K+ channels were spontaneously present in cell-attached patches. When the pipette was filled with 145 mmol/l KCl, a mean conductance (g K) of 209.6±4.6 mV (n=17) was read from the current/voltage curves at a clamp voltage (V c) of 0 mV. After excision K+ channels were found in 129 patches with inside-out and in 50 with outside-out configuration. With KCl on one and NaCl on the other side the mean g K at a V c of 0 mV was 134.6±3.9 pS (n=179). The mean permeability was 0.89±0.03×10–12 cm3/s. With symmetrical KCl solution the mean g K was 227±6 pS (n=17). The conductance sequence was g K g Rb= g Cs=g Na=0. TEA blocked dose-dependently only from the outside.(1–10 mmol/l). Lidocaine (5 mmol/l) quinidine (0.01–1 mmol/l) and quinine (0.01–1 mmol/l) blocked from both sides. Charybdotoxin (0.5–5 nmol/l) blocked only from the extracellular side. Ba2+ blocked from the cytosolic side and the inhibition was increased by depolarization and reduced by hyperpolarization. At a V c of 0 mV a half-maximal inhibition (IC50) of 2 mol/l was obtained. Verapamil and diltiazem blocked from both sides, verapamil with an IC50 of 2 mol/l and diltiazem with an IC50 of 10 mol/l. The open probability of this channel was increased by Ca2+ on the cytosolic side at activities > 0.1 mol/l. Half-maximal activation occurred at Ca2+ activities exceeding 1 mol/l. The present data indicate that the vascular smooth muscle cells of rabbit aorta in primary culture possess a K+ conductance. In excised patches only a maxi K+ channel was detected. This channel has properties different from the macroscopic K+ conductance. Hence, it is likely that the K+ conductance of the intact cell is dominated by yet another and thus far not detected K+ channel.Supported by DFG Gr 480/10  相似文献   

8.
Previous studies in isolated, in vitro perfused rectal gland tubules (RGT) have revealed that the basolateral membrane possesses a K+ conductive pathway. In the present study, we have utilized the patch clamp technique in RGT segments to characterize this pathway. The basolateral membrane was approached with patch pipettes at the open end of in vitro perfused segments [5]. Recordings were obtained in cell-attached as well as in excised inside-out patches. In cell-attached patches with the pipette filled with a KCl solution (274 mmol/l) and the bath containing NaCl shark Ringer (275 mmol/l), inward K+ currents (from pipette into cell) with a mean slope conductance of 123±26 pS (n=3) were observed. We were unable to generate outward K+ currents at high depolarizing (cell more positive) clamp voltages. This indicates inward rectification of this channel. To examine the rectification properties further, excised (inside out) patches were exposed to K+ concentration gradients, directed out of, as well as into the pipette. With NaCl in the pipette and KCl in the bath, K+ outward currents were observed. The current-voltage (IV) relation revealed Goldman-type rectification, with a mean single channel conductance of 185±28 pS (n=7) at high positive voltages (linear range of the IV curve). The single-channel permeability coefficient for K+ was 0.26±0.04 ·10–12 cm3/s (n=7). In the reversed experiment (pipette KCl, bath NaCl), inward currents of similar kinetics and amplitude were obtained. The single channel conductance was 146±21 pS (n=7) at high negative voltages (linear range of the IV curve). The single channel permeability coefficient for K+ was 0.21±0.03·10–12 cm3/s (n=7). We were not able to reverse the currents in any of these experiments, indicating that this channel is highly selective for K+ over Na+. In all three series of experiments, the kinetic appearance of the channels was similar. Bursts of activity were followed by interburst pauses. The open state was described by a single time constant of 3.0±0.2 ms, whereas the closed state was described by two time constants of 0.7±0.2 ms and 2.8±0.5 ms (n=8). It can be concluded that these channels permit K+ inward and outward currents. They are probably the equivalent of the basolateral K+ conductance as observed in a previous study [12]. Under physiological conditions a single channel conductance of some 20 pS is predicted from the present data. In cell-attached patches, with a high K+ concentration in the pipette, the channel behaves as an inward rectifier.Supported by Deutsche Forschungsgemeinschaft Gr 4808 and by NSF and NIH grants to the MDIBL. Parts of this study have been published in the Mount Desert Island Biol. Bulletin 1984, 1985.  相似文献   

9.
In vitro perfused rat thick ascending limbs of Henle's loop (TAL) were used (n=260) to analyse the conductance properties of the luminal membrane applying the patch-clamp technique. Medullary (mTAL) and cortical (cTAL) tubule segments were dissected and perfused in vitro. The free end of the tubule was held and immobilized at one edge by a holding pipette kept under continuous suction. A micropositioner was used to insert a patch pipette into the lumen, and a gigaohm seal with the luminal membrane was achieved in 455 instances out of considerably more trials. In approximately 20% of all gigaohm seals recordings of single ionic channels were obtained. We have identified only one single type of K+ channel in these cell-attached and cell-excised recordings. In the cell-attached configuration with KCl or NaCl in the pipette, the channel had a conductance of 60±6 pS (n=24) and 31±7 pS (n=4) respectively. In cell-free patches with KCl either in the patch pipette or in the bath and with a Ringer-type solution (NaCl) on the opposite side the conductance was 72±4 pS (n=37) at a clamp voltage of 0 mV. The permeability was 0.33±0.02 · 10±12 cm3/s. The selectivity sequence für this channel was: K+=Rb+=NH 4 + =Cs+>Li+Na+=0; the conductance sequence was K+Li+Rb+=Cs+= NH 4 + =Na+=0. In excised patches Rb+, Cs+ and NH 4 + when present in the bath at 145 mmol/l all inhibited K+ currents out of the pipette. The channel kinetics were described by one open (9.5±1.5 ms, n=18) and by two closed (1.4±0.1 and 14±2 ms) time constants. The open probability of this channel was increased by depolarization. The channel open probability was reduced voltage dependently by Ba2+ (half maximal inhibition at 0 mV: 0.07 mmol/l) from the cytosolic side. Verapamil, diltiazem, quinine and quinidine inhibited at approximately 1 mol/l ±0.1 mmol/l from either side. Similarly, the amino cations lidocaine, tetraethylammonium and choline inhibited at 10–100 mmol/l. The channel was downregulated in its open probability by cytosolic Ca2+ activities > 10±7 mol/l and by adenosine triphosphate 10±4 mol/l. The open probability was downregulated by decreasing cytosolic pH (2-fold by a decrease in pH by 0.2 units). The described channel differs in several properties from the K+ channels of other epithelia and of renal cells and TAL cells in culture. It appears to be responsible for K+ recycling in the TAL segment.Preliminary reports of the present study have been given at the following conferences: Tagung der Deutschen Physiologischen Gesellschaft, Würzburg, October 1988; Membranforum, Frankfurt, April 1989; 3rd Int. Conf. Diur., Mexico City, April 1989; 3rd Nephrology Forefront Symposium, Arrola, July, 1989; IUPS meeting, Helsinki, July 1989. This study has been supported by Deutsche Forschungsgemeinschaft Grant No. Gr 480/9  相似文献   

10.
We have used single-channel patch-clamp techniques to study the ion channels in the basolateral membranes of intralobular duct cells from the mouse mandibular gland. In 39% of cell-attached patches, we observed a K+ channel that had an inwardly rectifying current/voltage (I/V) relation with a maximum slope conductance of 123±9 pS (n=12) and a zero current potential of +49.4±3.4 mV (n=5) relative to the resting cell potential. The selectivity sequence of this channel, as estimated by zero current potential measurements, was: K+ (1) > Rb+ (0.38) > NH 4 + (<0.34), Cs+ (<0.16) > Na+ (<0.028). The activity of the channel was not affected by changes in membrane potential, nor was it affected by changes in the free Ca2+ concentration on the cytosolic side of inside-out excised patches in the range 1 nmol/l to 1 mol/l. In 38% of cell-attached patches we observed a second K+ channel type with a maximum slope conductance of 62±3 pS (n=12) and an inwardly rectifyingI/V relation. The selectivity sequence of this channel was K+ (1) > Rb+ (<0.5) > NH 4 + (<0.2) > Na+ (<0.09). The activity of this channel type was not affected by changes in membrane potential. In 18% of excised patches, we also observed a non-selective cation channel that was not demonstrable in cell-attached patches. It had a slope conductance of 22±2 pS (n=6) and was blocked by the non-selective cation channel blocker, flufenamate (10 mol/l). A fourth channel type, observed only in 5% of patches was a Cl channel with a slope conductance of 40 pS and a linearI/V relation. The K+ channels observed in this study seem likely to underlie the K+ conductance described in the basolateral membrane of extralobular ducts by in vitro perfusion studies. Our finding that they are inwardly rectifying suggests that they may not be the sole route of K+ transport across the basolateral membrane.  相似文献   

11.
To determine whether membranes of mammalian central neurons contain an ATP-sensitive K+ (KATP) channel similar to that present in pancreatic cells, the patch-clamp technique was applied to cultured neurons prepared from the neonatal rat cerebral cortex and hippocampus. In whole-cell experiments with hippocampal neurons, extracellular application of 0.5 mM diazoxide (a KATP channel activator) elicited a hyperpolarization concomitant with an increase in membrane conductance, whereas application of 0.5 mM tolbutamide (a KATP channel blocker) induced a depolarization with a decrease in conductance. Similar results were obtained with cortical neurons. In outside-out patch experiments with cortical neurons, a K+ channel sensitive to these drugs was found. The channel was completely blocked by 0.5 mM tolbutamide and activated by 0.5 mM diazoxide. The single-channel conductance was 65 pS under symmetrical 145 mM K+ conditions and 24 pS in a physiological K+ gradient. In inside-out patch experiments, this channel was demonstrated to be inhibited by an application of 0.2–1 mM ATP to the cytoplasmic surface of the patch membrane. These results indicate that the membranes of rat cortical neurons contain a KATP channel that is quite similar to that found in pancreatic cells. It is also suggested that the same or a similar K+ channel may exist in membranes of hippocampal neurons.  相似文献   

12.
In order to study the mechanism of pancreatic HCO 3 transport, a perfused preparation of isolated intra-and interlobular ducts (i.d. 20–40 m) of rat pancreas was developed. Responses of the epithelium to changes in the bath ionic concentration and to addition of transport inhibitors was monitored by electrophysiological techniques. In this report some properties of the basolateral membrane of pancreatic duct cells are described. The transepithelial potential difference (PDte) in ducts bathed in HCO 3 -free and HCO 3 -containing solution was –0.8 and –2.6 mV, respectively. The equivalent short circuit current (Isc) under similar conditions was 26 and 50 A·cm–2. The specific transepithelial resistance (Rte) was 88 cm2. In control solutions the PD across the basolateral membrane (PDbl) was –63±1 mV (n=314). Ouabain (3 mmol/l) depolarized PDbl by 4.8±1.1 mV (n=6) within less than 10 s. When the bath K+ concentration was increased from 5 to 20 mmol/l, PDbl depolarized by 15.9±0.9 mV (n=50). The same K+ concentration step had no effect on PDbl if the ducts were exposed to Ba2+, a K+ channel blocker. Application of Ba2+ (1 mmol/l) alone depolarized PDbl by 26.4±1.4 mV (n=19), while another K+ channel blocker TEA+ (50 mmol/l) depolarized PDbl only by 7.7±2.0 mV (n=9). Addition of amiloride (1 mmol/l) to the bath caused 3–4 mV depolarization of PDbl. Furosemide (0.1 mmol/l) and SITS (0.1 mmol/l) had no effect on PDbl. An increase in the bath HCO 3 concentration from 0 to 25 mmol/l produced fast and sustained depolarization of PDbl by 8.5±1.0 mV (n=149). It was investigated whether the effect of HCO 3 was due to a Na++-dependent transport mechanism on the basolateral membrane, where the ion complex transferred into the cell would be positively charged, or whether it was due to decreased K+ conductance caused by lowered intracellular pH. Experiments showed that the HCO 3 effect was present even when the bath Na+ concentration was reduced to a nominal value of 0 mmol/l. Similarly, the HCO 3 effect remained unchanged after Ba2+ (5 mmol/l) was added to the bath. The results indicate that on the basolateral membrane of duct cells there is a ouabain sensitive (Na++K+)-ATPase, a Ba2+ sensitive K+ conductance and an amiloride sensitive Na+/H+ antiport. The HCO 3 effect on PDbl is most likely due to rheogenic anion exit across the luminal membrane.  相似文献   

13.
Ion channels in the basolateral membrane of rabbit parietal cells in isolated gastric glands were studied by the patch clamp technique. Whole-cell current-clamp recordings showed that the membrane potential (E m ) changed systematically as a function of the chloride concentrations of the basolateral bathing solution ([Cl]0), and of the pipette (intracellular) solution. The relationship betweenE m and [Cl]0 was not affected by additions of histamine, dibutyryl-cAMP, 4-acetoamido-4-isothiocyanostilbene-2,2-disulfonic acid and diphenylamine-2-carboxylate. The whole-cell Cl conductance was insensitive to voltage. In cell-attached and cell-free patch membranes, however, single Cl channel opening events could not be observed. The value ofE m depended little on the basolateral K+ concentration, but inward-rectifier K+ currents were observed in the whole-cell configuration, activated by hyperpolarizing pulses and inhibited by extracellular Ba2+. In cell-attached and cell-free patches, openings of single inward-rectifier K+ channels and non-selective cation channels were infrequently recorded. Neither cAMP nor Ca2+ activated these cation channels. The single K+ channel conductance was about 230 pS under the symmetrical high K+ conditions and was inhibited by intracellular tetraethylammonium ions (TEA). The non-selective cation channel had a voltage-independent single conductance of 22 pS and was not inhibited by TEA.  相似文献   

14.
Cellular heterogeneity was examined in the hamster medullary thick ascending limb (MAL) perfused in vitro by electrophysiological measurements with an intracellular microelectrode. Random measurements of fractional resistance of basolateral membrane (Rf B) revealed two cell populations, high basolateral conductance (HBC) cells havingRf B of 0.05±0.01 (n=24) and low basolateral conductance (LBC) cells havingRf B of 0.80±0.03 (n=32). Basolateral membrane potentials (V B) were not different between HBC cells and LBC cells (–72.6±1.2,n=43 vs. –70.0±1.2,n=35). Addition of 2 mmol/l Ba2+ to the bath depolarized the basolateral membrane in the HBC cells from –70.4±3.2 to –20.9±5.9 mV (n=8) but not in the LBC cells (from –74.4±1.9 to –72.0±2.1 mV). Increasing K+ or decreasing Cl in the bathing solution caused marked positive deflection ofV B in the HBC cells but little or no change inV B in the LBC cells. Elimination of Cl from the lumen or addition of furosemide to the lumen enhanced the potential response of the HBC cells to basolateral application of Ba2+. Accordingly, with Ba2+ present in the bath, the potential response of the HBC cells to a decrease in bath Cl concentration was enhanced. These observations suggest that a K+ conductance exists in the basolateral membrane of HBC cells in paralled with a Cl conductance. The basolateral cell membrane of LBC cells also contains a Cl conductance. In these cells, but not in HBC cells, the potential response to decreasing bath Cl concentration increased when bath pH was decreased from 7.4 to 6.0 Apparent K+ transference numbers of the luminal membrane were higher in LBC cells (0.74±0.05,n=7) than in HBC cells (0.20±0.02,n=5). From these data, we conclude: (1) there are two distinct cell types in the hamster medullary thick ascending limb; (2) there is a low Cl conductance in basolateral membrane of LBC cells which is stimulated by low pH.  相似文献   

15.
Homocellular regulation of K+ at increased transcellular Na+ transport implies an increase in K+ exit to match the intracellular K+ load. Increased K+ conductance, gK, was suggested to account for this gain. We tested whether such a mechanism is operational in A6 monolayers. Na+ transport was increased from 5.1±1.0 A/cm2 to 20.7±1.3 A/cm2 by preincubation with 0.1 mol/l dexamethasone for 24 h. Basolateral K+ conductances were derived from transference numbers of K+, t K, and basolateral membrane conductances, gb, using conventional microelectrodes and circuit analysis with application of amiloride. Activation of Na+ transport induced an increase in gb from 0.333±0.067 mS/ cm2 to 1.160±0.196 mS/cm2 and t K was reduced to 0.22±0.01 from a value of 0.70±0.05 in untreated control tissues. As a result, gK remained virtually unchanged at increased Na+ transport rates. The increase in gb after dexamethasone was due to activation of a conductive leak pathway presumably for Cl. Increased K+ efflux, I K, was a consequence of the larger driving force for K+ exit due to depolarization at an elevated Na+ transport rate. The relationship between calculated K+ fluxes and Na+ transport rate, measured as the I sc, is described by the linear function I K=0.624×I Na–0.079, which conforms with a stoichiometry 23 for the fluxes of K+ and Na+ in the Na+/K+-ATPase pathway. Our data show that homocellular regulation of K+ in A6 cells is not due to up-regulation of g K .  相似文献   

16.
Epithelial cells lose their usual polarization during carcinogenesis. Although most malignant tumours are of epithelial origin little is known about ion channels in carcinoma cells. Previously, we observed that migration of transformed Madin-Darby canine kidney (MDCK-F) cells depended on oscillating K+ channel activity. In the present study we examined whether periodic K+ channel activity may cause changes of cell volume, and whether K+ channel activity is distributed in a uniform way in MDCK-F cells. After determining the average volume of MDCK-F cells (2013±270 m3; n=8) by means of atomic force microscopy we deduced volume changes by calculating the K+ efflux during bursts of K+ channel activity. Therefore, we measured the membrane conductance of MDCK-F cells which periodically rose by 22.3±2.5 nS from a resting level of 6.5±1.4 nS (n=12), and we measured the membrane potential which hyperpolarized in parallel from –35.4±1.2 mV to –71.6±1.8 mV (n=11). The distribution of K+ channel activity was assessed by locally superfusing the front or rear end of migrating MDCK-F cells with the K+ channel blocker charybdotoxin (CTX). Only exposure of the rear end to CTX inhibited migration providing evidence for horizontal polarization of K+ channel activity in transformed MDCK-F cells. This is in contrast to the vertical polarization in parent MDCK cells. We propose that the asymmetrical distribution of K+ channel activity is a prerequisite for migration of MDCK-F cells.  相似文献   

17.
The effects of monovalent internal cations Cs+, Li+ and Na+ on potassium channel conductance in the frog node of Ranvier were studied by means of the voltage clamp. As previously reported, when 10–80% of the internal K+ was replaced by one of the above cations, the steady-state current-voltage relationship was significantly modified. The main effect was a voltage-dependent attenuation of the currents. We demonstrate that the current attenuation is associated with a change in the channel gating kinetics. For small depolarizations the kinetics can be described by the usual potassium conductance activation time constant, τ n . However, under certain experimental conditions (e.g. substitution of the intracellular K+ with 10% Cs+), during larger depolarizations, stepping the membrane potential to values above 40–60 mV, the conductance develops with two time constants: τ n and a new, slower time constant that, in contrast to τ n , grows with membrane potential. These results can be explained by assuming that the catins may occupy two different sites in the channel; when the first site is occupied the channel is blocked, while occupation of the second site results in slowing of the gating kinetics in the affected channels.  相似文献   

18.
The distal convoluted tubule (DCT) from rabbit kidney were perfused in vitro to study the conductive properties of the cell membranes by using electrophysiological methods. When the lumen and the bath were perfused with a biearbonate free solution buffered with HEPES, the transepithelial voltage (V T) averaged –2.8±0.6 mV (n=20), lumen negative. The basolateral membrane voltage (V B) averaged –77.8±1.1 mV (n=33) obtained by intracellular impalement of microelectrodes. Cable analysis performed by injecting a current from perfusion pipette revealed that the transepithelial resistance was 21.8±1.7 ·cm2 and the fractional resistance of the luminal membrane was 0.78±0.03 (n=8), indicating the existence of ionic conductances in the luminal membrane. Addition of amiloride (10–5 mol/l) to the luminal perfusate or Na+ removal from the lumen abolished the lumen negativeV T and hyperpolarized the apical membrane. An increase in luminal K+ concentration from 5 to 50 mmol/l reduced the apical membrane potential (V A) by 37.5±2.6 mV (n=7), whereas a reduction of Cl in the luminal perfusate did not changeV A significantly (0.5±0.5 mV,n=4). Addition of Ba2+ to the lumen reducedV A by 42.6±1.0 mV (n=4). When the bathing fluid was perfused with 50 mmol/l K+ solution, the basolateral membrane voltage (V B) fell from –76.8±1.5 to –31.0±1.3 mV (n=18), and addition of Ba2+ to the bath reducedV B by 18.3±4.8 mV (n=7). Although a reduction of Cl in the bathing fluid from 143 to 5 mmol/l did not cause any significant fast initial depolarization (1.8±1.7 mV,n=8), a spike like depolarization (14.0±2.5 mV,n=4) was observed, upon Cl reduction in the presence of Ba2+ in the bath. From these results, we conclude that the apical membrane of DCT has both K+ and Na+ conductances and the basolateral membrane has a K+ conductance and a small Cl conductance.  相似文献   

19.
The Na+ transport function of alveolar epithelium represents an important mechanism for clearance of fluid in air space at birth. I observed the activity of two types of amiloride-blockable Na+-permeant cation channels in the apical membrane of fetal distal lung epithelium cultured on permeable filters for 2 days after harvesting of the cells from Wistar rats of 20 days' gestation (term = 22 days). One type was a nonselective cation (NSC) channel and had a linear current/voltage (I/V) relationship with a single-channel conductance of 26.9 ± 0.8 pS (n = 5). The other type was highly Na+ selective (i.e. Na+ channel) and had an inwardly rectifyingI/V relationship with a single-channel conductance of 11.8 ± 0.2 pS (n = 5) around resting membrane potential. The NSC channel was more frequently observed (1.37 ± 0.15 per patch membrane;n = 73) than the Na+ channel (0.15 ± 0.40 per patch membrane;n = 73). However, the open probability of the NSC channel was smaller than that of the Na+ channel. Both types of the channels were activated by cytosolic Ca2+, however the sensitivity to cytosolic Ca2+ was much higher in the Na+ channel than in the NSC channel. Furthermore, both types of the channels were blocked by amiloride or benzamil. The half-maximal inhibitory concentration (IC50) of amiloride or benzamil of the Na+ channel was 1–2 M, while that of NSC channel was less than 1 M. Both channels were activated by insulin.  相似文献   

20.
In the luminal membrane of rat cortical collecting duct (CCD) a big Ca2+-dependent and a small Ca2+-independent K+ channel have been described. Whereas the latter most likely is responsible for the K+ secretion in this nephron segment, the function of the large-conductance K+ channel is unknown. The regulation of this channel and its possible physiological role were examined with the conventional cell-free and the cell-attached nystatin patch-clamp techniques. Patch-clamp recordings were obtained from the luminal membrane of isolated perfused CCD segments and from freshly isolated CCD cells. Intracellular calcium was measured using the calcium-sensitive dye fura-2. The large-conductance K+ channel was strongly voltage- and calcium-dependent. At 3 mol/l cytosolic Ca2+ activity it was half-maximally activated. At 1 mmol/l it was neither regulated by cytosolic pH nor by ATP. At 1 mol/l Ca2+ activity the open probability (P o) of this channel was pH-dependent. At pH 7.0 P o was decreased to 4±2% (n=9) and at pH 8.5 it was increased to 425±52% (n=9) of the control. At this low Ca2+ activity the P o of the channel was reduced by 1 mmol/l ATP to 8±4% (n=6). Cell swelling activated the large-conductance K+ channel (n=14) and hyperpolarized the membrane potential of the cells by 9±1 mV (n=23). Intracellular Ca2+ activity increased after hypotonic stress. This increase depended on the extracellular Ca2+ activity. A possible physiological function of the large-conductance K+ channel in rat CCD cells may be the reduction of the intracellular K+ concentration after cell swelling. Once this channel is activated by increases in the cytosolic Ca2+ activity it can be regulated by changes in cellular pH and ATP.Supported by DFG Schl 277/2-3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号