首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The etiology of schizophrenia remains unclear, while there has been a growing amount of evidence for the neuroinflammation and immunogenetics, which are characterized by an increased serum concentration of several pro-inflammatory cytokines. Despite the fact that microglia comprise only <10% of the total brain cells, microglia respond rapidly to even minor pathological changes in the brain and may contribute directly to the neuronal degeneration by producing various pro-inflammatory cytokines and free radicals. In many aspects, the neuropathology of schizophrenia has recently been reported to be closely associatedwith microglial activation. Previous studies have shown the inhibitory effects of some typical/atypical antipsychotics on the release of inflammatory cytokines and free radicals from activated microglia, both of which have recently been known to cause a decrease in neurogenesis as well as white matter abnormalities in the brains of patients with schizophrenia. The microglia hypothesis of schizophrenia may shed new light on the therapeutic strategy for schizophrenia.  相似文献   

2.
Schizophrenia is a devastating illness of unknown etiology and the basis for its treatment rests in the symptomatic response to antipsychotics. It was found that some of the patients with schizophrenia elicited microglia activation. The present study used lipopolysaccharide (LPS)-activated mouse microglial cell line N9 as an in vitro model to mimic microglia activation seen in the patients with schizophrenia. The effects of clozapine, olanzapine and haloperidol on the release of nitric oxide (NO) by LPS-stimulated N9 cells were investigated. The results showed that olanzapine significantly inhibited NO release by LPS-stimulated N9 cells. Clozapine and haloperidol did not show significant effects on this model. The present study suggested that the inhibiting effect of olanzapine on the NO release by LPS-stimulated microglial cells might be a new mechanism through which olanzapine exhibits its therapeutic effect in the treatment of schizophrenia.  相似文献   

3.
Microglia, which are a major glial component of the central nervous system (CNS), have recently been suggested to mediate neuroinflammation through the release of pro-inflammatory cytokines and nitric oxide (NO). Microglia are also known to play a critical role as resident immunocompetent and phagocytic cells in the CNS. Immunological dysfunction has recently been demonstrated to be associated with the pathophysiology of depression. However, to date there have only been a few studies on the relationship between microglia and depression. We therefore investigated if antidepressants can inhibit microglial activation in vitro. Our results showed that the selective serotonin reuptake inhibitors (SSRIs) paroxetine and sertraline significantly inhibited the generation of NO and tumor necrosis factor (TNF)-α from interferon (IFN)-γ-activated 6-3 microglia. We further investigated the intracellular signaling mechanism underlying NO and TNF-α release from IFN-γ-activated 6-3 microglia. Our results suggest that paroxetine and sertraline may inhibit microglial activation through inhibition of IFN-γ-induced elevation of intracellular Ca2+. Our results suggest that the inhibitory effect of paroxetine and sertraline on microglial activation may not be a prerequisite for antidepressant function, but an additional beneficial effect.  相似文献   

4.
Microglia has recently been regarded to be a mediator of neuroinflammation via the release of proinflammatory cytokines, nitric oxide (NO) and reactive oxygen species (ROS) in the central nervous system (CNS). Microglia has thus been reported to play an important role in the pathology of neurodegenerative disease, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The pathological mechanisms of schizophrenia remain unclear while some recent neuroimaging studies suggest even schizophrenia may be a kind of neurodegenerative disease. Risperidone has been reported to decrease the reduction of MRI volume during the clinical course of schizophrenia. Many recent studies have demonstrated that immunological mechanisms via such as interferon (IFN)-gamma and cytokines might be relevant to the pathophysiology of schizophrenia. In the present study, we thus investigated the effects of risperidone on the generation of nitric oxide, inducible NO synthase (iNOS) expression and inflammatory cytokines: interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha by IFN-gamma-activated microglia by using Griess assay, Western blotting and ELISA, respectively. In comparison with haloperidol, risperidone significantly inhibited the production of NO and proinflammatory cytokines by activated microglia. The iNOS levels of risperidone-treated cells were much lower than those of the haloperidol-treated cells. Antipsychotics, especially risperidone may have an anti-inflammatory effect via the inhibition of microglial activation, which is not only directly toxic to neurons but also has an inhibitory effect on neurogenesis and oligodendrogenesis, both of which have been reported to play a crucial role in the pathology of schizophrenia.  相似文献   

5.
Altered antioxidant status has been implicated in schizophrenia. Microglia, major sources of free radicals such as superoxide (?O(2)(-)), play crucial roles in various brain pathologies. Recent postmortem and imaging studies have indicated microglial activation in the brain of schizophrenic patients. We previously demonstrated that atypical antipsychotics including aripiprazole significantly inhibited the release of nitric oxide and proinflammatory cytokines from interferon-γ-stimulated microglia in vitro. Antioxidative effects of antipsychotics via modulating microglial superoxide generation have never been reported. Therefore, we herein investigated the effects of antipsychotics on the ?O(2)(-) generation from phorbol-myristate-acetate (PMA)-stimulated rodent microglia by the electron spin resonance (ESR) spectroscopy and also examined the intracellular mechanism by intracellular Ca(2+) imaging and immunostaining. Neuronal damage induced by microglial activation was also investigated by the co-culture experiment. Among various antipsychotics, only aripiprazole inhibited the ?O(2)(-) generation from PMA-stimulated microglia. Aripiprazole proved to inhibit the ?O(2)(-) generation through the cascade of protein kinase C (PKC) activation, intracellular Ca(2+) regulation and NADPH oxidase activation via cytosolic p47(phox) translocation to the plasma/phagosomal membranes. Formation of neuritic beading, induced by PMA-stimulated microglia, was attenuated by pretreatment of aripiprazole. D2R antagonism has long been considered as the primary therapeutic action for schizophrenia. Aripiprazole with D2R partial agonism is effective like other antipsychotics with fewer side effects, while aripiprazole's therapeutic mechanism itself remains unclear. Our results imply that aripiprazole may have psychotropic effects by reducing the microglial oxidative reactions and following neuronal reactions, which puts forward a novel therapeutic hypothesis in schizophrenia research.  相似文献   

6.
Alzheimer and a number of other neurodegenerative diseases are characterized by the presence of reactive microglia and reactive astrocytes in association with the lesions. The classic view that microglia exist primarily in either a resting or activated state needs to be broadened in view of recent results. Resting microglia are in constant activity sampling their surround. Activated microglia may be pro-inflammatory, releasing inflammatory cytokines and other inflammatory mediators, or anti-inflammatory, promoting the healing process. There is evidence that microglial phagocytosis is more powerful in the anti-inflammatory state. Activated astrocytes also have pro-inflammatory and anti-inflammatory properties. In the pro-inflammatory state they release inflammatory cytokines. In the anti-inflammatory state they release various growth factors. In AD and other neurodegenerative diseases, both microglia and astrocytes are in a pro-inflammatory state. From a therapeutic point of view it is desirable to find methods of tipping the balance towards an anti-inflammatory state for both types of glia.  相似文献   

7.
Circumstantial evidence has suggested that activated microglia may be associated with the pathogenesis of depression. Pro-inflammatory cytokines may also be involved. Therefore, we examined the effects of various types of antidepressants, as well as the mood-stabilizer lithium chloride, on interferon-gamma (IFN-gamma)-induced microglial production of the pro-inflammatory mediators interleukin-6 (IL-6) and nitric oxide (NO). Treatment of the murine microglial 6-3 cells with 100 U/ml of IFN-gamma resulted in an eightfold increase in IL-6 and a tenfold increase in NO into the culture medium. Pretreatment with the selective serotonin reuptake inhibitor fluvoxamine, the relatively selective noradrenaline reuptake inhibitor reboxetine, or the non-selective monoaminergic reuptake inhibitor imipramine, significantly inhibited IL-6 and NO production in a dose-dependent manner. These inhibitions were reversed significantly by SQ 22536, a cyclic adenosine monophosphate (cAMP) inhibitor, and, except for reboxetine, by the protein kinase A (PKA) inhibitor Rp-adenosine3',5'-cyclic monophosphorothioate triethylammonium salt (Rp-3',5'-cAMPS). Lithium chloride, which is believed to act by inhibiting the calcium-dependent release of noradrenaline, had a different spectrum of action on microglial 6-3 cells. It enhanced IFN-gamma-stimulated IL-6 production and inhibited NO production. The inhibitory effect of lithium chloride was not reversed by either SQ 22536 or Rp-3',5'-cAMPS. These results suggest that antidepressants have inhibitory effects on IFN-gamma-activated microglia and these effects are, at least partially, mediated by the cAMP-dependent PKA pathway. On the other hand, the mood stabilizer and anti-manic agent lithium chloride has mixed effects on IFN-gamma-induced microglial activation.  相似文献   

8.
While the usefulness of atypical antipsychotics for improving cognitive function has been proven, the specific effects of these drugs are still unknown. The objective of this study was to investigate changes of the immediate memory and verbal working memory in patients with chronic schizophrenia after switching to one of four atypical antipsychotic agents and cessation of anticholinergic therapy. The subjects included 77 schizophrenic patients who were treated primarily with typical antipsychotics. Treatment was randomly switched to one of four atypical antipsychotics (olanzapine, perospirone, quetiapine, or risperidone) over a 4-week period, and then the drug was continued for another 4 weeks while the patient was taken off anticholinergics. The immediate memory, verbal working memory, and symptoms were evaluated. Significant improvement of immediate memory was only seen with olanzapine and risperidone. Improvement was also seen after switching to perospirone, but immediate memory worsened after treatment with this anticholinergic drug was discontinued. Deterioration was seen after switching to quetiapine, but immediate memory improved and reached the previous level after treatment with anticholinergic drugs was discontinued. Significant improvement of the verbal working memory was only seen during risperidone administration. The findings suggested that switching chronic schizophrenic patients to atypical antipsychotics can improve both the immediate memory and the verbal working memory when risperidone is used, while improvement of immediate memory can be expected with olanzapine. From the viewpoint of improving the memory, quetiapine should not be administered concomitantly with anticholinergic drugs, and caution should be exercised when discontinuing anticholinergic drugs during treatment with perospirone.  相似文献   

9.
Multiple sclerosis occurs more commonly in females than males. However, the mechanisms resulting in gender differences in multiple sclerosis are unknown. Activated microglia are believed to contribute to multiple sclerosis pathology, perhaps in part due to production of nitric oxide (NO) and TNF-alpha, molecules which can be toxic to cells including oligodendrocytes. The current study demonstrates that the female sex steroids estriol, beta-estradiol and progesterone inhibit lipopolysaccharide (LPS) induction of nitric oxide (NO) production by primary rat microglia and by the mouse N9 microglial cell line. These hormones act by inhibiting the production of inducible nitric oxide synthase (iNOS) which catalyses the synthesis of NO. Estriol likely inhibits iNOS gene expression since the hormone blocks LPS induction of iNOS RNA levels. The pro-inflammatory cytokines IFN-gamma and TNF-alpha are believed to be important modulators of multiple sclerosis. Here, we demonstrate that estrogens and progesterone also inhibit NO production by microglial cells activated in response to these cytokines. Activated microglia elicit TNF-alpha in addition to NO and we further demonstrate that estrogens and progesterone repress TNF-alpha production by these cells. Finally, estriol and progesterone, at concentrations consistent with late pregnancy, inhibit NO and TNF-alpha production by activated microglia, suggesting that hormone inhibition of microglial cell activation may contribute to the decreased severity of multiple sclerosis symptoms commonly associated with pregnancy.  相似文献   

10.
Shen W  Qi R  Zhang J  Wang Z  Wang H  Hu C  Zhao Y  Bie M  Wang Y  Fu Y  Chen M  Lu D 《Brain research bulletin》2012,88(5):487-494
Pro-inflammatory factors released by activated microglia may contribute to the progression of neurodegenerative diseases. As a natural phenolic acid, chlorogenic acid (CGA) has been shown to have anti-inflammatory properties. However, it is unclear whether CGA has the ability to mediate microglial activation. The present study investigated the role of CGA in lipopolysaccharide (LPS)-stimulated microglia. Our data demonstrated that CGA significantly suppressed NO production and TNF-α release in LPS-stimulated primary microglia. In addition, CGA decreased LPS-stimulated phosphorylation and degradation of inhibitory kappa B-alpha (IκBα), and prevented translocation of nuclear factor-kappaB (NF-κB). Furthermore, CGA prevented neurotoxicity caused by microglial activation and ultimately improved survival of dopaminergic (DA) neuron. Finally, in vivo data showed that CGA pretreatment attenuated LPS-induced IL-1β and TNF-α release in substantia nigra (SN). Our results suggested that the pretreatment of CGA significantly inhibits the microglial activation, and CGA may be neuroprotective for pro-inflammatory factor-mediated neurodegenerative disorders.  相似文献   

11.
Prostaglandins are generally considered pro-inflammatory molecules that contribute to the pathology associated with a variety of immune-mediated diseases including multiple sclerosis. However, recently it has been demonstrated that specific cyclopentone prostaglandin metabolites including 15-deoxy-Delta(12,14) prostaglandin J2 (15d-PGJ2) are capable of repressing the production of pro-inflammatory molecules by cells of the monocyte/macrophage lineage. Activated microglia produce nitric oxide (NO) and TNF-alpha, molecules which can be toxic to cells including oligodendrocytes, thus potentially contributing to the pathology associated with multiple sclerosis. The current study demonstrates that 15d-PGJ2 inhibits lipopolysachharide (LPS) induction of NO and TNF-alpha production by rat primary microglia and mouse N9 microglial cells. 15d-PGJ2 also inhibits NO production by microglial cells activated in response to IFN-gamma and TNF-alpha, cytokines believed to be important modulators of multiple sclerosis. IL-12 plays a critical role in stimulating the production of Th1 cells, which are believed to contribute to the pathology associated with multiple sclerosis. The current studies demonstrate that 15d-PGJ2 represses the production of IL-12 by microglial cells. Collectively, these studies demonstrate that the prostaglandin metabolite 15d-PGJ2 represses microglial production of potentially cytotoxic molecules, as well as molecules capable of altering T-cell phenotype. These in vitro studies suggest the possibility that the prostaglandin 15d-PGJ2 may modulate inflammatory diseases including multiple sclerosis.  相似文献   

12.
Neuroinflammation driven by interferon-gamma (IFN-γ) and microglial activation has been linked to neurological disease. However, the effects of IFN-γ-activated microglia on hippocampal neurogenesis and behavior are unclear. In the present study, IFN-γ was administered to mice via intracerebroventricular injection. Mice received intraperitoneal injection of ruxolitinib to inhibit the JAK/STAT1 pathway or injection of minocycline to inhibit microglial activation. During a 7-day period, mice were assessed for depressive-like behaviors and cognitive impairment based on a series of behavioral analyses. Effects of the activated microglia on neural stem/precursor cells (NSPCs) were examined, as was pro-inflammatory cytokine expression by activated microglia. We showed that IFN-γ-injected animals showed long-term adult hippocampal neurogenesis reduction, behavior despair, anhedonia, and cognitive impairment. Chronic activation with IFN-γ induces reactive phenotypes in microglia associated with morphological changes, population expansion, MHC II and CD68 up-regulation, and pro-inflammatory cytokine (IL-1β, TNF-α, IL-6) and nitric oxide (NO) release. Microglia isolated from the hippocampus of IFN-γ-injected mice suppressed NSPCs proliferation and stimulated apoptosis of immature neurons. Inhibiting of the JAK/STAT1 pathway in IFN-γ-injected animals to block microglial activation suppressed microglia-mediated neuroinflammation and neurogenic injury, and alleviated depressive-like behaviors and cognitive impairment. Collectively, these findings suggested that priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Targeting microglia by modulating levels of IFN-γ the brain may be a therapeutic strategy for neurodegenerative diseases and psychiatric disorders.  相似文献   

13.
There is considerable evidence that schizophrenia is associated with immune system dysregulation. For example, blood and cerebrospinal fluid (CSF) levels of proinflammatory cytokines are significantly increased in schizophrenic patients, and their normalization correlates with improvement in psychotic symptoms. In fact, typical and atypical antipsychotics are reported to modulate immune function in in vitro and in vivo studies. In the present study, we examined the anti-inflammatory effect of antipsychotics, clozapine, olanzapine, risperidone and haloperidol, on serum cytokine levels in lipopolysaccharide (LPS)-treated mice. Atypical antipsychotics, such as clozapine, olanzapine and risperidone, but not haloperidol, suppressed tumor necrosis factor (TNF)-α and interleukin (IL)-6, and up-regulated IL-10. Moreover, only clozapine, robustly increased the serum levels of IL-10. Clozapine reproduced its anti-inflammatory feature in polyinsinic–polycytidylic acid sodium salt (Poly[I:C])-induced inflammation. Thus, the anti-inflammatory effect of clozapine would adapt to inflammation induced by some varieties of antigens. Several receptor ligands, such as 8-OH-DPAT, ketanserin, prazosin and scopolamine, were also examined as to their anti-inflammatory effects on serum cytokine levels in LPS-treated mice. Ketanserin and prazosin, but not 8-OH-DPAT nor scopolamine, behaved similarly to atypical antipsychotics. However, the remarkable increase of serum IL-10 level observed in clozapine was not detected in ketanserin and prazosin. These results suggest the unique efficacy of atypical antipsychotics in the suppression of proinflammatory cytokines, and the increase of anti-inflammatory cytokine, IL-10.  相似文献   

14.
Dalbergia odorifera T. Chen (Leguminosae) grows in Central and South America, Africa, Madagascar, and Southern Asia. D. odorifera possesses many useful pharmacological properties, such as antioxidative and anti-inflammatory activities in various cell types. 4-Methoxydalbergione (MTD) and 4’-hydroxy-4-methoxydalbergione (HMTD) were isolated from the EtOH extract of D. odorifera by several chromatography methods. The chemical structures were elucidated by nuclear magnetic resonance (NMR) and mass spectrum (MS). Anti-inflammatory and cytoprotective effects were examined using BV2 microglial cells and murine hippocampus. MTD and HMTD were demonstrated to induce heme oxygenase (HO)-1 protein levels through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in BV2 microglial cells, while only MTD upregulated HO-1 in HT22 cells. MTD and HMTD induced HO-1 expression through JNK MAPK pathway in BV2 cells, whereas only MTD activated the ERK and p38 pathways in HT22 cells. MTD was also shown to activated MTD and HMTD suppressed lipopolysaccharide-stimulated nitric oxide (NO) and prostaglandin E2 production by inhibiting inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in a dose-dependent manner. Furthermore, MTD and HMTD attenuated pro-inflammatory cytokine productions. These anti-inflammatory effects were found to be mediated through the nuclear factor-kappa B (NF-κB) pathway. MTD exhibited neuroprotective effects on glutamate-induced neurotoxicity by promoting HO-1 in HT22 cells. The anti-inflammatory and cytoprotective effects of MTD and HMTD were partially reversed by an HO inhibitor tin protoporphyrin IX. In addition, MTD and HMTD inhibited pro-inflammatory cytokines and NF-κB pathway in primary rat microglia. These findings suggest that MTD and HMTD have therapeutic potential against neurodegenerative diseases accompanied by microglial activation and/or oxidative cellular injury.  相似文献   

15.
16.
17.
Perospirone is a recently developed atypical antipsychotic with potent serotonin 5-HT2 and dopamine D2 antagonist activity. Other atypical antipsychotics including risperidone, quetiapine and olanzapine have been widely used for treatment, not only for schizophrenia symptoms but also for delirium, because of their low potential to induce extrapyramidal disturbances. In the present study the effectiveness and safety of perospirone in patients with delirium are described. Thirty-eight patients with DSM-IV delirium were given open-label perospirone. To evaluate the usefulness of perospirone, scores from 13 severity items of the Delirium Rating Scale-Revised-98 were assessed. Data were gathered from October 2003 to September 2004. Perospirone was effective in 86.8% (33/38) of patients, and the effect appeared within several days (5.1 +/- 4.9 days). The initial dose was 6.5 +/- 3.7 mg/day and maximum dose of perospirone was 10.0 +/- 5.3 mg/day. There were no serious adverse effects. However, increased fatigue (15.2%), sleepiness (6.1%), akathisia (3.0%) and a decline in blood pressure (3.0%) were observed. It is proposed that perospirone may be another safe and effective atypical antipsychotic drug for the treatment of delirium symptoms in hospitalized patients. This is a preliminary open trial, and further randomized double-blind placebo-controlled tests are needed.  相似文献   

18.
In neurodegenerative diseases, the inflammatory response is mediated by activated glial cells, mainly microglia, which are the resident immune cells of the central nervous system. Activated microglial cells release proinflammatory mediators and neurotoxic factors that are suspected to cause or exacerbate these diseases. We recently demonstrated that doxycycline protects substantia nigra dopaminergic neurons in an animal model of Parkinson’s disease. This effect was associated with a reduction of microglial cell activation, which suggests that doxycycline may operate primarily as an anti-inflammatory drug. In the present study, we assessed the anti-inflammatory potential of doxycycline using lipopolysaccharide (LPS)-activated primary microglial cells in culture as a model of neuroinflammation. Doxycycline attenuated the expression of key activation markers in LPS-treated microglial cultures in a concentration-dependent manner. More specifically, doxycycline treatment lowered the expression of the microglial activation marker IBA-1 as well as the production of ROS, NO, and proinflammatory cytokines (TNF-α and IL-1β). In primary microglial cells, we also found that doxycycline inhibits LPS-induced p38 MAP kinase phosphorylation and NF-kB nuclear translocation. The present results indicate that the effect of doxycycline on LPS-induced microglial activation probably occurs via the modulation of p38 MAP kinase and NF-kB signaling pathways. These results support the idea that doxycycline may be useful in preventing or slowing the progression of PD and other neurodegenerative diseases that exhibit altered glia function.  相似文献   

19.
OBJECTIVE: To investigate the effects of the atypical antipsychotic drugs risperidone, olanzapine, quetiapine, and perospirone on the subjective quality of sleep in patients with schizophrenia. METHOD: Subjects were 92 inpatients (mean age = 59.9 years) who had been receiving treatment with conventional antipsychotic drugs and who met the DSM-IV criteria for schizophrenia. Subjects were randomly assigned to receive 1 of 4 atypical antipsychotic drugs (olanzapine, perospirone, quetiapine, and risperidone). Subjective sleep quality and psychopathology were assessed twice: at baseline and 8 weeks after switching. Data were collected from June 2001 to December 2001. Subjective sleep quality was assessed by the Pittsburgh Sleep Quality Index (PSQI), and psychopathology was measured by the Positive and Negative Syndrome Scale (PANSS). RESULTS: Subjective sleep quality as assessed by the PSQI was significantly improved with administration of olanzapine, risperidone, or quetiapine, but not with perospirone, in comparison with conventional antipsychotic drugs. Multiple regression analysis revealed that the improvement of sleep quality with administration of atypical antipsychotic drugs was predicted by poor sleep quality at baseline. In addition, improvement of sleep quality was significantly correlated with improvement of negative symptoms as assessed by the PANSS. CONCLUSION: These results demonstrated that atypical antipsychotic drugs improved subjective quality of sleep in patients with schizophrenia compared with conventional antipsychotic drugs, suggesting that the marked potency of serotonin-2 receptor blockade in atypical antipsychotic drugs may be involved in the mechanism of this improvement. These improvements were correlated with improvement of negative symptoms.  相似文献   

20.
In chronic neurodegenerative diseases, microglial activation is an early sign that often precedes neuronal death. Increasing evidence indicates that in these chronic pathologies activated microglia sustain a local inflammatory response. Nonetheless, the potential detrimental or protective roles of such reaction remain to date not fully understood, mainly because of the lack of direct evidence of the functional properties acquired by microglia in the course of chronic diseases. Purified microglial cultures have been extensively used to investigate microglial functions associated with activation, but they are often criticized for some experimental constrains, including the abrupt addition of activators, the limited time of stimulation, and the absence of interactions with neurons or other elements of brain parenchyma. To limit these confounding factors, we developed in vitro models in which microglial cells were repeatedly challenged with lipopolysaccharide or co-cultured with healthy, apoptotic, or necrotic neuronal cells. We found that chronic stimulation and interaction with phosphatidylserine-expressing apoptotic cells induced microglial cells to release immunoregulatory and neuroprotective agents (prostaglandin E2, transforming growth factor-β, and nerve growth factor), whereas the synthesis of pro-inflammatory molecules (tumor necrosis factor-α and nitric oxide) was inhibited. These findings suggest that signals that are relevant to chronic diseases lead to a progressive down-regulation of pro-inflammatory microglial functions and may help in understanding the atypical microglial activation that begins to be recognized in some chronic neuropathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号