首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Class 1 phosphoinositide 3-kinases (PI3Ks), consisting of PI3Kalpha, beta, gamma, and delta, are a family of intracellular signaling molecules that play important roles in cell-mediated immune responses. In thymocytes, however, their role is less clear, although PI3Kgamma is postulated to partially contribute to pre-TCR-dependent differentiation. We now report that PI3Kdelta, in conjunction with PI3Kgamma, is required for thymocyte survival and ultimately for T-cell production. Surprisingly, genetic deletion of the p110delta and p110gamma catalytic subunits resulted in a dramatic reduction in thymus size, cellularity, and lack of corticomedullary differentiation. Total thymocyte counts in these animals were 27-fold lower than in wild-type (WT) controls because of a diminished number of CD4+ CD8+ double-positive (DP) cells and were associated with T-cell depletion in blood and in secondary lymphoid organs. Moreover, this alteration in the DP population was intrinsic to thymocytes, because the reconstitution of p110gammadelta-/- animals with WT fetal liver cells restored the proportions of all thymocyte populations to those in WT controls. The observed defects were related to massive apoptosis in the DP population; TCRB expression, pre-TCR selection, and generation of DP cells appeared relatively unperturbed. Thus, class 1 PI3Ks work in concert to protect developing thymocytes from apoptosis.  相似文献   

2.
OBJECTIVES: Patients with congestive heart failure (CHF) suffer considerable morbidity and mortality despite advances in therapy. Treatment with erythropoietin (Epo) has shown promise in CHF patients, yet its mechanisms of action remain elusive. Endothelial progenitor cells (EPC) contribute to postnatal angiogenesis and vasculogenesis, and Epo was shown to promote EPC mobilization. We explored the effect of chronic treatment with Epo on the numbers and functional properties of EPC in CHF patients. METHODS AND RESULTS: Twenty-eight patients with CHF treated with Epo for a mean period of 28 months were compared to a matched group (n = 28) with regard to the number of circulating hematopoietic and endothelial stem cells (either CD34+, CD34+/CD45+, CD34+/CD133+, CD34+/VEGF-R2+ or CD34+/CD133+/VEGF-R2+) as well as their proliferative and adhesive capacity. In vitro, Epo was added to cultured EPC from healthy subjects to test proliferation and adhesion. No differences were observed in circulating numbers of hematopoietic and endothelial stem cells between CHF patients chronically treated with Epo or untreated. EPC from Epo-treated patients exhibited enhanced proliferation as well as a trend towards adhesion to cultured endothelial cells prior to and following stimulation with TNF-alpha. Addition of Epo to EPC from healthy subjects dose-dependently increased their proliferation and adhesion to fibronectin, cultured endothelial cells, and cardiomyocytes. These effects were significantly reduced in the presence of phosphatidylinositol (PI) 3-kinase inhibitors. CONCLUSIONS: Chronic Epo treatment is associated with an increase in the adhesive and proliferative properties of circulating EPC in patients with CHF.  相似文献   

3.
Growth factors are known to favor both proliferation and survival of hepatocytes. In this work, we investigated the role of 2 main signaling pathways, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK), in these processes. First, evidence was provided that the PI3K cascade as well as the MEK/ERK cascade is a key transduction pathway controlling hepatocyte proliferation, as ascertained by arrest of DNA synthesis in the presence of LY294002, a specific PI3K inhibitor. Inhibition of FRAP/mTOR by rapamycin also abrogated DNA replication and protein synthesis induced by growth factor. We showed that expression of cyclin D1 at messenger RNA (mRNA) and protein levels was regulated by this pathway. We highlighted that 4E-BP1 phosphorylation was not activated by epidermal growth factor (EGF) but was under an insulin-regulation mechanism through a PI3K-FRAP/mTOR activation that could account for the permissive role of insulin on hepatocyte proliferation. No interference between the MEK/ERK pathway and 4E-BP1 phosphorylation was detected, whereas p70S6K phosphorylation induced by EGF was under a U0126-sensitive regulation. Last, we established that the antiapoptotic function of EGF was dependent on MEK, whereas LY294002 and rapamycin had no direct effect on cell survival. Taken together, these data highlight the regulation and the role of 2 pathways that mediate growth-related response by acting onto distinct steps. In conclusion, hepatocyte progression in late G1 phase induced by EGF generates survival signals depending on MEK activation, whereas PI3K and MEK/ERK cascades are both necessary for hepatocyte replication.  相似文献   

4.
Hepatocyte growth factor (HGF) is a ligand of the receptor tyrosine kinase encoded by the c-Met protooncogene. HGF/Met signaling has multifunctional effects on various cell types. We sought to determine the role of HGF/Met in apoptosis and identify signal transducers involved in this process. In experiments with human SK-LMS-1 leiomyosarcoma cells, we show that the Akt kinase is activated by HGF in a time- and dose-dependent manner by phosphatidylinositol 3-kinase (PI3-kinase). Akt is also activated by active tumorigenic forms of Met, i.e., ligand-independent Tpr-Met, a truncated and constitutively dimerized form of Met, and a mutationally activated version of Met corresponding to that found in human hereditary papillary renal carcinoma. In NIH 3T3 cells transfected with wild-type Met, HGF inhibits apoptosis induced by serum starvation and UV irradiation. HGF-induced survival correlates with Akt activity and is inhibited by the specific PI3-kinase inhibitor LY294002, indicating that HGF inhibits cell death through the PI3-kinase/Akt signal transduction pathway. Furthermore, transiently transfected Tpr-Met activates Akt (both Akt1 and Akt2) and protects cells from apoptosis. Mitogen-activated protein kinase (MAPK) also is activated by HGF and rescues cells from apoptosis, although the cytoprotective effect is less marked than for PI3-kinase/Akt. Blocking MAPK with the specific MAPK kinase inhibitor PD098059 impairs the ability of HGF to promote cell survival. Similar results were obtained with NIH 3T3 cells expressing the fusion protein Trk-Met and stimulated with nerve growth factor, the Trk ligand. These results demonstrate that HGF/Met is capable of protecting cells from apoptosis by using both PI3-kinase/Akt and, to a lesser extent, MAPK pathways.  相似文献   

5.
6.
7.
8.
AIM:To investigate the role of hepatocyte growth factor(HGF) in cholangiocarcinoma(CCA) cell invasiveness and the mechanisms underlying such cellular responses. METHODS:Effects of HGF on cell invasion and motility were investigated in two human CCA cell lines,HuCCA-1 and KKU-M213,using Transwell in vitro assay.Levels of proteins of interest and their phosphorylated forms were determined by Western blotting.Localization of E-cadherin was analyzed by immunofluorescence staining and visualized under confocal m...  相似文献   

9.
10.
Urokinase plasminogen activator (uPA) is expressed in human atherosclerotic lesions, predominantly in macrophages, and contributes to atherosclerosis progression. Since atherogenesis is characterized by the formation of cholesterol-loaded macrophage foam cells, we questioned whether uPA atherogenicity may involve macrophage cholesterol accumulation, and by what mechanisms. uPA increased cellular cholesterol content by 44% (mainly unesterified cholesterol) in THP-1 macrophages, and this effect was inhibited by statins. This effect was associated with 172% elevated cholesterol biosynthesis, which required the binding of uPA to its receptor. An upregulation of HMGCoA reductase (HMGCR) expression (protein and mRNA) was noted. Since HMGCR expression is controlled by sterol regulatory element-binding proteins (SREBPs), we next analyzed this issue. Indeed, treatment of macrophages with uPA increased SREBP-1 processing, and mature SEREBP-1 content (by 5.7-fold) in the nucleus. These latter effects were mediated by uPA-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK). Finally, uPA was found to activate MAP-kinase through PI3 kinase (PI3K), as PI3K inhibition abrogated both uPA-induced ERK phosphorylation and cholesterol biosynthesis. In conclusion, uPA-induced macrophage cholesterol accumulation is a novel pathway by which uPA may contribute to accelerated atherosclerosis development. These findings provide new insight into the atherogenicity of uPA and may suggest new novel therapeutic means.  相似文献   

11.
Autocrine signals promote osteoblast survival in culture   总被引:10,自引:0,他引:10  
We have studied the survival requirements of osteoblasts to test the hypothesis that osteoblasts undergo programmed cell death (PCD) or apoptosis unless they are continuously signalled by other cells not to do so. Osteoblasts survived for 6 days in culture at high cell density in the absence of other cell types, serum or exogenous proteins, but they died with the morphological features of apoptosis in these conditions at low cell density. Osteoblast survival was enhanced during the first 2 days of culture by the addition of the sulphydryl compound, cysteine to the culture medium which was converted intracellularly to the antioxidant glutathione. Catalase, an enzyme decomposing hydrogen peroxide, also protected the cells, whereas superoxide dismutase had no effect. Therefore, osteoblasts in culture are sensitive to toxic compounds derived from molecular oxygen, i.e. hydroxyl radicals or hydrogen peroxide spontaneously generated in CMRL medium containing ascorbate and ferrous ions. Conditioned medium from high density cultures prevented osteoblast apoptosis in low density cultures, as long as antioxidants were also present. The enhancing effect of conditioned medium on osteoblast survival was prevented by neutralizing antibodies to insulin-like growth factor-I (IGF-I) and IGF-II but not by antibodies to either platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF). These results suggest that in addition to regulating cell growth and differentiation, IGF-I and IGF-II also function as survival factors for osteoblasts. Our data also indicate that antioxidants are required for osteoblast survival and that they enhance growth factor mediated osteoblast survival.  相似文献   

12.
13.
Cerebellar development occurs mainly postnatally and implies cell proliferation and migration. Hepatocyte growth factor (HGF) and Met are involved in mediating these responses in other tissues and are coexpressed in the cerebellum. Here we show that Met is localized in granule cell precursors and that cultures of these cells respond to HGF with proliferation. To study the role of HGF and Met in the cerebellum in vivo, we produced a viable hypomorphic Met mutant by knocking in the met locus a point mutation to abrogate the receptor Grb2-binding site. A similar mutant was previously described as perinatal lethal. In this "first-generation" knock-in the recombinant locus retained the Neo cassette (Met(grb2/grb2neo+)). In the knock-in presented here Neo was Loxed and excised by Cre recombinase, which led to higher tissue levels of Met(grb2) protein, sufficient to rescue viability. In Met(grb2/grb2neo-) mice the size of the cerebellum was reduced and foliation defects were evident, especially in the central and posterior half of the vermis. Proliferation of granule precursors in vivo was 25% lower than in controls. In cultures of mutant granule cells HGF-induced microtubule-associated protein kinase activation was reduced and transient. Behavioral tests indicated a balance impairment in Met(grb2/grb2neo-) mice. Altogether these data indicate that normal cerebellar development and, possibly, function, require HGF and Met, and that proliferation of granule cells in the cerebellum critically depends on full HGF/Met signaling.  相似文献   

14.
15.
16.
Galectins are evolutionarily conserved glycan-binding proteins with pleiotropic roles in innate and adaptive immune responses. Galectin-3 has been implicated in several immunological processes as well as in pathogen recognition through specific binding to glycosylated receptors on the surface of host cells or microorganisms. In spite of considerable evidence supporting a role for galectin-3 in host-pathogen interactions, the relevance of this lectin in the regulation of the host defence mechanisms in vivo is poorly understood. In this study, we analysed the impact of galectin-3 deficiency during infection with three distinct species of rodent malaria parasites, Plasmodium yoelii 17XNL, Plasmodium berghei ANKA and Plasmodium chabaudi AS. We found that galectin-3 deficiency showed a marginal effect on the course of parasitaemia during P. chabaudi infection, but did not alter the course of parasitaemia during P. berghei infection. However, lack of galectin-3 significantly reduced P. yoelii parasitaemia. This reduced parasitaemia in Lgals3(-/-) mice was consistent with higher titres of anti-P. yoelii MSP1(19) IgG2b isotype antibodies when compared with their wild-type counterparts. Our results reflect the complexity and singularity of host-pathogen interactions, indicating a species-specific role of endogenous galectin-3 in the control of parasite infections and the modulation of antibody responses.  相似文献   

17.
Growth factors and cytokines trigger survival signaling in a wide variety of cell systems, including cardiac myocytes. Participation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt pathway in survival signaling has already been described in some cell types, but its involvement in the survival of cardiac myocytes is as yet unknown. Recently, CT-1, an interleukin 6-related cytokine, was shown to have survival-promoting, anti-apoptotic effects on cultured cardiac myocytes. However, roles of PI3K-dependent pathways in this signaling have not been elucidated. In the present study, therefore, we examined the participation of the PI3K/Akt pathway in CT-1-induced, survival-promoting signaling in cultured ventricular myocytes. It was found that CT-1 phosphorylated and activated Akt, and the effect was blocked by the PI3K inhibitors LY294002 and wortmannin. CT-1 also phosphorylated the pro-apoptotic factor, BAD, and the BAD phosphorylation was inhibited by LY294002, suggesting that phosphorylation of BAD is one of the key events by which the PI3K/Akt pathway mediates CT-1-induced survival signaling. Further, CT-1 PI3K-dependently prolonged the survival of serum-starved ventricular myocytes by preventing apoptosis. In summary, our findings show that PI3K-dependent survival signals contribute to CT-1-mediated ventricular myocyte survival. In vivo, the death of ventricular myocytes leads to heart failure, and downregulation of survival signals and/or augmentation of pro-apoptotic signals are likely to be important components of disease processes. Thus, the extent to which CT-1 and the PI3K/Akt pathway mitigate such pathological processes, in vivo, is an important question for the future.  相似文献   

18.
Prion diseases, which are mostly represented in humans by Creutzfeldt-Jakob disease, are transmissible neurodegenerative disorders characterized by vacuolization and neuronal loss, as well as by the accumulation of an abnormal form of the prion protein. These disorders have yet no effective treatment, and drugs that block prion replication in vitro do not significantly slow down the progression of the disease when used in vivo at late stages. Cell therapy that has been already tested in other neurodegenerative disorders therefore represents an interesting alternative approach. In this study, we showed for the first time in prion diseases that intracerebral transplantation of fetal neural stem cells significantly extended both incubation and survival time. This result was dependant on the time window chosen for the engraftment and was obtained with both genetically modified and wild-type stem cells, therefore forging a path toward efficient stem cell therapy for human prion diseases.  相似文献   

19.
Cell adhesion to extracellular matrix regulates proliferation and survival of several cell types including epithelial thyroid cells. Activation of integrin receptors by binding to extracellular matrix generates a complex cell type-dependent signaling. Adhesion to extracellular matrix induces proliferation and survival in primary cultures of thyroid cells and induces survival in immortalized human thyrocytes. In this study we demonstrate that in immortalized human thyrocyte cells, adhesion to immobilized fibronectin (FN) stimulates DNA synthesis and proliferation through the p21Ras/MAPK pathway, whereas cell survival is mediated by phosphatidylinositol 3-kinase (PI3K) signal pathway. Integrin activation by immobilized FN induced phosphorylation of pp125 focal adhesion kinase and paxillin and induced the formation of focal adhesion kinase/Grb-2/Sos complex. Western blot and in vitro kinase assay demonstrated the activation of Ras and the p44/p42 MAPK/ERK1/2. Inhibition of p21Ras activity and inhibition of MAPK enzymatic activity completely arrested cell growth but did not induce cell death. Integrin activation by cell adhesion to FN also induced activation of PI3K. Inhibition of PI3K enzymatic activity induced apoptosis demonstrated by annexin V-binding assay and loss of cellular DNA content. These results demonstrate that in thyroid cells adhesion to FN regulates proliferation through the p21Ras/MAPK signal pathway, whereas integrin-mediated cell survival is mediated by PI3K.  相似文献   

20.
Hypertension contributes to the global burden of cardiovascular disease. Increased dietary K+ reduces blood pressure; however, the mechanism has been obscure. Human genetic studies have suggested that the mechanism is an obligatory inverse relationship between renal salt reabsorption and K+ secretion. Mutations in the kinases with-no-lysine 4 (WNK4) or WNK1, or in either Cullin 3 (CUL3) or Kelch-like 3 (KLHL3)—components of an E3 ubiquitin ligase complex that targets WNKs for degradation—cause constitutively increased renal salt reabsorption and impaired K+ secretion, resulting in hypertension and hyperkalemia. The normal mechanisms that regulate the activity of this ubiquitin ligase and levels of WNKs have been unknown. We posited that missense mutations in KLHL3 that impair binding of WNK4 might represent a phenocopy of the normal physiologic response to volume depletion in which salt reabsorption is maximized. We show that KLHL3 is phosphorylated at serine 433 in the Kelch domain (a site frequently mutated in hypertension with hyperkalemia) by protein kinase C in cultured cells and that this phosphorylation prevents WNK4 binding and degradation. This phosphorylation can be induced by angiotensin II (AII) signaling. Consistent with these in vitro observations, AII administration to mice, even in the absence of volume depletion, induces renal KLHL3S433 phosphorylation and increased levels of both WNK4 and the NaCl cotransporter. Thus, AII, which is selectively induced in volume depletion, provides the signal that prevents CUL3/KLHL3-mediated degradation of WNK4, directing the kidney to maximize renal salt reabsorption while inhibiting K+ secretion in the setting of volume depletion.Hypertension affects 1 billion people worldwide and is a major risk factor for death from stroke, myocardial infarction, and congestive heart failure. The study of Mendelian forms of hypertension has demonstrated the key role of increased renal salt reabsorption in disease pathogenesis (14). Observational and intervention trials (5, 6) also indicate that increased dietary K+ lowers blood pressure; however, the mechanism of this effect has been unclear.Pseudohypoaldosteronism type II (PHAII; Online Mendelian Inheritance in Man no. 145260), featuring hypertension and hyperkalemia, has revealed a previously unrecognized mechanism that regulates the balance between renal salt reabsorption and K+ secretion in response to aldosterone (7). Aldosterone is produced by the adrenal glomerulosa in volume depletion, in response to angiotensin II (AII), and in hyperkalemia via membrane depolarization (8). In volume depletion, aldosterone maximizes renal salt reabsorption, whereas in hyperkalemia, aldosterone promotes maximal renal K+ secretion. Volume depletion increases both the NaCl cotransporter (NCC) (9) and electrogenic Na+ reabsorption via the epithelial Na+ channel (ENaC) (10). The lumen-negative potential produced by ENaC activity provides the electrical driving force for paracellular Cl reabsorption (11). In hyperkalemia, the lumen-negative potential promotes K+ secretion via the K+ channel Kir1.1 (renal outer medullary K+ channel ROMK), reducing plasma K+ level (12, 13). Additionally, recent studies have implicated aldosterone signaling in intercalated cell transcellular Cl flux (14). In these cells, hyperkalemia induces phosphorylation of the mineralocorticoid receptor (MR) ligand-binding domain, making it incapable of ligand binding and activation. AII signaling induces dephosphorylation, and activation of the MR by aldosterone then induces transcellular Cl flux, which is required for defense of intravascular volume (14, 15). Because electrogenic Cl reabsorption and K+ secretion both dissipate the lumen-negative potential produced by ENaC, maximal Cl reabsorption inhibits K+ secretion and vice versa.Patients with PHAII have constitutive reabsorption of NaCl with concomitant inhibition of K+ secretion, resulting in hypertension and hyperkalemia, despite normal levels of aldosterone (7). Dominant mutations in the serine–threonine kinases with-no-lysine 4 (WNK4) or WNK1, or in CUL3 or KLHL3, elements of a ubiquitin ligase complex, cause this disease (2, 4). WNK4 modulates the activities of NCC, ENaC, Kir1.1, and MR (14, 1621), and WNK4 function can be modulated by phosphorylation (21). CUL3/KLHL3 has been shown to target WNK4 and WNK1 for ubiquitination and degradation, and disease-causing mutations impair this binding and degradation (2224). In particular, dominant mutations in the Kelch domain of KLHL3 prevent binding to WNKs; reciprocally, disease-causing point mutations in WNK4 also prevent WNK4–KLHL3 binding.These findings suggest that regulation of WNK degradation by CUL3/KLHL3 is highly regulated and that disease-causing mutations might phenocopy a state in which WNKs are normally turned off, producing constitutive salt reabsorption and inhibited K+ secretion. We now demonstrate that this inference is correct and implicate AII signaling in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号