首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Current and voltage clamp recordings were made with a patch-clamp technique from large, light, dorsal root ganglia (DRG) neurons in tissue culture, derived from trisomy 16 and normal fetal mice. In a Na gradient of [52 mM]o/[28 mM]i, the action potential was accelerated, depolarization and repolarization were faster and the total Na conductance was higher in trisomic neurons. A tetrodotoxin (TTX)-sensitive, fast Na current was demonstrated, about 0.9 nA in trisomic and 0.3 nA in control neurons. The calculated mean specific membrane conductances were 0.74 mS/cm2 and 0.28 mS/cm2, respectively. A TTX-insensitive, slow Na conductance, 3-4 times the fast Na conductance and sensitive to Cd, also was demonstrated, with a 2-fold greater current density and conductance in trisomic as compared with control neurons, of 2.22 +/- 0.54 mS/cm2 and 1.26 +/- 0.09 mS/cm2, respectively. The voltage-dependence and kinetics of the TTX-insensitive, slow, Na current were similar in the two neuronal groups. The results indicate that depolarization during the action potential, in fetal mouse DRG neurons in culture, is mediated by this slow TTX-insensitive Na current. Further, acceleration of depolarization in trisomy 16 neurons is caused by a 2-fold increase in the density of the slow Na current.  相似文献   

2.
Trisomy 21 (Down syndrome) results in abnormalities of electrical membrane properties of cultured human fetal dorsal root ganglion (DRG) neurons; namely, faster rates of depolarization and repolarization of the action potential, and a shortened spike duration. A possible role of nerve growth factor (NGF) in the expression of abnormal electrical membrane properties fetal human DRG neurons from trisomy 21 subjects was examined. DRG neurons obtained from normal and trisomy 21 abortuses of 16–20 weeks gestation were cultured in the presence or absence of 40 nM 7S NGF. After 1 week in culture, action potentials were recorded using the whole cell patch-clamp technique, in current clamp mode. At the testing membrane potential, normal (diploid) neurons grown without NGF showed reduced maximal rates of depolarization (−41.3%) and of repolarization (−31.4%), a decreased spike amplitude (−14.2%) and a prolonged action potential (+49.2%), when compared to normal cells cultured with NGF. Trisomy 21 neurons showed similar changes, but had a greater relative decrease in the rates of action potential depolarization and repolarization. These changes were evident at different membrane potentials. Normal and trisomic DRG neurons cultured without NGF showed differences in action potential parameters similar to those previously described using NGF-supplemented culture medium. These data indicate that NGF can regulate electrical membrane properties in cultured human fetal DRG neurons, but apparently is not responsible for the abnormalities observed in trisomy 21 neurons.  相似文献   

3.
Dorsal root ganglion (DRG) neurons, in 22 degrees C tissue culture containing nerve growth factor, taken from normal and trisomy 21 human fetal tissues, were subjected to current and voltage clamp measurements using a tight-seal whole-cell recording technique. Measurements were made between 1 and 2 weeks in culture, when the electrical properties of both neuron groups were shown to be constant and when mean values for passive electrical parameters did not differ significantly between groups. The duration of the action potential was significantly less in trisomic than in control neurons, and both depolarization and repolarization were accelerated. Tetraethylammonium (5 mM), which partially blocked outward currents, prolonged the rate of repolarization of the action potential in both neuron groups, and abolished the difference in the rate between the groups. Furthermore, the activation rate constants of two model-defined outward potassium currents were significantly higher in trisomic than in control neurons, suggesting that acceleration of repolarization of the action potential in trisomic neurons was due to shorter activation time-constants of outward potassium currents.  相似文献   

4.
Dorsal root ganglion (DRG) and spinal cord neurons from normal and trisomy 16 fetal mice, an animal model for human trisomy 21 (Down syndrome), were maintained in primary culture and their electrical membrane properties were compared with intracellular recording techniques. After 3-4 weeks in culture, trisomic DRG neurons had a higher mean resting potential (+10%), a higher specific membrane resistance (+50%) and higher excitability (+17%), a shorter action potential (-22%), higher maximal rates of depolarization (+39%) and of two phases of repolarization (+20% and +10%) and a lower duration (-42%) of the afterhyperpolarization, than did control DRG neurons (P less than 0.05). The duration of the action potential was 2X greater than in control neurons, when external calcium was elevated from 1.2 to 10 mM. Differences in the electrical parameters like those observed in DRG neurons also were found in cultured spinal cord neurons. These results indicate that trisomy 16 in fetal mice alters passive and active electrical membrane properties in DRG and spinal cord neurons, and suggest that some differences are related to differences in calcium currents.  相似文献   

5.
Our recent whole cell patch-pipette studies have shown that human trisomy 21 (Down syndrome) cultured fetal dorsal root ganglion (DRG) neurons have accelerated rates of action potential depolarization and repolarization, with reduced spike duration, compared to control neurons. Similar observations were made using DRG neurons from the trisomy 16 mouse, an animal model of trisomy 21. In this study we have used transgenic mice in order to investigate the relationship between excess gene dosage and neurophysiological abnormalities. DRG neurons which possessed additional copies of the gene for human superoxide dismutase-1 (SOD), a gene from the Down syndrome region of chromosome 21, were compared to normal neurons. No electrophysiological differences were found between the two groups of neurons, indicating that increased dosage of the SOD gene alone is not causal to action potential dysfunction found in trisomy 21 and trisomy 16 neurons.  相似文献   

6.
Indoxacarb is a newly developed insecticide with high insecticidal activity and low toxicity to non-target organisms. Its metabolite, DCJW, is known to block compound action potentials in insect nerves and to inhibit sodium currents in cultured insect neurons. However, little is known about the effects of these compounds on the sodium channels of mammalian neurons. We compared the effects of indoxacarb and DCJW on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion neurons by using the whole-cell patch clamp technique. Indoxacarb and DCJW at 1-10 microM slowly and irreversibly blocked both TTX-S and TTX-R sodium channels in a voltage-dependent manner. The sodium channel activation kinetics were not significantly modified by 1 microM indoxacarb or 1 microM DCJW. The steady-state fast and slow inactivation curves were shifted in the hyperpolarization direction by 1 microM indoxacarb or 1 microM DCJW indicating a higher affinity of the inactivated sodium channels for these insecticides. These shifts resulted in an enhanced block at more depolarized potentials, thus explaining voltage-dependent block, and an apparent difference in the sensitivity of TTX-R and TTX-S channels to indoxacarb and DCJW near the resting potential. Indoxacarb and its metabolite DCJW cause toxicity through their action on the sodium channels.  相似文献   

7.
The interaction of pyrethroids with the voltage-dependent sodium channel was studied in voltage-clamped nodes of Ranvier and isolated spinal ganglion neurons of the clawed frog, Xenopus laevis. In the node, pyrethroids prolonged the sodium tail current associated with a step repolarization of the membrane. It was found that the amplitude of the slow, pyrethroid-induced, sodium tail current (PIT) first increased and then decreased as a function of the duration of membrane depolarization (to -5 mV). This decrease of the PIT amplitude was absent when depolarizations to the sodium equilibrium potential (+40 mV) were used. Measurements of changes in sodium reversal potential indicated that sodium ion depletion in the perinodal space is largely responsible for the inactivation of the pyrethroid-modified sodium current. Inactivation is not completely abolished by pyrethroid treatment since the probability of channel opening, measured in membrane patches excised from spinal ganglion cells, decreased slowly during prolonged depolarization. Analysis of unitary currents indicated that both activation and inactivation are retarded by pyrethroids. The arrival of sodium channels in the pyrethroid-modified open state followed a time course that was slower than both activation and inactivation of unmodified sodium channels. Our findings indicate that sodium channels are modified when in the closed resting state and that both opening and closing kinetics are delayed by pyrethroids.  相似文献   

8.
The effects of the dihydropyrazole insecticide RH-3421 on the retrodotoxin-resistant (TTX-R) voltage-gated sodium channels in rat dorsal root ganglion (DRG) neurons were studied using the whole-cell patch clamp technique. RH-3421 at 10 nM to 1 microM completely blocked action potentials. The sodium currents were irreversibly suppressed by 1 microM RH-3421 in a time- and a dose-dependent manner and the IC50 value of RH-3421 was estimated to be 0.7 microM after 10 min of application. RH-3421 blocked the sodium currents to the same extent over the entire range of test potentials. The sodium conductance-voltage curve was not shifted along the voltage axis by 1 microM RH-3421 application In contrast, both fast and slow steady-state sodium channel inactivation curves were shifted in the hyperpolarizing direction in the presence of 1 microM RH-3421. It was concluded that RH-3421 bound to the resting and inactivated sodium channels to cause block with a higher affinity for the latter state.  相似文献   

9.
Insecticidal pyrazolines inhibit voltage-sensitive sodium channels of both insect and mammalian neurons in a voltage-dependent manner. Studies on the effects of pyrazoline insecticides on mammalian sodium channels have been limited to experimentation on the tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channel populations of rat dorsal root ganglion (DRG) neurons. In this study, we examined the effects of the insecticidal pyrazolines indoxacarb, the N-decarbomethoxyllated metabolite of indoxacarb (DCJW), and RH 3421 on rat Na(v)1.4 sodium channels expressed in Xenopus laevis oocytes using the two-electrode voltage clamp technique. Both DCJW and RH 3421 were ineffective inhibitors of rat Na(v)1.4 sodium channels at a membrane potential of -120 mV, but depolarization to -60 mV or -30 mV during insecticide exposure resulted in substantial block. Inhibition by pyrazoline insecticides was nearly irreversible with washout, but repolarization of the membrane relieved block. DCJW and RH 3421 also caused hyperpolarizing shifts in the voltage dependence of slow inactivation without affecting the voltage dependence of activation or fast inactivation. These results suggest that DCJW and RH 3421 interact specifically with the slow inactivated state of the sodium channel. Indoxacarb did not cause block at any potential, yet it interfered with the ability of DCJW, but not RH 3421, to inhibit sodium current. Phenytoin, an anticonvulsant, reduced the efficacy of both DCJW and RH 3421. These data imply that the binding site for pyrazoline insecticides overlaps with that for therapeutic sodium channel blockers.  相似文献   

10.
Voltage-dependent regulation of CaV2.2 channels by G-proteins is performed by the β (Gβ) subunit. Most studies of regulation by G-proteins have focused on channel activation; however, little is known regarding channel inactivation. This study investigated inactivation of CaV2.2 channels in superior cervical ganglion neurons that overexpressed Gβ subunits. CaV2.2 currents were recorded by whole-cell patch clamping configuration. We found that the Gβ1 subunit reduced inactivation, while Gβ5 subunit did not alter at all inactivation kinetics compared to control recordings. CaV2.2 current decay in control neurons consisted of both fast and slow inactivation; however, Gβ1-overexpressing neurons displayed only the slow inactivation. Fast inactivation was restored by a strong depolarization of Gβ1-overexpressing neurons, therefore, through a voltage-dependent mechanism. The Gβ1 subunit shifted the voltage dependence of inactivation to more positive voltages and reduced the fraction of CaV2.2 channels resting in the inactivated state. These results support that the Gβ1 subunit inhibits the fast inactivation of CaV2.2 channels in SCG neurons. They explain the long-observed sustained Ca2+ current under G-protein modulation.  相似文献   

11.
The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to have analgesic effects in animal studies but little is known about its mechanism of action. We examined the effects of CBD on intrinsic excitability of primary pain-sensing neurons. Studying acutely dissociated capsaicin-sensitive mouse DRG neurons at 37°C, we found that CBD effectively inhibited repetitive action potential firing, from 15–20 action potentials evoked by 1 s current injections in control to 1–3 action potentials with 2 μm CBD. Reduction of repetitive firing was accompanied by a reduction of action potential height, widening of action potentials, reduction of the afterhyperpolarization, and increased propensity to enter depolarization block. Voltage-clamp experiments showed that CBD inhibited both TTX-sensitive and TTX-resistant (TTX-R) sodium currents in a use-dependent manner. CBD showed strong state-dependent inhibition of TTX-R channels, with fast binding to inactivated channels during depolarizations and slow unbinding on repolarization. CBD alteration of channel availability at various voltages suggested that CBD binds especially tightly [Kd (dissociation constant), ∼150 nm] to the slow inactivated state of TTX-R channels, which can be substantially occupied at voltages as negative as −40 mV. Remarkably, CBD was more potent in inhibiting TTX-R channels and inhibiting action potential firing than the local anesthetic bupivacaine. We conclude that CBD might produce some of its analgesic effects by direct effects on neuronal excitability, with tight binding to the slow inactivated state of Nav1.8 channels contributing to effective inhibition of repetitive firing by modest depolarizations.SIGNIFICANCE STATEMENT Cannabidiol (CBD) has been shown to inhibit pain in various rodent models, but the mechanism of this effect is unknown. We describe the ability of CBD to inhibit repetitive action potential firing in primary nociceptive neurons from mouse dorsal root ganglia and analyze the effects on voltage-dependent sodium channels. We find that CBD interacts with TTX-resistant sodium channels in a state-dependent manner suggesting particularly tight binding to slow inactivated states of Nav1.8 channels, which dominate the overall inactivation of Nav1.8 channels for small maintained depolarizations from the resting potential. The results suggest that CBD can exert analgesic effects in part by directly inhibiting repetitive firing of primary nociceptors and suggest a strategy of identifying compounds that bind selectively to slow inactivated states of Nav1.8 channels for developing effective analgesics.  相似文献   

12.
Depolarization of nerve membranes is an important component of the mode of action of pyrethroids, and its negative temperature dependence parallels that of insecticidal activity. We studied the mechanism and temperature dependence of depolarization of crayfish giant axons by pyrethroids, using intracellular microelectrode and voltage clamp techniques. Membrane depolarization caused by tetramethrin and fenvalerate was greater at 10 degrees C than at 21 degrees C, and was reversible upon changing the temperature. Short-duration depolarizing pulses in voltage-clamped fenvalerate-treated axons induced prolonged sodium currents that are typical of other pyrethroids, but the decay of the tail current following repolarization was extremely slow, lasting several minutes at the large negative holding potential of -120 mV. At the normal resting potential, the tail current did not decay completely, and even without stimulation, a steady-state sodium current developed, which could account for the depolarization. The steady-state current induced by fenvalerate at the resting potential was much larger at 8 degrees C than at 21 degrees C, accounting for the negative temperature dependence of the depolarization. The negative temperature dependence of the steady-state current seems to be due ultimately to the great stabilizing effect of low temperature on the open-modified channel. When the steady-state current was induced at the resting potential, hyperpolarization to more negative potentials caused it to decay with exactly the same time course as tail currents induced by short-duration depolarizing pulses, indicating that both types of currents are carried by identically-modified channels. The modified channels were shown to be inactivated very slowly at potentials more positive than - 100 mV, accounting for the limited depolarization observed in micro-electrode experiments. Even when applied directly to the internal face of the membrane, the effect of fenvalerate on the sodium channel developed slowly, taking more than 90 min to reach its final level. Fenvalerate did not significantly affect potassium currents.  相似文献   

13.
14.
Two distinct populations of Na+ channels (kinetically fast and slow) are present on the cell bodies and axons of cutaneous afferent neurons; the fast current is increased and the slow current reduced in amplitude following nerve injury. The present study was undertaken to determine if similar changes occur on the axons of these neurons following peripheral nerve injury. The compound action potentials from rat sural nerves were recorded in a sucrose gap chamber. Following application of 4-aminopyridine, a prominent and well-characterized depolarization (the delayed depolarization) followed the action potential. This potential, only present on cutaneous afferent axons, has been correlated with activation of a slow Na+ current. The delayed depolarization was reduced after nerve transection. The refractory period of transmission of the action potential was shortened in the transected nerves, but that of the delayed depolarization was prolonged. The changes were largest when the sural nerve was cut and ligated [control: 38.1 ± 1.7% (n = 5); injury: 24.5 ± 2.8% (n = 5), P < 0.05], which prevented reconnection to its peripheral target. When the nerve was crushed and allowed to reestablish peripheral target connections, the delayed depolarization was minimally effected. These results indicate that the changes in Na+ channel organization following peripheral target disconnection observed on cutaneous afferent cell bodies also occur on their axons. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21:1040–1047, 1988.  相似文献   

15.
Human Down syndrome (DS) is determined by the trisomy of autosome 21 and is expressed by multiple abnormalities, being mental retardation the most striking feature. The condition results in altered electrical membrane properties (EMPs) of fetal neurons, which are qualitatively identical to those of trisomy 16 fetal mice (Ts16), an animal model of the human condition. Ts16 hippocampal cultured neurons reportedly exhibit increased voltage-dependent calcium currents (I (Ca)) amplitude. Since Ts16 animals are unviable, we have established immortalized cell lines from the cerebral cortex of Ts16 (named CTb) and normal littermates (named CNh). Using the whole-cell patch-clamp technique, we have now studied I (Ca) in CTb and CNh cells. Current activation occurs at -40?mV in both cell lines (V (holding)?=?-80?mV). Trisomic cells exhibited a 2.4 fold increase in the maximal Ca(2+) current density compared to normal cells (CNh?=?-6.3?±?0.77 pA/pF, n?=?18; CTb?=?-16.4?±?2.423 pA/pF; P?相似文献   

16.
Sodium currents were recorded in rat fast and slow twitch muscle fibers. Changes in the membrane potential around the resting potential produced slow changes in the sodium current amplitude due to alterations of the slow inactivation process that was increased by steady depolarization and removed by prolonged hyperpolarization. In contrast, classical fast inactivation was not operative around the resting potential, and depolarizations of greater than 20 mV were required to close half of the channels by fast inactivation. Because slow inactivation is operative around the resting potential of mammalian muscle fibers, it may partially explain why small depolarizations, such as those that occur in some patients with periodic paralysis, can reduce excitability.  相似文献   

17.
The neuronal voltage-gated sodium channels play a vital role in the action potential waveform shaping and propagation. Here, we report the effects of prolonged depolarization (1-160 s) on the detailed kinetics of activation, fast inactivation and recovery from slow inactivation in the rNa(v)1.2a voltage-gated sodium channel alpha-subunit expressed in Chinese hamster ovary (CHO) cells. Wavelet analysis revealed that the duration and amplitude of a prolonged sustained depolarization altered all the steady state and kinetic parameters of the channel in a pseudo-oscillatory fashion with time-variable period and amplitude, often superimposed on a linear trend. The half steady state activation potential showed a reversible depolarizing shift of 5-10 mV with duration of prolonged depolarization, while half steady state inactivation potential showed a hyperpolarizing shift of 43-55 mV. The time periods for most of the parameters relating to activation and fast and slow inactivation, lie close to 28-30 s, suggesting coupling of these kinetic processes through an oscillatory mechanism. Co-expression of the beta1-subunit affected the time periods of oscillation (close to 22 s for alpha + beta1) in steady state activation parameters. Application of a pulse protocol that mimicked paroxysmal depolarizing shift (PDS), a kind of depolarization seen in epileptic discharges, instead of a sustained depolarization, also caused oscillatory behaviour in the rNav1.2a alpha-subunit. This inherent pseudo-oscillatory mechanism may regulate excitability of the neurons, account for the epileptic discharges and subthreshold membrane potential oscillation and offer a molecular memory mechanism intrinsic to the neurons, independent of synaptic plasticity.  相似文献   

18.
The clinically employed general anaesthetic halothane was shown to exert action on the peripheral nervous system by suppressing spinal reflexes, but it is still unclear which mechanisms underlie this action. The present study addressed the question whether blockade of tetrodotoxin-sensitive (TTXs) and -resistant (TTXr) Na+-channels in rat dorsal root ganglia (DRG) neurons by halothane could explain its peripheral effects. Two types of TTXr Na+-currents, fast and slow, with distinct activation and inactivation kinetics were found in small (< 25 μm) and medium sized (25–40 μm) DRG neurons. These currents were blocked by halothane with IC50 values of 5.4 and 7.4 mmol/L, respectively. Additionally, in a concentration-dependent manner halothane accelerated the inactivation kinetics of both currents and shifted the inactivation curves to more hyperpolarized potentials. Neither the activation curves of both TTXr Na+-currents were influenced by halothane nor a voltage-dependent block at test potentials of the currents was seen. In contrast to that of fast current, the time-to-peak for slow current was changed in the presence of halothane. The TTXs Na+-current which prevailed in large neurons (> 40 μm) was blocked by halothane with an IC50 of 12.1 mmol/L. Its inactivation curve was also shifted to more hyperpolarized potentials and the inactivation kinetics accelerated with increasing halothane concentration. Similarly to TTXr Na+-currents, the activation curve of TTXs Na+-current and its time-to-peak were not influenced by halothane. It is suggested that two types of TTXr Na+-currents can explain the heterogeneity in kinetic data for TTXr Na+-currents. Furthermore, the incomplete blockade of Na+-currents might underlie the incomplete reduction of spinal reflexes at clinically used concentrations of halothane.  相似文献   

19.
20.
Pyrethroid insecticides disrupt nerve function by modifying the gating kinetics of transitions between the conducting and nonconducting states of voltage-gated sodium channels. Pyrethroids modify rat Na(v)1.6+β1+β2 channels expressed in Xenopus oocytes in both the resting state and in one or more states that require channel activation by repeated depolarization. The state dependence of modification depends on the pyrethroid examined: deltamethrin modification requires repeated channel activation, tefluthrin modification is significantly enhanced by repeated channel activation, and S-bioallethrin modification is unaffected by repeated activation. Use-dependent modification by deltamethrin and tefluthrin implies that these compounds bind preferentially to open channels. We constructed the rat Na(v)1.6Q3 cDNA, which contained the IFM/QQQ mutation in the inactivation gate domain that prevents fast inactivation and results in a persistently open channel. We expressed Na(v)1.6Q3+β1+β2 sodium channels in Xenopus oocytes and assessed the modification of open channels by pyrethroids by determining the effect of depolarizing pulse length on the normalized conductance of the pyrethroid-induced sodium tail current. Deltamethrin caused little modification of Na(v)1.6Q3 following short (10ms) depolarizations, but prolonged depolarizations (up to 150ms) caused a progressive increase in channel modification measured as an increase in the conductance of the pyrethroid-induced sodium tail current. Modification by tefluthrin was clearly detectable following short depolarizations and was increased by long depolarizations. By contrast modification by S-bioallethrin following short depolarizations was not altered by prolonged depolarization. These studies provide direct evidence for the preferential binding of deltamethrin and tefluthrin (but not S-bioallethrin) to Na(v)1.6Q3 channels in the open state and imply that the pyrethroid receptor of resting and open channels occupies different conformations that exhibit distinct structure-activity relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号