首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Inhibition of murine AIDS by pro-glutathione (GSH) molecules   总被引:2,自引:0,他引:2  
Antioxidant molecules can be used both to replenish the depletion of reduced glutathione (GSH) occurring during HIV infection, and to inhibit HIV replication. The purpose of this work was to assess the efficacy of two pro-GSH molecules able to cross the cell membrane more easily than GSH. We used an experimental animal model consisting of C57BL/6 mice infected with the LP-BM5 viral complex; the treatments were based on the intramuscular administration of I-152, a pro-drug of N-acetylcysteine and S-acetyl-beta-mercaptoethylamine, and S-acetylglutathione, an acetylated GSH derivative. The results show that I-152, at a concentration of 10.7 times lower than GSH, caused a reduction in lymph node and spleen weights of about 55% when compared to infected animals and an inhibition of about 66% in spleen and lymph node virus content. S-acetylglutathione, at half the concentration of GSH, caused a reduction in lymph node weight of about 17% and in spleen and lymph node virus content of about 70% and 30%, respectively. These results show that the administration of pro-GSH molecules may favorably substitute for the use of GSH as such.  相似文献   

2.
In vivo lentinan (LNT)-elicited peritoneal macrophages (Mps) showed the reduced release of prostaglandins (PGs), IL-10 and IL-6, while it endowed Mps with the elevated capability to produce IL-12 and nitric oxide (NO) upon in vitro triggering, due to the elevated intracellular glutathione (GSH) content in Mps. Deprivation of intracellular GSH completely ablated the production of IL-12. Conversely, lipopolysaccharide (LPS) induced peritoneal Mps with the reduced intracellular GSH content and the reciprocal profile of mediator production. Mps with the elevated intracelluar GSH is arbitrarily termed as reductive Mp (RMp) and that with reduced amount as oxidative Mp (OMp). OMp was converted to RMp when GSH was replenished with glutathione monoethylester (GSH-OEt). The IL-2 administration in combination with LNT exerted the synergistic induction of RMp, resulting in synergistic augmentation of IL-12, NO and reduction of IL-6 production. It was also confirmed that CD4+T cells derived of LNT-administered mice showed augmented IFN-gamma and reduced IL-4 production upon in vitro anti-CD3 stimulation. Taken together it is concluded that skewing of Th1/Th2 balance to Th1 by a beta-(1-3)-glucan, LNT, is directed through the distinctive production of IL-12 versus IL-6, IL-10 and prostaglandin E2 (PGE2) by Mps, depending on intracellular GSH redox status. To the efficient tumor immunotherapy, it may be one of the critical elements to induce a reductive form of Mps in tumor stromal tissues to maintain Th1 response.  相似文献   

3.
Patulin is a mold toxin secreted mainly by fungi of the Penicillium species. Exposure generally results from consumption of moldy fruits and fruit products. Since recent studies identified mold exposure as a risk factor for allergic diseases, we examined the effects of patulin on human peripheral blood mononuclear cells (PBMC) prepared from buffy coats of healthy donors. Cells were stimulated with CD3- and CD28-specific antibodies in the presence or absence of patulin. Effects of patulin on PBMCs were evaluated by proliferation, viability assays, and cytokine ELISAs. The presence of 50 ng/mL patulin strongly decreased the amounts of several cytokines in the supernatant of stimulated PBMCs. This decrease in cytokine secretion was not due to cytotoxic effects of patulin. Moreover, the extent of the reduction of cytokine amounts was cytokine specific, affecting some (IL-4, IL-13, IFNgamma, and IL-10), but not others (IL-8, IL-5). We show that all effects could be abolished by adding thiol containing compounds. A depletion of intracellular GSH could be measured after incubation of cells with patulin. Taken together, our data indicate that patulin modulates the functional activation of PBMCs with respect to proliferation and cytokine secretion patterns by depletion of intracellular GSH. The depletion of intracellular glutathione may influence the balance between Th1 and Th2 cells and have implications for allergic diseases.  相似文献   

4.
Ⅰ型干扰素(type Ⅰ interferon,IFN-Ⅰ)具有广谱抗病毒免疫保护效应,已在临床上用于治疗多种病毒性疾病。IFN-Ⅰ与特异性受体结合后,触发一个极其复杂的信号通路网络,诱导产生大量抗病毒蛋白来发挥抗病毒和免疫调节作用。在急性病毒感染如高致病性H5N1禽流感病毒感染中,IFN-Ⅰ信号通路过度活化诱发的细胞因子风暴会促使病情进一步恶化。而在慢性病毒感染如慢性HCV感染中,IFN-Ⅰ在发挥治疗作用的同时还能引起一系列病理效应。因此,探索在病毒性疾病发生发展进程中适时激活或阻断IFN-Ⅰ信号通路的研究,将有助于指导临床合理高效地使用IFN-Ⅰ。  相似文献   

5.
The interaction between the brain and the immune system is essential for the adaptive response of an organism against environmental challenges. In this context, the pineal neurohormone melatonin (MEL) plays an important role. T-helper cells express G-protein coupled cell membrane MEL receptors and, perhaps, MEL nuclear receptors. Activation of MEL receptors enhances the release of T-helper cell Type 1 (Th1) cytokines, such as gamma-interferon (gamma-IFN) and IL-2, as well as of novel opioid cytokines. MEL has been reported also to enhance the production of IL-1, IL-6 and IL-12 in human monocytes. These mediators may counteract stress-induced immunodepression and other secondary immunodeficiencies and protect mice against lethal viral encephalitis, bacterial diseases and septic shock. Therefore, MEL has interesting immunotherapeutic potential in both viral and bacterial infections. MEL may also influence haemopoiesis either by stimulating haemopoietic cytokines, including opioids, or by directly affecting specific progenitor cells such as pre-B cells, monocytes and NK cells. MEL may thus be used to stimulate the immune response during viral and bacterial infections as well as to strengthen the immune reactivity as a prophylactic procedure. In both mice and cancer patients, the haemopoietic effect of MEL may diminish the toxicity associated with common chemotherapeutic protocols. Through its pro-inflammatory action, MEL may play an adverse role in autoimmune diseases. Rheumatoid arthritis patients have increased nocturnal plasma levels of MEL and their synovial macrophages respond to MEL with an increased production of IL-12 and nitric oxide (NO). In these patients, inhibition of MEL synthesis or use of MEL antagonists might have a therapeutic effect. In other diseases such as multiple sclerosis the role of MEL is controversial. However, the correct therapeutic use of MEL or MEL antagonists should be based on a complete understanding of their mechanism of action. It is not yet clear whether MEL acts only on Th1 cells or also on T-helper Type 2 cells (Th2). This is an important point as the Th1/Th2 balance is of crucial importance in the immune system homeostasis. Furthermore, MEL being the endocrine messenger of darkness, its endogenous synthesis depends on the photoperiod and shows seasonal variations. Similarly, the pharmacological effects of MEL might also be season-dependent. No information is available concerning this point. Therefore, studies are needed to investigate whether the immunotherapeutic effect of MEL changes with the alternating seasons.  相似文献   

6.
Nicotine, the addictive component of cigarette smoke, has been shown to have immunomodulatory effects. This drug alters proinflammatory cytokine production by immune cells, including lymphocytes, monocytes, and macrophages. The present study focuses on the effects of nicotine on infection by Chlamydia pneumoniae (Cpn), a ubiquitous intracellular pathogen which causes acute and chronic inflammatory diseases such as pulmonary infections, and may be associated with arthritis and atherosclerosis. Previous studies in our laboratory showed that lymphocytes and macrophages are susceptible to Cpn infection. The present study aimed at investigating the effect of nicotine on TGF-beta1, IL-10, IL-12, and TNF-alpha production in Cpn-infected human peripheral blood mononuclear cells (PBMCs). Cytokine levels in the supernatant were assessed by ELISA. The results showed that Cpn infection alters the expression levels of IL-10, IL-12, and TNF-alpha in a time-dependent fashion. Nicotine treatment of the Cpn-infected cells up-regulated IL-10, but not TNF-alpha and IL-12, and also resulted in significant down-regulation of TGF-beta1 production which was marked in the Cpn-infected control cells. The combined action of nicotine and Cpn on cytokine production may have an impact in chronic inflammatory diseases.  相似文献   

7.
1. Interleukin-12 (IL-12) may play a central role in the development and progression of rheumatoid arthritis by driving the immune response towards T helper 1 (Th1) type responses characterized by high IFN-gamma and low IL-4 production. In this study we investigated the effect of auranofin (AF), an anti-rheumatic gold compound, on IL-12 production in mouse macrophages and dendritic cells, and studied whether AF-mediated inhibition of IL-12 production could regulate a cytokine profile of antigen (Ag)-primed CD4(+) Th cells. 2. Treatment with AF significantly inhibited IL-12 production in lipopolysaccharide (LPS)-stimulated macrophages and also in CD40L-stimulated dendritic cells. AF-pretreated macrophages reduced their ability to induce IFN-gamma and increased the ability to induce IL-4 in Ag-primed CD4(+) T cells. AF did not influence the cell surface expression of the class II MHC molecule and the costimulatory molecules CD80 and CD86. 3. Addition of recombinant IL-12 to cultures of AF-pretreated macrophages and CD4(+) T cells restored IFN-gamma production in Ag-primed CD4(+) T cells. 4. The in vivo administration of AF resulted in the inhibition of IL-12 production by macrophages stimulated in vitro with LPS or heat-killed Listeria monocytogenes (HKL), leading to the inhibition of Th1 cytokine profile (decreased IFN-gamma and increased IL-4 production) in Ag-primed CD4(+) T cells. 5. These findings may explain some known effects of AF including anti-rheumatic effects and the inhibition of encephalitogenicity, and point to a possible therapeutic use of AF in the Th1-mediated immune diseases such as autoimmune diseases.  相似文献   

8.
Increasing ultraviolet-B irradiation (UVB) resulting from diminution of stratospheric ozone is becoming a serious international problem. UVB irradiation exerts not only carcinogenic effects on animals but also causes them to become vulnerable to infections by modulating their immune responses. UVB irradiation suppresses innate immune functions of cells such as macrophages, neutrophils, Langerhans cells, dendritic cells, and the serum component, complement. UVB irradiation also causes changes in cytokine profiles, represented by the induction of a paradigm switch involving Th1/Th2 phenotypes. According to earlier studies, Th1 responses are suppressed, whereas Th2 activities are augmented by UVB irradiation. These immune modulations are caused by several pathways via cytokines and neuropeptides, and eventually may lead to increasing incidences of infection, allergy, and cancer. We have reviewed reports concerning UVB-irradiation induced immune modulation from the viewpoint of risks for human diseases and, in addition, for ecosystems and immunity of lower animals.  相似文献   

9.
We studied the immunomodulatory effects of royal jelly (RJ), the principal food source of the queen honeybee. In this study, suppression of allergic reactions by RJ was investigated in DNP-KLH immunized mice (DNP-KLH mice). Oral administration of RJ (1 g/kg) to DNP-KLH mice significantly decreased the serum levels of antigen-specific Ig E and significantly inhibited DNP-KLH mediated-histamine release from mast cells, resulting in the suppression of immediate hypersensitivity reactions of ear skin. In DNP-KLH mice, IFN-gamma (Th1 cytokine) production from CD4+ T cells was suppressed and IL-4 (Th2 cytokine) production from CD4+ T cells was increased as compared to normal mice. On the other hand, RJ improved the balance of Th1/Th2 cell responses from Th2-dominant to Th1-dominant. RJ significantly increased GSH levels in macrophages from DNP-KLH mice. In addition, the administration of RJ to DNP-KLH mice increased IL-12 p40 mRNA expression and NO production, and decreased PG E2 production from macrophages as compared to untreated DNP-KLH mice. These results suggested that RJ suppressed antigen-specific Ig E production and histamine release from mast cells in association with the restoration of macrophage function and improvement of Th1/Th2 cell responses in DNP-KLH mice.  相似文献   

10.
Trivalent antimonial compounds (Sb(III)), originally used in the treatment of leishmaniasis, are now being proposed as a novel therapy for acute promyelocytic leukaemia (APL). Here, we examine the effects of Sb(III) and pentavalent antimonial drugs (Sb(V)) on glutathione homeostasis, oxidative stress and apoptosis in the human leukaemia monocyte cell line, THP-1. Although growth of THP-1 macrophages is unaffected by Sb(V), macrophages are extremely sensitive to Sb(III). On exposure to Sb(III), intracellular free glutathione (GSH) levels in macrophages decrease linearly by 50% over 4h, associated with efflux of both GSH and accumulation of intracellular glutathione disulphide (GSSG). Together these effects increase the redox potential of the GSSG/GSH couple from -282 to -225mV. Sb(III)-induced GSH efflux from THP-1 macrophages is accompanied by the concomitant efflux of Sb(III) at a constant molar ratio of 3 (GSH) to 1 (Sb(III)), respectively. Sb(III) directly inhibits glutathione reductase activity in macrophages, significantly retarding the regeneration of GSH from GSSG, following diamide oxidation. Sb(III)-treated THP-1 macrophages go on to exhibit elevated levels of reactive oxygen species and show the early signs of apoptosis. The absence of these effects in Sb(V)-treated THP-1 cells suggests that macrophages do not efficiently reduce Sb(V) to Sb(III). Collectively, these findings suggest that Sb(III) seriously compromises thiol homeostasis in THP-1 macrophages and that this may be an early defining event in the mode of action of antimonials against leukaemia cells.  相似文献   

11.
Juglone (5-hydroxy-1,4-naphthoquinone) and plumbagin (5-hydroxy-3-methyl-1,4-naphthoquinone) are yellow pigments found in black walnut (Juglans regia). Herbal preparations derived from black walnut have been used as hair dyes and skin colorants in addition to being applied topically for the treatment of acne, inflammatory diseases, ringworm, and fungal, bacterial, or viral infections. We have studied the cytotoxicity of these quinones to HaCaT keratinocytes. Exposure to juglone or plumbagin (1-20 microM) resulted in a concentration-dependent decrease in cell viability. The cytotoxicity of these quinones is due to two different mechanisms, namely, redox cycling and reaction with glutathione (GSH). Redox cycling results in the generation of the corresponding semiquinone radicals, which were detected by electron paramagnetic resonance. Incubation of keratinocytes with the quinones generated hydrogen peroxide (H(2)O(2)) and resulted in the oxidation of GSH to GSSG. Depletion of GSH by buthionine sulfoximine enhanced semiquinone radical production, increased H(2)O(2) generation, and produced greater cytotoxicity, suggesting that GSH plays an important protective role. Both quinones decreased the intracellular levels of GSH. However, plumbagin stoichiometrically converted GSH to GSSG, indicating that redox cycling is its main metabolic pathway. In contrast, much of the GSH lost during juglone exposure, especially at the higher concentrations (10 and 20 microM), did not appear as GSSG, suggesting that the cytotoxicity of this quinone may also involve nucleophilic addition to GSH. Our findings indicate that topical preparations containing juglone and plumbagin should be used with care as their use may damage the skin. However, it is probable that the antifungal, antiviral, and antibacterial properties of these quinones are the result of redox cycling.  相似文献   

12.
Enteroviruses are members of picornavirus family which causes diverse and severe diseases in humans and animals. Clinical manifestations of enterovirus infections include fever, hand, foot, and mouth disease, and herpangina. Enteroviruses also cause potentially severe and life-threatening infections such as meningitis, encephalitis, myocarditis, polio-like syndrome, and neonatal sepsis. With the emergence of enterovirus all over the world as the major causative agent of HFMD fatalities in recent years and in the absence of any effective anti-enteroviral therapy, there is clearly a need to find a specific antiviral therapy. Steps such as viral attachment, uncoating, viral RNA replication, and protein synthesis in the replication cycle can serve as potential targets for antiviral agents. Agents targeted at viral protein 1 (VP1), a relatively conserved capsid structure mediating viral adsorption and uncoating process, is of great potential to be anti-enterovirus drugs. Recently, considerable efforts have been made in the development of antiviral compounds targeting the capsid protein of enterovirus. This review summarizes the development of small molecules targeting enteroviral capsid protein as effective antiviral therapy.  相似文献   

13.
The interaction between the brain and the immune system is essential for the adaptive response of an organism against environmental challenges. In this context, the pineal neurohormone melatonin (MEL) plays an important role. T-helper cells express G-protein coupled cell membrane MEL receptors and, perhaps, MEL nuclear receptors. Activation of MEL receptors enhances the release of T-helper cell Type 1 (Th1) cytokines, such as γ-interferon (γ-IFN) and IL-2, as well as of novel opioid cytokines. MEL has been reported also to enhance the production of IL-1, IL-6 and IL-12 in human monocytes. These mediators may counteract stress-induced immunodepression and other secondary immunodeficiences and protect mice against lethal viral encephalitis, bacterial diseases and septic shock. Therefore, MEL has interesting immunotherapeutic potential in both viral and bacterial infections. MEL may also influence haemopoiesis either by stimulating haemopoietic cytokines, including opioids, or by directly affecting specific progenitor cells such as pre-B cells, monocytes and NK cells. MEL may thus be used to stimulate the immune response during viral and bacterial infections as well as to strengthen the immune reactivity as a prophylactic procedure. In both mice and cancer patients, the haemopoietic effect of MEL may diminish the toxicity associated with common chemotherapeutic protocols. Through its pro-inflammatory action, MEL may play an adverse role in autoimmune diseases. Rheumatoid arthritis patients have increased nocturnal plasma levels of MEL and their synovial macrophages respond to MEL with an increased production of IL-12 and nitric oxide (NO). In these patients, inhibition of MEL synthesis or use of MEL antagonists might have a therapeutic effect. In other diseases such as multiple sclerosis the role of MEL is controversial. However, the correct therapeutic use of MEL or MEL antagonists should be based on a complete understanding of their mechanism of action. It is not yet clear whether MEL acts only on Th1 cells or also on T-helper Type 2 cells (Th2). This is an important point as the Th1/Th2 balance is of crucial importance in the immune system homeostasis. Furthermore, MEL being the endocrine messenger of darkness, its endogenous synthesis depends on the photoperiod and shows seasonal variations. Similarly, the pharmacological effects of MEL might also be season-dependent. No information is available concerning this point. Therefore, studies are needed to investigate whether the immunotherapeutic effect of MEL changes with the alternating seasons.  相似文献   

14.
Cytokines and their antagonists as therapeutic agents   总被引:4,自引:0,他引:4  
Cytokines are powerful molecules that the body's immune cells secrete in response to an offending agent. Their main function is to direct the immune response into the most effective pathway that will eventually result in elimination of the offender. The last decade was marked by an enormous and ever growing interest that led to discovery of numerous cytokine molecules and their amazing influence on the body immune function. The more we are learning about the way cytokines modulate and direct the immune responses of the body, the interest in using them or their antagonist to change or enhance those responses is growing. Studies are currently underway showing the beneficial effect of TNFalpha antagonists on the cellular injury mediated by this cytokine in rheumatic diseases, inflammatory bowel disease and endotoxemia. Interferon therapies are also tested utilizing IFNalpha for treatment of Hepatitis B and C. The discovery of Th1 and Th2 cytokines had shown that the nature of the immune response is, in essence, directed by a few important cytokines. Which immune reactions will develop seems to depend on whether IL-2 and IL-12 are secreted (and the immune response becomes Th1 with secretion of IFNgamma and efficient removal of some antigens such as viruses) or IL-4 is secreted in which case Th2 response results in down regulation of IFNgamma and IL-2 secreting effectors. The discovery, isolation and purification of these molecules open the possibility to skew the immune response in order to facilitate better outcome. For example, studies have now being conducted aimed at using IL-2 as an adjuvant therapy in conjunction with HAART in HIV patients. Similarly, IL-12 seems to be beneficial in melanoma and has been used as a very potent adjuvant for eliciting immune responses to immunization. Furthermore, studies with IL-4 knockout mice and those utilizing IL-4 blocking agents have shown that this cytokine might play a crucial role in maintaining persistent viral infections and in mediating chronic, autoimmune diseases. Using body's own immunomodulators is becoming an exciting possibility to target inefficient or misdirected immune responses that result in disease. The potential benefits in terms of human disease are enormous and still largely unexplained. Thus, using cytokines and their antagonists as therapeutic agents is an emerging and growing area of research.  相似文献   

15.
The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two neuropeptides belonging to the VIP/secretin/glucagon family of peptides. VIP/PACAP are present and released from both innervation and immune cells, particularly Th2 cells, and exert a wide spectrum of immunological functions controlling the homeostasis of immune system through different receptors expressed in various immunocompetent cells. VIP/PACAP have a general anti-inflammatory effect, both in innate and adaptive immunity. In innate immunity, VIP/PACAP inhibit the production of pro-inflammatory cytokines and chemokines from macrophages, microglia and dendritic cells. In addition, VIP/PACAP reduce the expression of costimulatory molecules (particularly CD80 and CD86) on the antigen-presenting cells, and therefore reduce stimulation of antigen-specific CD4(+) T cells. In terms of adaptive immunity, VIP/PACAP promote Th2-type responses, and reduce the pro-inflammatory Th1-type responses. Several of the molecular mechanisms involved in the inhibition of cytokine and chemokine expression, and in the preferential development and/or survival of Th2 effectors, are perfectly known. Therefore, VIP/PACAP and analogues have been recently proposed as very promising candidates, alternative to other existing treatments, for treating acute and chronic inflammatory and autoimmune diseases, such as septic shock, rheumatoid arthritis, multiple sclerosis, Parkinson's disease, Crohn disease, or autoimmune diabetes. The aim of this review is firstly to update our knowledge of the cellular and molecular events relevant to VIP function on the immune system; and secondly to gather together recent data that support its role as a type 2 cytokine. Recognition of the central functions VIP plays in cellular processes is focusing our attention on this "very important peptide" as an exciting new candidate for therapeutic intervention and drug development.  相似文献   

16.
Macrophages are an important cellular component of the innate immune system and are normally rapidly recruited and/or activated at the site of virus infection. They can participate in the antiviral response by killing infected cells, by producing antiviral cytokines such as nitric oxide and by producing chemokines and immunoregulatory cytokines that enable the adaptive immune response to recognize infected cells and perform antiviral effector functions. Probiotics, as a part of the normal gut intestinal flora, are important in supporting a functional yet balanced immune system. Improving our understanding of their role in the activation of macrophages and their stimulation of proinflammatory cytokine production in early viral infection was the main goal of this study. Our in vitro model study showed that probiotic bacteria, either from the species Lactobacillus or Bifidobacteria have the ability to decrease viral infection by establishing the antiviral state in macrophages, by production of NO and inflammatory cytokines such as interleukin 6 and interferon-gamma. These effects correlated with the mitochondrial activity of infected macrophages, therefore, the measurements of mitochondrial dehydrogenases activity could be implied as the first indicator of potential inhibitory effects of the probiotics on virus replication. The interactions between probiotic bacteria, macrophages and vesicular stomatitis virus (VSV), markedly depended on the bacterial strain studied.  相似文献   

17.
Interleukin-12 (IL-12) plays a central role in the immune system by driving the immune response towards T helper 1 (Th1) type responses characterized by high IFN-gamma and low IL-4 production. In this study we investigated whether retinoid-mediated inhibition of interleukin-12 production in mouse macrophages could regulate cytokine profile of antigen (Ag)-primed CD4(+) Th cells. Pretreatment with retinoids (9-cis-RA, all-trans-RA, TTNPB) significantly inhibited IL-12 production by mouse macrophages stimulated with lipopolysaccharide (LPS) or heated-killed Listeria monocytogenes (HKL). Retinoid-pretreated macrophages reduced their ability to induce IFN-gamma and increased the ability to induce IL-4 in Ag-primed CD4(+) T cells. Addition of recombinant IL-12 to cultures of retinoid-pretreated macrophages and CD4(+) T cells restored IFN-gamma production in CD4(+) T cells. The in vivo administration of 9-cis-RA resulted in the inhibition of IL-12 production by macrophages stimulated in vitro with either LPS or HKL, leading to the inhibition of Th1 cytokine profile (decreased IFN-gamma and increased IL-4 production) in CD4(+) T cells. These findings may explain some known effects of retinoids including the inhibition of encephalitogenicity, and point to a possible therapeutic use of retinoids in the Th1-mediated immune diseases such as autoimmune diseases.  相似文献   

18.
Particulates in air pollution have been strongly associated with asthma symptoms. These particulates are a conglomeration of many components, including metals, polyaromatic hydrocarbons, and lipopolysaccharide, that may cause oxidative stress upon uptake by alveolar macrophages. The objective of this study was to assess whether uptake of a model air particulate (SRM 1648) causes oxidative stress in macrophages resulting in the production of the eicosanoid mediator prostaglandin E(2) (PGE(2)) that might exacerbate asthma. SRM 1648 suspended in phosphate-buffered saline (PBS) was introduced into wells with plated RAW 264.7 monocyte/macrophages. Following incubation of SRM 1648 with RAW 264.7 macrophages, prostaglandin E(2) was measured by enzyme immunosorbent assay (EIA), and oxidative stress was assessed by the levels of intracellular reduced glutathione (GSH) as well as by the oxidation of dihydrodichlorofluorescein (H(2)DCFDA) to the fluorescent dichlorofluoresecein (DCF). The results indicated that SRM 1648 caused oxidative stress in RAW 264.7 macrophages, as shown by a compensatory increase in GSH levels in comparison to the controls of titanium dioxide and media alone. Prostaglandin E(2) levels significantly increased at the 3-, 6-, and 12-h time points. Introduction of GSH ester to buffer against oxidative stress was able to block the elevation of PGE(2). The data show that SRM 1648 causes oxidative stress in RAW 264.7 macrophages resulting in formation of the potential Th2 mediator prostaglandin E(2).  相似文献   

19.
Multidrug resistance related protein 1 (MRP1/ABCC1) is an ABC transporter protein related to the extrusion of reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH-conjugates, as well as leukotriene C(4) and cyclopentane prostaglandins. Inhibition of ABCC1 activity impairs lymphocyte activation. The present work studied ABCC1 expression and activity on a murine macrophage cell line, RAW 267.4 and the effects of ABCC1 classical inhibitors, as well as GSH metabolism modulators, on LPS induced activation. Approximately, 75% of resting cells were positive for ABCC1 and the classical ABCC1 reversors (indomethacin, 0.1-2mM; probenecid, 0.1-10mM and MK571, 0.01-1mM) were able to enhance intracellular CFDA accumulation in a concentration-dependent manner, suggesting ABCC1 inhibition. After LPS (100ng/ml) activation 50% of the population was positive for ABCC1, and this protein was still active. In LPS-activated cells, ABCC1 activity was also impaired by BSO (1mM), an inhibitor of GSH synthesis. Conversely, GSH (5mM) reversed the BSO effect. ABCC1 inhibition by indomethacin, probenecid or MK571 decreased LPS induced nitrite production in a concentration-dependent manner, the same result was observed with BSO and again GSH reversed its effect. The ABCC1 reversors were also able to inhibit iNOS expression. In conclusion, LPS modulated the expression and activity of ABCC1 transporters in RAW macrophages and inhibitors of these transporters were capable of inhibiting nitrite production suggesting a role for ABCC1 transporters in the inflammatory process.  相似文献   

20.
Nitric oxide (NO) is synthesized in the lung and this free radical participates in a wide array of regulatory, protective, and adverse interactions with cells. Both excess NO and its insufficiency have been implicated in the pathogenesis of numerous lung diseases with inflammatory components. Much of the available data concerning the source and regulation of NO production is derived from rodent systems. However, the requirements for NO production are more stringent in human monocytes/macrophages than in rodent systems. In contrast to rodent macrophages, human moncytes/macrophages generally do not respond to cytokine triggers with NO production [J. Leukocyte Biol. 58 (1995) 643, J. Exp. Med. 181 (1995) 735] and if NO is detected the levels are generally low [J. Leukocyte Biol. 58 (1995) 643]. The regulation of macrophage NO in the human appears to be a more selective and variable process than that seen in the rodent macrophages. In the human lung, the function of NO as toxic pro-inflammatory or protective anti-inflammatory agent is unresolved. While not a major source of NO in the human lung, the alveolar macrophage is an important producer of cytokines and this production may be modified by NO. Clear evidence of abnormalities in NO levels in the lungs of patients with asthma, bronchiectasis, viral infections, lung cancer and primary pulmonary hypertension (PPH) has been documented. Elevated inflammatory cytokines and oxidant production have been associated with all of these disease states. In terms of cytokine production, NO has been shown to decrease nuclear factor kappa B (NF-kappaB) activation. However, oxidants may interact with NO to form toxic compounds (e.g., NO combines with superoxide anion to form peroxynitrite). Furthermore, such reactions may decrease the availability of NO for blocking inflammatory cytokine production. Thus, available data suggests that a multiplicity of factors affect NO regulatory properties in inflammatory situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号