首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
Malaria parasites express a broad repertoire of proteins whose expression is tightly regulated depending on the life-cycle stage of the parasite and the environment of target organs in the respective host. Transmission of malaria parasites from the human to the anopheline mosquito is mediated by intraerythrocytic sexual stages, termed gametocytes, which circulate in the peripheral blood and are essential for the spread of the tropical disease. In Plasmodium falciparum, gametocytes express numerous extracellular proteins with adhesive motifs, which might mediate important interactions during transmission. Among these is a family of six secreted proteins with adhesive modules, termed PfCCp proteins, which are highly conserved throughout the apicomplexan clade. In P. falciparum, the proteins are expressed in the parasitophorous vacuole of gametocytes and are subsequently exposed on the surface of macrogametes during parasite reproduction in the mosquito midgut. One characteristic of the family is a co-dependent expression, such that loss of all six proteins occurs if expression of one member is disrupted via gene knockout. The six PfCCp proteins interact by adhesion domain-mediated binding and thus form complexes on the sexual stage surface having adhesive properties. To date, the PfCCp proteins represent the only protein family of the malaria parasite sexual stages that assembles to multimeric complexes, and only a small number of such protein complexes have so far been identified in other life-cycle stages of the parasite.  相似文献   

3.
Plasmodium falciparum, the protozoan parasite responsible for severe malaria infection, undergoes a complex life cycle. Infected red blood cells (iRBC) sequester in host cerebral microvessels, which underlies the pathology of cerebral malaria. Using immunohistochemistry on post mortem brain samples, we demonstrated positive staining for vascular endothelial growth factor (VEGF) on iRBC. Confocal microscopy of cultured iRBC revealed accumulation of VEGF within the parasitophorous vacuole, expression of host VEGF-receptor 1 and activated VEGF-receptor 2 on the surface of iRBC, but no accumulation of VEGF receptors within the iRBC. Addition of VEGF to parasite cultures had a trophic effect on parasite growth and also partially rescued growth of drug treated parasites. Both these effects were abrogated when parasites were grown in serum-free medium, suggesting a requirement for soluble VEGF receptor. We conclude that P. falciparum iRBC can bind host VEGF-R on the erythrocyte membrane and accumulate host VEGF within the parasitophorous vacuole, which may have a trophic effect on parasite growth.  相似文献   

4.
The gene encoding the gametocyte specific cytoplasmic protein Pfg27/25 of the human malaria parasite Plasmodium falciparum has been cloned. The gene encodes a highly hydrophilic non-repetitive protein which does not share obvious homologies with other polypeptides. The stage specificity of Pfg27/25 is controlled at the stage of the production of stable mRNA, which is detectable only in the sexual stages of the parasite, and contains long additional sequences outside the Pfg27/25 coding region. As the activation of Pfg27/25 gene expression occurs at an early stage of gametocytogenesis, the study of its regulation might provide information on the molecular events occurring after the parasite commitment to sexual differentiation and at the beginning of gametocyte formation.  相似文献   

5.
Following invasion of human erythrocytes, the malaria parasite, Plasmodium falciparum, exports proteins beyond the confines of its own plasma membrane to modify the properties of the host red cell membrane. These modifications are critical to the pathogenesis of malaria. Analysis of the P. falciparum genome sequence has identified a large number of molecules with putative atypical signal sequences. The signals remain poorly characterized; however, a number of molecules with these motifs localize to the host erythrocyte. To examine the role of these atypical signal sequences in the export of parasite proteins, we have generated transfected parasites expressing a chimeric protein comprising the N-terminal region of the P. falciparum ring-infected erythrocyte surface antigen (RESA) appended to green fluorescent protein (GFP). This N-terminal region contains a hydrophobic stretch of amino acids that is presumed to act as a noncanonical secretory signal sequence. Modulation of the timing of transgene expression demonstrates that trafficking of malaria proteins into the host erythrocyte is dependent on both the presence of an appropriate transport signal and the timing of expression. Transgene expression under the control of a trophozoite-specific promoter mistargets the chimeric molecule to the parasitophorous vacuole surrounding the parasite. However, expression of RESA-GFP in schizont stages, under the control of the RESA promoter, enables correct trafficking of a population of the chimeric protein to the host erythrocyte.  相似文献   

6.
We have characterized HLA-DR-restricted T-cell epitopes on the 27-kDa protein (Pfg27), a sexual stage-specific antigen, of the human malaria parasite Plasmodium falciparum in subjects with a history of malaria. Pfg27, expressed early in the sexual stages, is recognized by monoclonal antibodies capable of reducing the infectivity of gametocytes in mosquitoes. By using 16 Pfg27-specific CD4+-T-cell clones derived from three donors, seven different T-cell epitopes were identified. Among them, P11 (amino acids 191 to 210 of the Pfg27 sequence, IDVVDSYIIKPIPALPVTPD) was found to contain a previously described binding motif for multiple HLA-DR allotypes. Indeed, P11 was found to be promiscuous in that it could be recognized by T cells in the context of at least five different HLA-DR molecules. The cytokine profile of the clones was mixed. Seven of nine T-cell clones exhibited a Th0-like cytokine profile, producing high levels of gamma interferon (IFN-γ) and interleukin-4 (IL-4) upon stimulation with specific peptides and mitogens. The other two clones had a Th1-like cytokine profile with high expression of IFN-γ and no IL-4. Identification of a promiscuous epitope in Pfg27 could play a significant role in the design of a subunit vaccine for suppressing malaria transmission.  相似文献   

7.
Egress is a crucial step for malaria parasites to progress from one host cell to another. The rapid transition between host cells is mediated by the invasive merozoite stages. Merozoite egress from the enveloping cell includes the rupture of two membranes, the membrane of the parasitophorous vacuole and the host cell membrane. Egress from the host cell is also of importance for the intraerythrocytic gametocytes in order to undergo gametogenesis following their transmission to the mosquito during the blood meal. An increasing number of studies have aimed to identify the molecules involved in host cell egress by malaria parasites and decipher the sequence of membrane rupture. Recent work has acknowledged the crucial roles of plasmodial and host-derived proteases in membrane rupture and has indicated the involvement of secretory vesicles in priming the enveloping membranes for egress. This review highlights recent insight into the mechanisms of host cell egress by Plasmodium parasites. We will discuss the mode of egress of intrahepatic and intraerythrocytic parasites and their measures to evade the host immune system during this process.  相似文献   

8.
The serine repeat antigen (SERA) proteins of the malaria parasites Plasmodium spp. contain a putative enzyme domain similar to that of papain family cysteine proteases. In Plasmodium falciparum parasites, more than half of the SERA family proteins, including the most abundantly expressed form, SERA5, have a cysteine-to-serine substitution within the putative catalytic triad of the active site. Although SERA5 is required for blood-stage parasite survival, the occurrence of a noncanonical catalytic triad casts doubt on the importance of the enzyme domain in this function. We used phage display to identify a small (14-residue) disulfide-bonded cyclic peptide (SBP1) that targets the enzyme domain of SERA5. Biochemical characterization of the interaction shows that it is dependent on the conformation of both the peptide and protein. Addition of this peptide to parasite cultures compromised development of late-stage parasites compared to that of control parasites or those incubated with equivalent amounts of the carboxymethylated peptide. This effect was similar in two different strains of P. falciparum as well as in a transgenic strain where the gene encoding the related serine-type parasitophorous vacuole protein SERA4 was deleted. In compromised parasites, the SBP1 peptide crosses both the erythrocyte and parasitophorous vacuole membranes and accumulates within the parasitophorous vacuole. In addition, both SBP1 and SERA5 were identified in the parasite cytosol, indicating that the plasma membrane of the parasite was compromised as a result of SBP1 treatment. These data implicate an important role for SERA5 in the regulation of the intraerythrocytic development of late-stage parasites and as a target for drug development.  相似文献   

9.
10.
Two quantitative nucleic acid sequence-based amplification assays (QT-NASBA) based on Pfs16 and Pfs25, have been developed to quantify sexual stage commitment and mature gametocytes of Plasmodium falciparum. Pfs16 mRNA is expressed in all sexual forms including sexually committed ring stages while expression of Pfs25 mRNA is restricted to late stage gametocytes. Both assays showed a sensitivity of one sexual stage parasite/microl of blood. Blood samples from experimentally infected non-immune human volunteers were tested for Plasmodium falciparum by standard microscopy, a previously developed asexual 18S rRNA QT-NASBA, Pfs16 and Pfs25 mRNA QT-NASBA. Pfs16 QT-NASBA was positive in 9 out of 10 volunteers within 48 h after first detection of 18S rRNA, mostly before or at the day of positive microscopy. In contrast, the Pfs25 mRNA QT-NASBA was negative during the 28 days of follow-up, but consistently positive in gametocyte samples from naturally infected Kenyan patients. These data suggest that sexual stage commitment can occur early in the blood-stage infection without successful maturation into infectious gametocytes. In conclusion, Pfs16 and Pfs25 QT-NASBA assays in combination with a previously developed asexual stage QT-NASBA allow for the separate quantification of all developmental stages present in the circulation. The application of sexual stage QT-NASBA assays may contribute to a better understanding of the biology and epidemiology of malaria transmission.  相似文献   

11.
Gametocytes, the sexual stages of malaria parasites (Plasmodium spp.) that are transmissible to mosquitoes, have been the focus of much recent research as potential targets for novel drug and vaccine therapies. However, little is known about the host clearance of gametocyte-infected erythrocytes (GEs). Using a number of experimental strategies, we found that the scavenger receptor CD36 mediates the uptake of nonopsonized erythrocytes infected with stage I and IIA gametocytes of Plasmodium falciparum by monocytes and culture-derived macrophages (Mphis). Light microscopy and immunofluorescence assays revealed that stage I and IIA gametocytes were readily internalized by monocytes and Mphis. Pretreating monocytes and Mphis with a monoclonal antibody that blocked CD36 resulted in a significant reduction in phagocytosis, as did treating GEs with low concentrations of trypsin to remove P. falciparum erythrocyte membrane protein 1 (PfEMP-1), a parasite ligand for CD36. Pretreating monocytes and Mphis with peroxisome proliferator-activated receptor gamma-retinoid X receptor agonists, which specifically upregulate CD36, resulted in a significant increase in the phagocytosis of GEs. Murine CD36 on mouse Mphis also mediated the phagocytosis of P. falciparum stage I and IIA gametocytes, as determined by receptor blockade with anti-murine CD36 monoclonal antibodies and the lack of uptake by CD36-null Mphis. These results indicate that phagocytosis of stage I and IIA gametocytes by monocytes and Mphis appears to be mediated to a large extent by the interaction of PfEMP-1 and CD36, suggesting that CD36 may play a role in innate clearance of these early sexual stages.  相似文献   

12.
Rhoptry and microneme organelles of the protozoan parasite Toxoplasma gondii are closely associated with host cell adhesion/invasion and establishment of the intracellular parasitophorous vacuole. In order to study the targeting of proteins to these specialized secretory organelles, we have engineered green fluorescent protein (GFP) fusions to the rhoptry protein ROP1 and the microneme protein MIC3. Both chimeras are correctly targeted to the appropriate organelles, permitting deletion analysis to map protein subdomains critical for targeting. The propeptide and a central 146 amino acid region of ROP1 are sufficient to target GFP to the rhoptries. More extensive deletions result in a loss of rhoptry targeting; the GFP reporter is diverted into the parasitophorous vacuole via dense granules. Certain MIC3 deletion mutants were also secreted into the parasitophorous vacuole via dense granules, supporting the view that this route constitutes the default pathway in T. gondii, and that specific signals are required for sorting to rhoptries and micronemes. Deletions within the cysteine-rich central region of MIC3 cause this protein to be arrested at various locations within the secretory pathway, presumably due to improper folding. Although correctly targeted to the appropriate organelles in living parasites, ROP1-GFP and MIC3-GFP fusion proteins were not secreted during invasion. GFP fusion proteins were readily secreted from dense granules, however, suggesting that protein secretion from rhoptries and micronemes might involve more than a simple release of organellar contents.  相似文献   

13.
Why there are so few gametocytes (the transmission stage of malaria) in the blood of humans infected with Plasmodium spp. is intriguing. This may be due either to reproductive restraint by the parasite or to unidentified gametocyte-specific immune-mediated clearance mechanisms. We propose another mechanism, a cross-stage immunity to Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP-1). This molecule is expressed on the surface of the erythrocyte infected with either trophozoite or early gametocyte parasites. Immunoglobulin G antibodies to PfEMP-1, expressed on both life cycle stages, were measured in residents from an area where malaria is endemic, Papua New Guinea. Anti-PfEMP-1 prevalence increased with age, mirroring the decline in both the prevalence and the density of asexual and transmission stages in erythrocytes. These data led us to propose that immunity to PfEMP-1 may influence malaria transmission by regulation of the production of gametocytes. This regulation may be achieved in two ways: (i) by controlling asexual proliferation and density and (ii) by affecting gametocyte maturation.  相似文献   

14.
15.
In Plasmodium parasites the fusion of gametes to form a fertilized zygote and morphogenesis into the motile ookinete are critical developmental stages in the parasite's complex life cycle. In analogous developmental stages of metazoan organisms 3' gene flanking regions are critical in the regulation of gene expression. To determine whether these mechanisms are conserved in the protozoan parasite we studied the 3' gene flanking elements necessary for the expression of Pgs28, the major surface protein of mature zygotes and ookinetes of the chicken malaria Plasmodium gallinaceum. The DNA sequence of the pgs28 3' gene flanking region contains 7 eukaryotic polyadenylation consensus signals (AATAAA/ATTAAA). An unusual 82% T-rich region is located 55 nucleotides upstream of the fifth polyadenylation signal (ATTAAA). The pgs28 mRNA terminates approximately 20 nucleotides from the polyadenylation signal in a poly (A) tail. To determine whether the T-rich region and polyadenylation signals were necessary for Pgs28 protein expression, sexual stage parasites were transfected with plasmids containing deletions of these elements utilizing firefly luciferase (LUC) and beta-glucuronidase (GUS) as markers of transient gene transfection. The parasites were allowed to develop in vitro to the ookinete stage and assayed for enzymatic activity. Cells transfected with plasmids containing deletions of the T-rich region or fifth eukaryotic polyadenylation consensus signal expressed 89 and 92%, less enzymatic activity respectively than those transfected with the full length pgs28 3' gene flanking region. The U-rich element and fifth eukaryotic polyadenylation consensus sequence within the pgs28 3' UTR are therefore necessary for Pgs28 protein expression.  相似文献   

16.
17.
Erythrocytes containing two or more parasites, referred to here as multiply infected erythrocytes (MIEs), are common in the blood of humans infected by Plasmodium falciparum. It is necessary to study these cells closely because the excess numbers of parasites they contain suggest that they could be overloaded with virulence factors. Here, microscopic examinations of blood smears from patients showed that up to seven merozoites can successfully invade an erythrocyte and mature to ring stage. However, in vitro culture showed that only up to three parasites can mature to late schizont stage. These observations were made by culturing the parasites in erythrocytes containing hemoglobin AA (HbAA), HbAS, and HbSS. Biochemical analysis of saponin-concentrated culture suggests that more hemozoin is produced in a MIE than in a singly infected erythrocyte (SIE). Studies have shown that ingestion of excessive hemozoin destroys monocytes and neutrophils, which could impair the immune system. Cultured parasites were also examined by transmission electron microscopy, and it was found that the quantity of knobs was dramatically increased on the membranes of erythrocytes containing multiple schizonts, compared to those containing only one schizont. Knobs contain, among other things, P. falciparum erythrocyte membrane protein 1 (PfEMP1) complex which mediates sequestration and promotes severe malaria. These findings suggest that P. falciparum increases its virulence by producing MIEs. On sexual life cycle of the parasite, microphotographs are presented in this report showing, for the first time, that two gametocytes can develop in one erythrocyte; they are referred to here as twin gametocytes. It is not known whether they can infect mosquitoes.  相似文献   

18.
Protein export is considered an essential feature of malaria parasite blood stage development. Here, we examined five components of the candidate Plasmodium translocon of exported proteins (PTEX), a complex thought to mediate protein export across the parasitophorous vacuole membrane into the host cell. Using the murine malaria model parasite Plasmodium berghei, we succeeded in generating parasite lines lacking PTEX88 and thioredoxin 2 (TRX2). Repeated attempts to delete the remaining three translocon components failed, suggesting essential functions for EXP2, PTEX150, and heat shock protein 101 (HSP101) during blood stage development. To analyze blood infections of the null-mutants, we established a flow cytometry-assisted intravital competition assay using three novel high fluorescent lines (Bergreen, Beryellow, and Berred). Although blood stage development of parasites lacking TRX2 was affected, the deficit was much more striking in PTEX88 null-mutants. The multiplication rate of PTEX88-deficient parasites was strongly reduced resulting in out-competition by wild-type parasites. Endogenous tagging revealed that TRX2::tag resides in distinct punctate organelles of unknown identity. PTEX88::tag shows a diffuse intraparasitic pattern in blood stage parasites. In trophozoites, PTEX88::tag also localized to previously unrecognized extensions reaching from the parasite surface into the erythrocyte cytoplasm. Together, our results indicate auxiliary roles for TRX2 and PTEX88 and central roles for EXP2, PTEX150, and HSP101 during P. berghei blood infection.  相似文献   

19.
Continuous culture of the erythrocytic cycle ofPlasmodium falciparum within human erythrocytes maintained under appropriate conditionsin vitro has facilitated a large body of fundamental investigations with this important pathogen. It has revealed complex relationships between the developing intracellular parasite and its host erythrocyte. In pursuit of further understanding of these relationships, we have now developed, and here describe, methods that support extracellular development of the erythrocytic stages ofP. falciparum. Since only 1 to 2% of an inoculum of free merozoites can develop extracellularly through the entire schizogonic cycle to again form merozoites, the method does not support continuous extracellular culture. The work shows that the parasitophorous membrane and vacuole are not essential. Development of the parasites beyond the ring stage does however require constituents of the erythrocyte membrane.Abbreviations CPD citrate-phosphate dextrose - KIS KI medium with 10% human serum - RP-C RP medium without bicarbonate or serum - RPS RP medium with bicarbonate and serum  相似文献   

20.
Peroxiredoxins (Prxs) constitute a ubiquitous family of antioxidant enzymes involved in diverse cellular functions including cell proliferation and differentiation. To investigate the physiologic role of typical 2-Cys Prx in malaria parasites (TPx-1), we disrupted this gene in the rodent malaria parasite Plasmodium berghei (pbtpx-1). The gene-disrupted parasite (Prx KO) developed normally in mouse erythrocytes and multiplied at a rate similar to that of the parent strain (WT) during the experimental period. The normal growth rate was not altered after 10 passages, and the level of 8-hydroxy-2'-deoxyguanosine, which accumulates in the parasite genome during the cell cycle, was similar between Prx KO and WT. These results suggest that TPx-1 does not prevent parasite DNA oxidation, in contrast to mammalian Prx, and that it is not essential for asexual parasite growth in mouse erythrocytes. However, Prx KO produced up to 60% fewer gametocytes, sexual-stage parasites involved in the transition between the mammalian host and the mosquito, than WT did. The peak of gametocytemia was also delayed; however, the male/female ratio of gametocytes and the exflagellation activity of male gametocytes were normal. These results suggest that TPx-1 is required for normal gametocyte development but does not affect the male/female gametocyte ratio or male gametogenesis. Although the mechanism by which PbTPx-1 contributes to gametocyte development remains unknown, these findings suggest, for the first time, the involvement of Prx in the sexual development of the malaria parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号