首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Changes in potential between the pial and cut surfaces of rat olfactory cortex slices evoked by N-methyl-D-aspartate (NMDA), quisqualate, kainate, L-glutamate and L-aspartate and also by gamma-aminobutyric acid (GABA) have been monitored using extracellular electrodes. All agonists produced a pial-negative potential response when superfused onto the pial surface, GABA, L-aspartate and L-glutamate being less potent than the others. Repeated applications of NMDA, but not of the other agonists, led to a progressive reduction in response to approximately 30% of the initial depolarization. The responses to NMDA (100 microM) were selectively abolished by (+/-)2-amino-5-phosphonopentanoic acid (APP; 100 microM) while depolarizations evoked by L-glutamate and L-aspartate (both at 10 mM) were only antagonized by 21 +/- 2 (n = 12) and 36 +/- 3 (n = 12) percent respectively (means +/- S.E.M.). gamma-D-Glutamylglycine (gamma-DGG; 1 mM) and (+/-)cis-2,3-piperidine dicarboxylate (cis-PDA; 2 and 5 mM), in addition to antagonizing responses to NMDA, also partially blocked quisqualate- and kainate-evoked depolarizations. When a mixture of APP (100 microM), gamma-DGG (1 mM) and cis-PDA (5 mM) was applied to preparations, although NMDA receptors were completely blocked and responses to both quisqualate and kainate antagonized by approximately 80%, L-glutamate and L-aspartate evoked depolarizations were only reduced by 51 +/- 7 (n = 4) and 49 +/- 4 (n = 4) percent respectively (means +/- S.E.M.). The results are discussed in terms of the contributions made by NMDA, quisqualate and kainate receptors to the composite responses evoked by L-aspartate and L-glutamate.  相似文献   

2.
Cultured astrocytes from neonatal rat cerebral hemispheres are depolarized by the excitatory neurotransmitter glutamate. In this study we have used selective agonists of different neuronal glutamate receptor subtypes, namely, the N-methyl-D-aspartate (NMDA), kainate, and quisqualate type, to characterize pharmacologically the glutamate receptor in astrocytes. The agonists of the neuronal quisqualate receptor, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) and quisqualate, depolarized the membrane. Kainate, an agonist of the neuronal kainate receptor, depolarized astrocytes more effectively than quisqualate. Combined application of kainate and quisqualate depolarized astrocytes to a level which was intermediate to that evoked by quisqualate and kainate individually. Agonists activating the neuronal NMDA receptor, namely NMDA and quinolinate, were ineffective. Application of NMDA did not alter the membrane potential even in combination with glycine or in Mg2+-free solution, conditions under which neuronal NMDA receptor activation is facilitated. The nonselective agonists L-cysteate, L-homocysteate, and beta-N-oxalylamino-L-alanine (BOAA) mimicked the effect of glutamate. Dihydrokainate, a blocker of glutamate uptake, did not, and several antagonists of neuronal glutamate receptors only slightly affect the glutamate response. These findings suggest that astrocytes express one type of glutamate receptor which is activated by both kainate and quisqualate, lending further support to the notion that cultured astrocytes express excitatory amino acid receptors which have some pharmacological similarities to their neuronal counterparts.  相似文献   

3.
Changes in potential between the pial and cut surfaces of rat olfactory cortex slices evoked by N-methyl-d-aspartate (NMDA), quisqualate, kainate,l-glutamate andl-aspartate and also by γ-aminobutyric acid (GABA) have been monitored using extracellular electrodes. All agonists produced a pial-negative potential response when superfused onto the pial surface, GABA,l-aspartate andl-glutamate being less potent than the others. Repeated applications of NMDA, but not of the other agonists, led to a progressive reduction in response to approximately 30% of the initial depolarization. The responses to NMDA (100 μM) were selectively abolished by(±)2-amino-5-phosphonopentanoic acid (APP; 100 μM) while depolarizations evoked byl-glutamate andl-aspartate (both at 10 mM) were only antagonized by21 ± 2 (n = 12) and36 ± 3 (n = 12) percent respectively (means ± S.E.M.). γ-d-Glutamylglycine (γ-DGG; 1 mM) and(±)cis-2,3-piperidine dicarboxylate (cis-PDA; 2 and 5 mM), in addition to antagonizing responses to NMDA, also partially blocked quisqualate- and kainate-evoked depolarizations. When a mixture of APP (100 μM), γ-DGG (1 mM) and cis-PDA (5 mM) was applied to preparations, although NMDA receptors were completely blocked and responses to both quisqualate and kainate antagonized by approximately 80%,l-glutamate andl-aspartate evoked depolarizations were only reduced by51 ± 7 (n = 4) and 49 ± 4 (n = 4) percent respectively (means ± S.E.M.). The results are discussed in terms of the contributions made by NMDA, quisqualate and kainate receptors to the composite responses evoked byl-aspartate andl-glutamate.  相似文献   

4.
Responses evoked by L-cysteine-sulphinate (L-CSA) and L-aspartate (L-Asp) were recorded with intracellular electrodes from caudate neurons in halothane anesthetized cats. L-CSA and L-Asp were applied microiontophoretically to caudate cells and their effects on membrane and action potentials, as well as on cortically evoked synaptic potentials were evaluated. L-CSA and L-Asp induced depolarizations accompanied by regular firing resembling kainate (KA)- or quisqualate (QUIS)-induced excitation patterns (type 1) in 82% and 72% of the recorded neurons, respectively, and a mixed pattern consisting of a N-methyl-D-aspartate (NMDA)-like excitation (type 2) followed by a regular type 1 pattern in the remaining cells. In about a quarter of the cells the effects of L-CSA and L-Asp, but not those of KA or QUIS, were partially antagonized by 2-amino-7-phosphonoheptanoate (AP-7), a specific NMDA receptor antagonist. Kynurenate, a broad spectrum excitatory amino acid antagonist, blocked responses elicited by either L-CSA or QUIS. The actions of L-CSA and L-Asp on the firing pattern and membrane potential of cat caudate neurons in situ provide evidence in favor of their mixed agonist nature with respect to NMDA and non-NMDA excitatory amino acid receptors.  相似文献   

5.
Responses evoked byl-cysteine-sulphinate (l-CSA) andl-aspartate (l-Asp) were recorded with intracellular electrodes from caudate neurons in halothane anesthetized cats.l-CSA andl-Asp were applied microiontophoretically to caudate cells and their effects on membrane and action potentials, as well as on cortically evoked synaptic potentials were evaluated.l-CSA andl-Asp induced depolarizations accompanied by regular firing resembling kainate (KA)- or quisqualate (QUIS)-induced excitation patterns (type 1) in 82% and 72% of the recorded neurons, respectively, and a mixed pattern consisting of aN-methyl-d-aspartate (NMDA)-like excitation (type 2) followed by a regular type 1 pattern in the remaining cells. In about a quarter of the cells the effects ofl-CSA andl-Asp, but not those of KA or QUIS, were partially antagonized by 2-amino-7-phosphonoheptanoate (AP-7), a specific NMDA receptor antagonist. Kynurenate, a broad spectrum excitatory amino acid antagonist, blocked responses elicited by eitherl-CSA or QUIS. The actions ofl-CSA andl-Asp on the firing pattern and membrane potential of cat caudate neurons in situ provide evidence in favor of their mixed agonist nature with respect to NMDA and non-NMDA excitatory amino acid receptors.  相似文献   

6.
A study has been made of the effects of a series of excitatory amino acid receptor antagonists on the field potentials evoked on electrical stimulation of the lateral olfactory tracts of olfactory cortex slices perfused in vitro. The antagonists studied included (+/-)-2-amino-5-phosphonovaleric acid, a potent, specific antagonist of N-methyl-D-aspartate (NMDA) receptors, gamma-D-glutamylglycine, an antagonist of NMDA and kainate receptors and (+/-)-cis-2,3-piperidine dicarboxylic acid and 2-amino-4-phosphonobutyric acid, drugs which in addition to antagonizing NMDA and kainate receptors also block responses to quisqualic acid. From the patterns of effects of the drugs it is proposed that quisqualate and NMDA but not kainate receptors are involved in mediating excitatory transmission in the olfactory cortex; quisqualate receptors are located at the lateral olfactory tract - superficial pyramidal cell synapse whereas NMDA receptors are present at the synapses of the superficial pyramidal cell collaterals with the deep pyramidal cell dendrites and/or at the synapses of the pyramidal cell collaterals and inhibitory interneurones. The results are discussed in terms of possible presynaptic and/or postsynaptic sites of antagonist action.  相似文献   

7.
A new compound, 3-((±)-2-car☐ypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), has been evaluated as an excitatory amino acid receptor antagonist using electrophysiological assays and radioligand binding. In autoradiographic preparations, CPP reduces l-[3H]glutama binding in regions of the hippocampus rich in N-methyl-d-aspartate (NMDA) receptors, but not in regions richin kainate sites. In isolated membrane fraction preparations, CPP displaces l-[3H]glutamate binding to NMDA sites, but does not compete with the binding of selective kainate or quisqualate site ligands. CPP potently reduces depolarizations produced by application of NMDA but not depolarizations produced by quisqualate or kainate. Its order of potency against excitatory amino acid-induced responses in the hippocampus is NMDA > homocysteate > aspartate > glutamate > quisqualate. CPP has no efect on lateral perforant path responses or on inhibition of these responses by 2-amino-4-phosphonobutyrate. Finally, at doses that do not affect Schaffer collateral synpatic transmission, CPP reversibly blocks the induction of long-term potentiation of Schaffer synaptic responses. This new compounds is, therefore, a higly selective brain NMDA receptor blocker, and the most potent such by nearly an order of magnitude.  相似文献   

8.
Dose-response curves for activation of excitatory amino acid receptors on mouse embryonic hippocampal neurons in culture were recorded for 15 excitatory amino acids, including the L-isomers of glutamate, aspartate, and a family of endogenous sulfur amino acids. In the presence of 3 microM glycine, with no extracellular Mg, micromolar concentrations of 11 of these amino acids produced selective activation of N-methyl-D-aspartate (NMDA) receptors. L-Glutamate was the most potent NMDA agonist (EC50 2.3 microM) and quinolinic acid the least potent (EC50 2.3 mM). Dose-response curves were well fit by the logistic equation, or by a model with 2 independent agonist binding sites. The mean limiting slope of log-log plots of NMDA receptor current versus agonist concentration (1.93) suggests that a 2-site model is appropriate. There was excellent correlation between agonist EC50S determined in voltage clamp experiments and KdS determined for NMDA receptor binding (Olverman et al., 1988). With no added glycine, and 1 mM extracellular Mg, responses to NMDA were completely blocked; responses to kainate and quisqualate were unchanged. Under these conditions, glutamate and the sulfur amino acids activated a rapidly desensitizing response, similar to that evoked by micromolar concentrations of quisqualate and AMPA, but mM concentrations of L-aspartate, homoquinolinic acid, and quinolinic acid failed to elicit a non-NMDA receptor-mediated response. Except for L-glutamate (EC50 480 microM), the low potency of the sulfur amino acids prevented the study of complete dose-response curves for the rapidly desensitizing response at quisqualate receptors. Small-amplitude nondesensitizing quisqualate receptor responses were activated by much lower concentrations of all quisqualate receptor agonists. Full dose-response curves for the nondesensitizing response were obtained for 9 amino acids; L-glutamate was the most potent endogenous agonist (EC50 19 microM). Domoate (EC50 13 microM) and kainate (EC50 143 microM) activated large-amplitude, nondesensitizing responses.  相似文献   

9.
Changes in cytosolic free Ca2+ concentrations, [Ca2+]i, in response to glutamate and glutamate receptor agonists were measured in rat cerebellar granule cells grown on coverslips. The intracellular Ca2+ as measured with fura-2 increased by applying kainate, N-methyl-D-aspartate (NMDA), quisqualate, and (RS)-d-amino-3-hydroxy-5-methyl-4-isoxazole-propionic (AMPA). When the extracellular Mg2+ was removed, the effects of NMDA and the NMDA receptor agonist cis-(+-)-1-amino-1,3-cyclopentanedicarboxylic acid (cis-ACPD) on intracellular Ca2+ were augmented. Glycine potentiated the effects of NMDA and cis-ACPD if the membrane was depolarized by increasing the extracellular K+ concentration. The NMDA receptor antagonist DL-2-amino-5-phosphonopentanic acid (AP5) abolished and the antagonist 3-([+-]-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) greatly reduced the effect of NMDA in both the normal and the Mg-free media. The dose-response curves of NMDA and, to a lesser extent, of kainate were shifted to the left, and that of quisqualate became biphasic in the Mg-free medium. The increase in [Ca2+]i produced by high quisqualate concentrations in the Mg-free medium was totally abolished by AP5. The results suggest that Ca2+ influx in cerebellar granule cells occurs through both NMDA- and non-NMDA-coupled ion channels. A part of the quisqualate-induced rise in cytosolic Ca2+ seems to be linked to the activation of NMDA receptors.  相似文献   

10.
S E Dryer 《Brain research》1988,443(1-2):173-182
The characteristics of excitatory amino acid-evoked currents and of excitatory synaptic events have been examined in lamprey Müller neurons using voltage clamp and current clamp recording techniques. Application of glutamate evoked depolarizations associated with a decrease in input resistance. The reversal potential of the responses was -35 mV. Under voltage clamp conditions, a series of excitatory amino acid agonists evoked inward currents associated with little or no increase in baseline current noise. The order of potency of the excitatory amino acid agonists was quisqualate greater than kainate greater than glutamate greater than aspartate, while N-methyl-D-aspartic acid (NMDA) was inactive. Inward currents evoked by glutamate, as well as by kainate and quisqualate were attenuated reversibly by 1 mM kynurenic acid (KYN). In contrast, glutamate-evoked currents were not affected by 100 microM D(-)-2-amino-5-phosphonovaleric acid (APV), a selective NMDA antagonist. Spontaneously occurring and stimulus-evoked excitatory postsynaptic events were antagonized reversibly by 1 mM KYN. At this concentration, KYN had no effect on membrane potential, input resistance, or excitability of the cells. In contrast, excitatory postsynaptic currents were unaffected by APV. It is concluded that both glutamate responses and excitatory synaptic transmission in lamprey Müller neurons are mediated by non-NMDA-type receptors and that these receptors are associated with ionic channels with a low elementary conductance. The combined pharmacological and biophysical characteristics of these responses are therefore different from those previously reported in other preparations. Spontaneous (but not stimulus-evoked) inhibitory synaptic events in Müller neurons were blocked reversibly by 1 mM KYN but not by 100 microM APV, suggesting that excitation of interneurons inhibitory to Müller cells was also mediated by non-NMDA receptors.  相似文献   

11.
Summary The neuroactive sulphur-containing amino acids L-cysteate (CA), L-cysteine sulphinate (CSA), L-homocysteine sulphinate (HSA), S-sulpho-L-cysteine (SC) and L-homocysteate (HCA) evoked the release of previously accumulated D-[3H]aspartate from rat brain cerebrocortical and cerebellar synaptosome fractions in a manner that was wholly Ca2+-independent. However, analysis of endogenous release by hplc revealed the presence of both Ca2+-dependent and -independent components of L-glutamate release but only a Ca2+-independent component of L-aspartate release. CA, CSA, HSA and SC but not HCA evoked the release of previously accumulated [3H]GABA from synaptosome fractions by a mechanism shown to comprise both a Ca2+-dependent and -independent component. The specific antagonists of the N-methyl-D-aspartate (NMDA) receptor, 3-[(±)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (CPP) and the relatively selective competitive quisqualate (QUIS)/kainate (KA) receptor antagonist, 6-cyano-7-dinitroquinoxalinedione (CNQX), were ineffective in blocking the excitatory sulphur amino acid-evoked release of either D-[3H]aspartate, [3H]GABA or of endogenous established transmitter amino acids.  相似文献   

12.
Microiontophoretic application of selective agonists for the three major excitatory amino acid receptors, N -methyl- d -aspartate (NMDA), quisqualate and kainate, increased the discharge rate of noradrenergic locus coeruleus (LC) neurons in vivo. NMDA activation was selectively attenuated by iontophoretic application of 2-amino-5-phosphonopentanoate (AP5), an antagonist at NMDA receptors, whereas kainate- and quisqualate-evoked responses were attenuated by both NMDA and non-NMDA antagonists iontophoresis. NMDA- and quisqualate-evoked responses were significantly decreased by co-iontophoresis of serotonin (5-HT). When the NMDA receptor-mediated component of the response to kainate was blocked with AP5 iontophoresis, 5-HT increased the response of LC neurons to kainate. These results revealed that 5-HT differentially modulates the responsiveness of LC neurons to excitatory amino acids, depending on the receptor subtypes responsible for the neuronal activation.  相似文献   

13.
The actions of the putative quisqualate-selective agonist DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) were examined in identified embryonic chick motoneurons using gigaseal recording techniques and compared with properties of the selective non-NMDA excitatory amino acid agonists kainate and quisqualate. Pressure application of AMPA induces an inward going current when neurons are voltage-clamped at negative membrane potentials. The current-voltage relationship for this response is linear with reversal near 0 mV. Over the range of 1 microM-10 mM, the AMPA-induced current is dose-dependent with an ED50 of 40 microM. AMPA currents are insensitive to the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate, and the putative quisqualate selective blocker, glutamate diethyl ester, but are partially inhibited by kynurenic acid. In competition experiments, applications of saturating concentrations of AMPA and either kainate or quisqualate produce responses intermediate between the response to either agonist alone, indicating commonality in the mechanism of these agents. Applications of AMPA with the NMDA-selective agonist aspartate give an additive response. Analysis of current fluctuations indicates that AMPA, quisqualate, and kainate gate a channel with a primary conductance near 20 pS. Differences in maximal macroscopic current evoked by saturating concentrations of AMPA, kainate, and quisqualate cannot be explained by differences in mean channel open time as the most efficacious agonist, kainate, has the shortest channel open time (AMPA = 5.9 +/- 0.4 msec, kainate = 2.7 +/- 0.1 msec, quisqualate = 5.0 +/- 0.5 msec). Rather, kainate induces a greater frequency of channel opening. This finding contrasts with results obtained at the nicotinic ACh receptor, where the most efficacious agonists have the longest mean channel open time. Our results suggest that AMPA acts at the same receptor-channel complex as kainate and quisqualate on chick motoneurons and support the hypothesis that only 2 classes of excitatory amino acid receptor complexes exist in this preparation.  相似文献   

14.
A considerable amount of evidence has accumulated to support a role for excitatory glutamatergic transmission in the regulation of the hypothalamo-neurohypophysial system. Glutamate immunoreactivity has been found in axon terminals forming asymmetric synapses on to magnocellular neurosecretory cells and kynurenic acid, a broad spectrum glutamate receptor antagonist inhibits 1) spontaneous electrical activity in vivo, 2) excitatory postsynaptic potentials in hypothalamic slices, and 3) osmotically-evoked vasopressin release from hypothalamic explants. While this provides strong evidence for glutamatergic regulation of hypothalamic magnocellular neurosecretory cells, the subtypes of glutamate receptors expressed by these cells have not been defined. We have, therefore, obtained current and voltage clamp recordings from supraoptic magnocellular neurosecretory cells in vitro to investigate the functional and pharmacological properties of their glutamate receptors. Application of micromolar concentrations of L-glutamate, or of the agonists kainate, quisqualate and N-methyl-D-aspartate (NMDA), produced reversible and dose-dependent depolarizations in all cells tested. These responses were mediated by postsynaptic receptors since they persisted during chemical synaptic blockade with Ca2 + -free or tetrodotoxin-containing solutions. The inward current induced by NMDA showed a marked Mg2+-sensitive voltage dependence, and was blocked by D, L-2-amino-5-phosphonovalerate. In contrast, currents induced by kainate and quisqualate showed linear current-voltage properties and were antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione. We conclude that both NMDA and non-NMDA receptors are expressed by magnocellular neurosecretory cells of the rat supraoptic nucleus.  相似文献   

15.
The effect of ethanol (EtOH) on synaptic transmission mediated by N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors was investigated in slices from adult rat hippocampus. Synaptic responses were elicited by stimulation of stratum radiatum and were recorded in CA1 stratum radiatum or stratum pyramidale. Population EPSPs (pEPSPs) mediated by NMDA receptor activation were isolated by application of a solution containing the kainate/quisqualate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione and either low (0.1 mM) Mg2+ or 100 microM bicuculline. Increasing concentrations of EtOH produced increasing inhibition of NMDA receptor-mediated pEPSPs with EtOH concentrations between 1 and 50 mM. At a concentration of 50 mM, EtOH inhibited NMDA receptor-mediated pEPSPS by 43%; the inhibition by 100 mM EtOH was not significantly different from that produced by 50 mM. Methanol and 1-butanol also inhibited the NMDA receptor-mediated pEPSPs; the potency of the alcohols for inhibition of NMDA receptor-mediated pEPSPs was 1-butanol greater than ethanol greater than methanol. pEPSPs mediated by non-NMDA glutamate receptors were isolated by the application of the NMDA receptor antagonist d,1-2-amino-5-phosphonovaleric acid in the presence of 1.5 mM Mg2+. These pEPSPs were not significantly affected by 50 mM EtOH, whereas 100 mM EtOH reduced the amplitude of these pEPSPs by 9%. The observations indicate that synaptic excitation mediated by NMDA receptors in tissue from adult rat is inhibited by intoxicating concentrations of EtOH. The data are consistent with the hypothesis that EtOH-induced inhibition of EPSPs mediated NMDA receptors may contribute to the intoxicating effects of EtOH.  相似文献   

16.
Injection of N-methyl-D-aspartate (NMDA, 7.5 micrograms) kainate (1 microgram) or quisqualate (2 micrograms) into the rat dorsal hippocampus induced wet-dog shakes and convulsions. As shown by an in situ immunohistochemical analysis, 3 h after the excitatory amino acids injections the rats displayed a bilateral profound elevation of the proenkephalin and prodynorphin mRNA levels in dentate gyrus granule cells (2-3 or 1.5-2 fold higher than control levels, respectively). Pretreatment of rats with D-amino-phosphonovalerate (D-APV, 10 micrograms), a selective antagonist of NMDA receptor, prevented the behavioral and biochemical changes evoked by NMDA. The changes in the behavior and gene expression evoked by kainate or quisqualate were diminished in rats which received 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX, 2 micrograms), a putative antagonist of quisqualate and kainate receptors. The study demonstrated that activation of NMDA, quisqualate or kainate receptors in the hippocampus induced seizures associated with a marked increase in the proenkephalin (PENK) and the prodynorphin (PDYN) gene expression in the rat dentate gyrus.  相似文献   

17.
We have studied the effect of excitatory amino acids on the expression of mRNA for the immediate early genes c-fos, c-jun, jun-B, and NGF-1A in isolated cortical astrocytes. The expression of the different genes was induced by 100 microM kainate, quisqualate, AMPA and high concentrations of K+ (140 mM). NMDA did not induce the expression of any of the genes studied. The effect of quisqualate stimulation was not inhibited by the antagonist CNQX or by withdrawal of external Ca2+. In contrast the kainate effect was abolished by CNQX but not by the removal of external Ca2+. However, elevated K+ induced c-fos only when calcium was present in the external medium. These findings suggest that type-1 astrocytes lack NMDA receptors and that the induction of genes by quisqualate and kainate is in part independent of the presence of calcium in the external medium and may be mediated through second messenger pathways.  相似文献   

18.
Sucrose gap recordings from the ventral roots of isolated, hemisected frog spinal cords were used to evaluate the effects of high concentrations of serotonin (5-HT) and alpha-methyl-5-HT (alpha-Me-5-HT) on the changes in motoneuron potential produced by dorsal root stimulation and by excitatory amino acids and agonists. Bath application of 5-HT in concentrations of 10 microM or greater produced a concentration-dependent motoneuron depolarization. Polysynaptic ventral root potentials evoked by dorsal root stimuli were reduced in both amplitude and area by 5-HT or alpha-Me-5-HT (both 100 microM). This may result from a reduction of the postsynaptic sensitivity of motoneurons to excitatory amino acid transmitters because 5-HT significantly depressed motoneuron depolarizations produced by addition of L-glutamate and L-aspartate to the superfusate. Similarly, 5-HT reduced depolarizations produced by the excitatory amino acid agonists N-methyl-D-aspartate (NMDA), quisqualate, alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA), and kainate. alpha-Me-5-HT reduced NMDA depolarizations. Tetrodotoxin (TTX) did not affect the ability of 5-HT to attenuate NMDA or kainate depolarizations, but did eliminate the 5-HT-induced attenuation of quisqualate and AMPA depolarizations. The glycine receptor site associated with the NMDA receptor did not appear to be affected by 5-HT because saturation of the site by excess glycine did not alter the 5-HT-induced depression of NMDA responses. The 5-HT1C/2 antagonist ketanserin and the 5-HT1A/2 antagonist spiperone significantly attenuated the 5-HT-induced depression of NMDA-depolarizations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A newly developed continuous superfusion model was used for studies of 3H-GABA release from cultured mouse cerebral cortex neurons. It was found that a series of excitatory amino acids (EAAs) representing all receptor subtypes evoked Ca2+- dependent release of 3H-GABA from the neurons. Quisqualate was the most potent agonist tested, with an EC50 value of 75 nM. L-Glutamate, N-methyl-D-aspartate (NMDA), and kainate showed EC50 values of 12, 16 and 29 microM, respectively. The EAA-evoked 3H-GABA release could be blocked by a series of EAA antagonists. The highly selective NMDA antagonist D-2-amino-5-phosphonovaleric acid (D-APV) was found to block NMDA responses, whereas the nonselective antagonists cis-2,3-piperidine dicarboxylic acid (PDA) and gamma-D-glutamyl-aminomethyl sulphonic acid (GAMS) blocked responses to all agonists. NMDA responses were found to be sensitive to Mg+ blockade. EAA- as well as potassium-induced 3H-GABA release from the neurons could be detected as early as day 5 in culture. However, during the culture period up to 12 d, the responses to K+, quisqualate, and NMDA were increased. The ontogenetic development of binding sites for quisqualate, kainate, and NMDA in mouse cortex was studied using the radioligands 3H-alpha-amino-3-hydroxy-5-methyl-4-isoxasole propionate (3H-AMPA), 3H-kainate, and 3H-L-glutamate, respectively. The development of binding sites for the different EAA-receptor subtypes showed a good correlation with the development of neuronal 3H-GABA release evoked by the excitatory amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Excitatory amino acids and their receptors play an important role in both normal synaptic transmission and excitotoxic-mediated neuronal death. In the present investigation we have prepared a series of glutamate analogs and examined the pharmacological specificity with which they interact with excitatory amino acid receptors. Included within this group of compounds is a potent excitotoxic amino acid, beta-N-oxalyl-L-alpha, beta-diaminopropionic acid (beta-L-ODAP). This excitotoxin is of particular interest because it has been identified as a major causative agent of human neurolathyrism, a disease characterized by permanent spastic paralysis. The site of action of beta-L-ODAP was delineated with both electrophysiological recordings in hippocampal slices and radioligand binding assays in synaptic plasma membranes. We report that beta-L-ODAP is a potent agonist at the non-N-methyl-D-aspartate (NMDA) type of excitatory amino acid receptor. beta-L-ODAP interacts most potently with the quisqualate class of non-NMDA receptors (IC50 = 1.3 microM), less potently with the kainate receptor (IC50 = 17 microM), and very weakly with NMDA receptors. The specificity of this binding was consistent with physiological experiments that demonstrated that beta-L-ODAP-induced depolarizations were potently blocked by the newly identified non-NMDA receptor antagonist, CNQX, but were not affected by the NMDA antagonist D-AP5. These results extend recent studies that have focused on the contribution of NMDA receptors to excitotoxicity and highlight the potential involvement of non-NMDA receptors in excitotoxic-mediated cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号