首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, a single-nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene (BDNF Val66Met) has been linked to the development of multiple forms of neuropsychiatric illness. This SNP, when genetically introduced into mice, recapitulates core phenotypes identified in human BDNF Val66Met carriers. In mice, this SNP also leads to elevated expression of anxiety-like behaviors that are not rescued with the prototypic selective serotonin reuptake inhibitor (SSRI), fluoxetine. A prominent hypothesis is that SSRI-induced augmentation of BDNF protein expression and the beneficial trophic effects of BDNF on neural plasticity are critical components for drug response. Thus, these mice represent a potential model to study the biological mechanism underlying treatment-resistant forms of affective disorders. To test whether the BDNF Val66Met SNP alters SSRI-induced changes in neural plasticity, we used wild-type (BDNFVal/Val) mice, and mice homozygous for the BDNF Val66Met SNP (BDNFMet/Met). We assessed hippocampal BDNF protein levels, survival rates of adult born cells, and synaptic plasticity (long-term potentiation, LTP) in the dentate gyrus either with or without chronic (28-day) fluoxetine treatment. BDNFMet/Met mice had decreased basal BDNF protein levels in the hippocampus that did not significantly increase following fluoxetine treatment. BDNFMet/Met mice had impaired survival of newly born cells and LTP in the dentate gyrus; the LTP effects remained blunted following fluoxetine treatment. The observed effects of the BDNF Val66Met SNP on hippocampal BDNF expression and synaptic plasticity provide a possible mechanistic basis by which this common BDNF SNP may impair efficacy of SSRI drug treatment.  相似文献   

2.
Fear expression is mediated by an activation of the centromedial amygdala (CEm), the major output nucleus of the amygdaloid complex. Consistently, fear extinction is associated with an increased synaptic inhibition as well as a suppression of the excitability of the CEm neurons. However, little is known about the role of CEm glutamatergic synapses in fear regulation and anxiety-like behaviors. The BDNF Val66Met, a single-nucleotide polymorphism in the human BDNF gene, impairs fear extinction and leads to anxiety-like symptoms. To determine whether the BDNF Val66Met polymorphism affects the CEm excitatory synapses, we examined basal glutamatergic synaptic transmission and plasticity in the CEm neurons of BDNF Val66Met knock-in (BDNFMet/Met) mice. The BDNF Val66Met single-nucleotide polymorphism exerted an opposite effect on non-NMDA and NMDA receptor transmission with a potentiation of the former and a suppression of the latter. In addition, the decay time of NMDA currents was decreased in BDNFMet/Met mice, suggesting a modification of NMDA receptor subunit composition. Unlike the wild-type mice that exhibited a potentiation of non-NMDA receptor transmission following fear conditioning and a depotentiation upon fear extinction, BDNFMet/Met mice failed to show this experience-dependent synaptic plasticity in the CEm neurons. Our results suggest that the elevated non-NMDA receptor transmission, the suppression of NMDA receptor transmission, and an impairment of synaptic plasticity in the CEm neurons might contribute to the fear extinction deficit and increased anxiety-like symptoms in BDNF Val66Met carriers.  相似文献   

3.

Background:

Brain-derived neurotrophic factor (BDNF) deficiency confers vulnerability to stress, but the mechanisms are unclear. BDNF+/- mice exhibit behavioral, physiological, and neurochemical changes following low-level stress that are hallmarks of major depression. After immune challenge, neuroinflammation-induced changes in tryptophan metabolism along the kynurenine pathway mediate depressive-like behaviors.

Methods:

We hypothesized that BDNF+/- mice would be more susceptible to stress-induced neuroinflammation and kynurenine metabolism, so BDNF+/- or wild-type littermate mice were subject to repeated unpredictable mild stress. Proinflammatory cytokine expression and kynurenine metabolites were measured.

Results:

Unpredictable mild stress did not induce neuroinflammation. However, only wild-type mice produced the neuroprotective factors interleukin-10 and kynurenic acid in response to repeated unpredictable mild stress. In BDNF+/- mice, kynurenine was metabolized preferentially to the neurotoxic intermediate 3-hydroxykynurenine following repeated unpredictable mild stress.

Conclusions:

Our data suggest that BDNF may modulate kynurenine pathway metabolism during stress and provide a novel molecular mechanism of vulnerability and resilience to the development of stress-precipitated psychiatric disorders.  相似文献   

4.

Background:

Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency.

Methods:

In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17–18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses.

Results:

Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship.

Conclusions:

Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency.  相似文献   

5.
A previous study reported that social stress sensitivity is moderated by the brain-derived-neurotrophic-factorVal66Met (BDNF rs6265) genotype. Additionally, positive emotions partially neutralize this moderating effect. The current study aimed to: (i) replicate in a new independent sample of subjects with residual depressive symptoms the moderating effect of BDNFVal66Met genotype on social stress sensitivity, (ii) replicate the neutralizing impact of positive emotions, (iii) extend these analyses to other variations in the BDNF gene in the new independent sample and the original sample of non-depressed individuals.Previous findings were replicated in an experience sampling method (ESM) study. Negative Affect (NA) responses to social stress were stronger in “Val/Met” carriers of BDNFVal66Met compared to “Val/Val” carriers. Positive emotions neutralized the moderating effect of BDNFVal66Met genotype on social stress sensitivity in a dose–response fashion. Finally, two of four additional BDNF SNPs (rs11030101, rs2049046) showed similar moderating effects on social stress-sensitivity across both samples. The neutralizing effect of positive emotions on the moderating effects of these two additional SNPs was found in one sample.In conclusion, ESM has important advantages in gene–environment (GxE) research and may attribute to more consistent findings in future GxE research. This study shows how the impact of BDNF genetic variation on depressive symptoms may be explained by its impact on subtle daily life responses to social stress. Further, it shows that the generation of positive affect (PA) can buffer social stress sensitivity and partially undo the genetic susceptibility.  相似文献   

6.

Rationale

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a major role in neurogenesis and neuroplasticity, and in the modulation of several neurotransmitter systems including the dopaminergic system. There are mixed reports about the association between the BDNF Val66Met polymorphism, schizophrenia, and treatment response to antipsychotic drugs.

Objectives

The present study evaluated the association of the BDNF Val66Met polymorphism with treatment response to atypical antipsychotic olanzapine in schizophrenia and the possible predictive value of the BDNF Val66Met genotype status in treatment response to antipsychotic medication.

Methods

The study included 590 ethnically homogenous Caucasian patients with schizophrenia (diagnosed using the SCID), 40.2?±?12.0 years old, treated with olanzapine monotherapy (10–20 mg/day), or with other antipsychotics such as risperidone (3–6 mg/day), clozapine (100–500 mg/day), haloperidol (3–115 mg/day), fluphenazine (4–25 mg/day), and quetiapine (50–800 mg/day). Patients were subdivided into responders and non-responders according to a 50 % reduction in the Positive and Negative Syndrome Scale (PANSS) total and subscale scores after 8 weeks of treatment.

Results

The results, corrected for possible effects of gender and age, showed a significant association between the BDNF Val66Met polymorphism and treatment response to olanzapine in patients. The Val/Val genotype was observed more frequently in treatment responders to olanzapine, and this genotype was associated with an improvement in clinical symptoms.

Conclusions

Our results suggest that BDNF Val66Met variants might influence the response to 8 weeks of monotherapy with olanzapine, in a relatively large sample of patients with schizophrenia.  相似文献   

7.

Background

Brain-derived neurotrophic factor (BDNF) influences neuron differentiation during development as well as the synaptic plasticity and neuron survival in adulthood. BDNF has been implicated in the pathogenesis of schizophrenia and depression. Val66Met polymorphism and BDNF serum level are potential biomarkers in neuropsychiatric disorders. The aim of this study was to determine the effect of BDNF gene Val66Met functional polymorphism on serum BDNF concentration in patients with schizophrenia, during depression episode and in healthy control group.

Methods

183 participants were recruited (61 patients with depressive episode, 56 females with schizophrenia, 66 healthy controls) from Polish population. Serum BDNF levels were measured using ELISA method. Val66Met polymorphism was genotyped using PCR- RFLP method.

Results

Serum BDNF levels were not associated with Val66Met polymorphism in either of the groups. A significant increase of BDNF level in schizophrenia (p?=?0.0005) and depression (p?=?0.026) comparing to the control group has been observed.

Conclusions

Our results suggest that the functional Val66Met BDNF polymorphism is not associated with BDNF serum levels, which is in line with previous findings. Replication studies on larger groups are needed.  相似文献   

8.

Aims

The catechol-O-methyltransferase (COMT) Val158Met polymorphism affected pain sensitivity of healthy volunteers upon application of experimental pain stimuli. The relevance of these findings in morphine-treated postoperative cardiac patients undergoing painful healthcare procedures is unknown; therefore, the aim of this study was to investigate whether the COMT Val158Met polymorphism increases pain sensitivity in morphine-treated patients undergoing an unavoidable painful routine procedure after cardiac surgery.

Methods

One hundred and seventeen postoperative cardiac patients in the intensive care unit were genotyped for the COMT Val158Met polymorphism. All patients were treated with continuous morphine infusions for pain at rest, and received a bolus of morphine (2.5 or 7.5 mg) before a painful procedure (turning and/or chest drain removal) on the first postoperative day. Numerical rating scale (NRS) scores were evaluated at the following four time points: at baseline (at rest), and before, during and after the painful procedure.

Results

Overall mean NRS scores were significantly higher in patients carrying the Met-variant allele. During the painful procedure, the mean NRS score was significantly higher for Met/Met patients compared with Val/Met and Val/Val patients (mean NRS 3.4 ± 2.8, 2.7 ± 2.4 and 1.7 ± 1.7, respectively; P = 0.04). In Met/Met patients, the increase in NRS scores during the painful procedure compared with the baseline NRS score was clinically relevant (ΔNRS ≥ 1.3) and statistically significant and appeared to be independent of sex and the morphine bolus dose.

Conclusions

Our results show that the COMT Val158Met polymorphism contributes to variability in pain sensitivity after cardiac surgery of morphine-treated patients in the intensive care unit, because Met-allele carriers were more sensitive to overall pain and procedure-related pain.  相似文献   

9.

Background:

Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors.

Methods:

In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected to the forced swim test, as measured by Western-blot analysis.

Results:

In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower CREB and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex.

Conclusions:

There were no changes in the GPR39 knockout mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn2+-sensing receptor in the pathophysiology of depression with component of anxiety.  相似文献   

10.

Background and purpose:

The present study evaluated the role of CB2 receptors in the regulation of depressive-like behaviours. Transgenic mice overexpressing the CB2 receptor (CB2xP) were challenged with different types of acute and chronic experimental paradigms to evaluate their response in terms of depressive-like behaviours.

Experimental approach:

Tail suspension test (TST), novelty-suppressed feeding test (NSFT) and unpredictable chronic mild stress tests (CMS) were carried out in CB2xP mice. Furthermore, acute and chronic antidepressant-like effects of the CB2 receptor-antagonist AM630 were evaluated by means of the forced swimming test (FST) and CMS, respectively, in wild-type (WT) and CB2xP mice. CB2 gene expression, brain-derived neurotrophic factor (BDNF) gene and protein expressions were studied in mice exposed to CMS by real-time PCR and immunohistochemistry, respectively.

Key results:

Overexpression of CB2 receptors resulted in decreased depressive-like behaviours in the TST and NSFT. CMS failed to alter the TST and sucrose consumption in CB2xP mice. In addition, no changes in BDNF gene and protein expression were observed in stressed CB2xP mice. Interestingly, acute administration of AM630 (1 and 3 mg·kg−1, i.p.) exerted antidepressant-like effects on the FST in WT, but not in CB2xP mice. Chronic administration of AM630 for 4 weeks (1 mg·kg−1; twice daily, i.p.) blocked the effects of CMS on TST, sucrose intake, CB2 receptor gene, BDNF gene and protein expression in WT mice.

Conclusion and implications:

Taken together, these results suggest that increased CB2 receptor expression significantly reduced depressive-related behaviours and that the CB2 receptor could be a new potential therapeutic target for depressive-related disorders.  相似文献   

11.
Recent studies have emphasized an important role for neurotrophins, such as brain-derived neurotrophic factor (BDNF), in regulating the plasticity of neural circuits involved in the pathophysiology of stress-related diseases. The aim of the present study was to examine the interplay of the BDNF Val66Met and the serotonin transporter promoter (5-HTTLPR) polymorphisms in moderating the impact of early-life adversity on BDNF plasma concentration and depressive symptoms. Participants were taken from an epidemiological cohort study following the long-term outcome of early risk factors from birth into young adulthood. In 259 individuals (119 males, 140 females), genotyped for the BDNF Val66Met and the 5-HTTLPR polymorphisms, plasma BDNF was assessed at the age of 19 years. In addition, participants completed the Beck Depression Inventory (BDI). Early adversity was determined according to a family adversity index assessed at 3 months of age. Results indicated that individuals homozygous for both the BDNF Val and the 5-HTTLPR L allele showed significantly reduced BDNF levels following exposure to high adversity. In contrast, BDNF levels appeared to be unaffected by early psychosocial adversity in carriers of the BDNF Met or the 5-HTTLPR S allele. While the former group appeared to be most susceptible to depressive symptoms, the impact of early adversity was less pronounced in the latter group. This is the first preliminary evidence indicating that early-life adverse experiences may have lasting sequelae for plasma BDNF levels in humans, highlighting that the susceptibility to this effect is moderated by BDNF Val66Met and 5-HTTLPR genotype.  相似文献   

12.

Background:

Current antidepressants are clinically effective only after several weeks of administration. Tetramethylpyrazine (TMP) is an identified component of Ligusticum wallichii with neuroprotective effects. Here, we investigated the antidepressant effects of TMP in mice models of depression.

Methods:

Antidepressant effects of TMP were first detected in the forced swim test (FST) and tail suspension test (TST), and further assessed in the chronic social defeat stress (CSDS) model. Changes in the brain-derived neurotrophic factor (BDNF) signaling pathway and in hippocampal neurogenesis after CSDS and TMP treatment were then investigated. A tryptophan hydroxylase inhibitor and BDNF signaling inhibitors were also used to determine the mechanisms of TMP.

Results:

TMP exhibited potent antidepressant effects in the FST and TST without affecting locomotor activity. TMP also prevented the CSDS-induced symptoms. Moreover, TMP completely restored the CSDS-induced decrease of BDNF signaling pathway and hippocampal neurogenesis. Furthermore, a blockade of the BDNF signaling pathway prevented the antidepressant effects of TMP, while TMP produced no influence on the monoaminergic system.

Conclusions:

In conclusion, these data provide the first evidence that TMP has antidepressant effects, and this was mediated by promoting the BDNF signaling pathway.  相似文献   

13.

Background:

Brain-derived neurotrophic factor (BDNF) has been shown to be a moderator of neuroplasticity. A frequent BDNF-polymorphism (Val66Met) is associated with impairments of cortical plasticity. In patients with schizophrenia, reduced neuroplastic responses following non-invasive brain stimulation have been reported consistently. Various studies have indicated a relationship between the BDNF-Val66Met-polymorphism and motor-cortical plasticity in healthy individuals, but schizophrenia patients have yet to be investigated. The aim of this proof-of-concept study was, therefore, to test the impact of the BDNF-Val66Met-polymorphism on inhibitory and facilitatory cortical plasticity in schizophrenia patients.

Methods:

Cortical plasticity was investigated in 22 schizophrenia patients and 35 healthy controls using anodal and cathodal transcranial direct-current stimulation (tDCS) applied to the left primary motor cortex. Animal and human research indicates that excitability shifts following anodal and cathodal tDCS are related to molecular long-term potentiation and long-term depression. To test motor-cortical excitability before and after tDCS, well-established single- and paired-pulse transcranial magnetic stimulation protocols were applied.

Results:

Our analysis revealed increased glutamate-mediated intracortical facilitation in met-heterozygotes compared to val-homozygotes at baseline. Following cathodal tDCS, schizophrenia met-heterozygotes had reduced gamma-amino-butyric-acid-mediated short-interval intracortical inhibition, whereas healthy met-heterozygotes displayed the opposite effect. The BDNF-Val66Met-polymorphism did not influence single-pulse motor-evoked potential amplitudes after tDCS.

Conclusions:

These preliminary findings support the notion of an association of the BDNF-Val66Met-polymorphism with observable alterations in plasticity following cathodal tDCS in schizophrenia patients. This indicates a complex interaction between inhibitory intracortical interneuron-networks, cortical plasticity, and the BDNF-Val66Met-polymorphism. Further replication and validation need to be dedicated to this question to confirm this relationship.  相似文献   

14.

Aim:

The aim of this study was to study the effects of compound FLZ, a novel cyclic derivative of squamosamide from Annona glabra, on brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB)/cAMP response element-binding protein (CREB) signaling and neuronal apoptosis in the hippocampus of the amyloid precursor protein (APP)/presenilin-1 (PS1) double transgenic mice.

Methods:

APP/PS1 mice at the age of 5 months and age-matched wild-type mice (WT) were intragastrically administered FLZ (150 mg/kg) or vehicle [0.05% carboxymethyl cellulose sodium (CMC-Na)] daily for 20 weeks. The levels of BDNF in the hippocampus of WT and APP/PS1 mice were then measured by immunohistochemistry and Western blot analysis. Neuronal apoptosis in mouse hippocampus was detected by Nissl staining. Expression of NGF, NT3, pTrkB (Tyr515)/TrkB, pAkt (Ser473)/Akt, pERK/ERK, pCREB (Ser133)/CREB, Bcl-2/Bax, and active caspase-3 fragment/caspase-3 in the hippocampus of WT and APP/PS1 mice was detected by Western blot analysis.

Results:

Compared with vehicle-treated APP/PS1 mice, FLZ (150 mg/kg) significantly increased BDNF and NT3 expression in the hippocampus of APP/PS1 mice. In addition, FLZ promoted BDNF high-affinity receptor TrkB phosphorylation and activated its downstream ERK, thus increasing phosphorylation of CREB at Ser133 in the hippocampus of APP/PS1 mice. Moreover, FLZ showed neuroprotective effects on neuronal apoptosis by increasing the Bcl-2/Bax ratio and decreasing the active caspase-3 fragment/caspase-3 ratio in the hippocampus of APP/PS1 mice.

Conclusion:

FLZ exerted neuroprotection at least partly through enhancing the BDNF/TrkB/CREB pathway and inhibiting neuronal apoptosis in APP/PS1 mice, which suggests that FLZ can be explored as a potential therapeutic agent in long-term Alzheimer''s disease therapy.  相似文献   

15.

Background and purpose:

We aimed to demonstrate the involvement of 5-HT1A receptors in the therapeutic effect of cannabidiol, a non-psychoactive constituent of Cannabis sativa, in a model of hepatic encephalopathy induced by bile-duct ligation (BDL) in mice.

Experimental approach:

Cannabidiol (5 mg·kg−1; i.p.) was administered over 4 weeks to BDL mice. Cognition and locomotion were evaluated using the eight-arm maze and the open field tests respectively. Hippocampi were analysed by RT-PCR for expression of the genes for tumour necrosis factor-α receptor 1, brain-derived neurotrophic factor (BDNF) and 5-HT1A receptor. N-(2-(4-(2-methoxy-phenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide (WAY-100635), a 5-HT1A receptor antagonist (0.5 mg·kg−1), was co-administered with cannabidiol. Liver function was evaluated by measuring plasma liver enzymes and bilirubin.

Key results:

Cannabidiol improved cognition and locomotion, which were impaired by BDL, and restored hippocampal expression of the tumour necrosis factor-α receptor 1 and the BDNF genes, which increased and decreased, respectively, following BDL. It did not affect reduced 5-HT1A expression in BDL mice. All the effects of cannabidiol, except for that on BDNF expression, were blocked by WAY-100635, indicating 5-HT1A receptor involvement in cannabidiol''s effects. Cannabidiol did not affect the impaired liver function in BDL.

Conclusions and implications:

The behavioural outcomes of BDL result from both 5-HT1A receptor down-regulation and neuroinflammation. Cannabidiol reverses these effects through a combination of anti-inflammatory activity and activation of this receptor, leading to improvement of the neurological deficits without affecting 5-HT1A receptor expression or liver function. BDNF up-regulation by cannabidiol does not seem to account for the cognitive improvement.  相似文献   

16.

Background:

Major depression has multiple comorbidities, in particular drug use disorders, which often lead to more severe and difficult-to-treat illnesses. However, the mechanisms linking these comorbidities remain largely unknown.

Methods:

We investigated how a depressive-like phenotype modulates cocaine-related behaviors using a genetic model of depression: the Helpless H/Rouen (H) mouse. We selected the H mouse line for its long immobility duration in the tail suspension test when compared to non-helpless (NH) and intermediate (I) mice. Since numerous studies revealed important sex differences in drug addiction and depression, we conducted behavioral experiments in both sexes.

Results:

All mice, regardless of phenotype or sex, developed a similar behavioral sensitization after 5 daily cocaine injections (10 mg/kg). Male H and NH mice exhibited similar cocaine-induced conditioned place preference scores that were only slightly higher than in I mice, whereas female H mice strikingly accrued much higher preferences for the cocaine-associated context than those of I and NH mice. Moreover, female H mice acquired cocaine-associated context learning much faster than I and NH mice, a facilitating effect that was associated to a rapid increase in striatal and accumbal brain-derived neurotrophic factor levels (BDNF; up to 35% 24 h after cocaine conditioning). Finally, when re-exposed to the previously cocaine-associated context, female H mice displayed greater Fos activation in the cingulate cortex, nucleus accumbens, and basolateral amygdala.

Conclusions:

Our data indicate that neurobiological mechanisms such as alterations in associative learning, striato-accumbal BDNF expression, and limbic-cortico-striatal circuit reactivity could mediate enhanced cocaine vulnerability in female depressive-like mice.  相似文献   

17.

Background and purpose:

Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic- and antipsychotic-like effects in animal models. Effects of CBD may be mediated by the activation of 5-HT1A receptors. As 5-HT1A receptor activation may induce antidepressant-like effects, the aim of this work was to test the hypothesis that CBD would have antidepressant-like activity in mice as assessed by the forced swimming test. We also investigated if these responses depended on the activation of 5-HT1A receptors and on hippocampal expression of brain-derived neurotrophic factor (BDNF).

Experimental approach:

Male Swiss mice were given (i.p.) CBD (3, 10, 30, 100 mg·kg−1), imipramine (30 mg·kg−1) or vehicle and were submitted to the forced swimming test or to an open field arena, 30 min later. An additional group received WAY100635 (0.1 mg·kg−1, i.p.), a 5-HT1A receptor antagonist, before CBD (30 mg·kg−1) and assessment by the forced swimming test. BDNF protein levels were measured in the hippocampus of another group of mice treated with CBD (30 mg·kg−1) and submitted to the forced swimming test.

Key results:

CBD (30 mg·kg−1) treatment reduced immobility time in the forced swimming test, as did the prototype antidepressant imipramine, without changing exploratory behaviour in the open field arena. WAY100635 pretreatment blocked CBD-induced effect in the forced swimming test. CBD (30 mg·kg−1) treatment did not change hippocampal BDNF levels.

Conclusion and implications:

CBD induces antidepressant-like effects comparable to those of imipramine. These effects of CBD were probably mediated by activation of 5-HT1A receptors.  相似文献   

18.

Background:

Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), signaling represent potential therapeutic targets for major depressive disorder. The purpose of this study is to examine whether TrkB ligands show antidepressant effects in an inflammation-induced model of depression.

Methods:

In this study, we examined the effects of TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) and TrkB antagonist ANA-12 on depression-like behavior and morphological changes in mice previously exposed to lipopolysaccharide (LPS). Protein levels of BDNF, phospho-TrkB (p-TrkB), and TrkB in the brain regions were also examined.

Results:

LPS caused a reduction of BDNF in the CA3 and dentate gyrus (DG) of the hippocampus and prefrontal cortex (PFC), whereas LPS increased BDNF in the nucleus accumbens (NAc). Dexamethason suppression tests showed hyperactivity of the hypothalamic-pituitary-adrenal axis in LPS-treated mice. Intraperitoneal (i.p.) administration of 7,8-DHF showed antidepressant effects on LPS-induced depression-like behavior, and i.p. pretreatment with ANA-12 blocked its antidepressant effects. Surprisingly, ANA-12 alone showed antidepressant-like effects on LPS-induced depression-like behavior. Furthermore, bilateral infusion of ANA-12 into the NAc showed antidepressant effects. Moreover, LPS caused a reduction of spine density in the CA3, DG, and PFC, whereas LPS increased spine density in the NAc. Interestingly, 7,8-DHF significantly attenuated LPS-induced reduction of p-TrkB and spine densities in the CA3, DG, and PFC, whereas ANA-12 significantly attenuated LPS-induced increases of p-TrkB and spine density in the NAc.

Conclusions:

The results suggest that LPS-induced inflammation may cause depression-like behavior by altering BDNF and spine density in the CA3, DG, PFC, and NAc, which may be involved in the antidepressant effects of 7,8-DHF and ANA-12, respectively.  相似文献   

19.

Aim:

Brain-derived neurotrophic factor (BDNF) plays an important role in learning and memory in multiple brain areas. In the present study, we investigated the roles of BDNF in aversive memories associated with conditioned drug withdrawal in acute morphine-dependent rats.

Methods:

Conditioned place aversion (CPA) was induced in male SD rats exposed to a single dose of morphine (10 mg/kg, sc) followed by naloxone (0.3 mg/kg, sc). In some rats, BDNF receptor antagonist K252a (8.5 ng per side) or BDNF scavenger TrkB-FC (0.65 μg per side) was bilaterally microinjected into amygdala before naloxone injection. BDNF mRNA and protein expression levels in amygdala were detected after the behavior testing.

Results:

CPA behavior was induced in rats by the naloxone-precipitated morphine withdrawal, which was accompanied by significantly increased levels of BDNF mRNA and protein in the amygdala. Bilateral microinjection of TrkB-FC or K252a into the amygdala completely blocked CPA behavior in the rats.

Conclusion:

Formation of aversive memories associated with conditioned drug withdrawal in acute morphine-dependent rats requires BDNF expression in the amygdala.  相似文献   

20.

BACKGROUND AND PURPOSE

Caffeic acid phenethyl ester (CAPE) is a component of honey bee propolis that can induce expression of haem oxygenase-1 (HO-1). Because HO-1 induction has been suggested to protect dopaminergic neurons in the substantia nigra, we examined the effect of CAPE in experimental models of dopaminergic neurodegeneration.

EXPERIMENTAL APPROACH

Neuroprotective effect of CAPE was investigated in rat organotypic midbrain slice cultures and in vivo, using a mouse model of dopaminergic neurodegeneration induced by intranigral injection of LPS and intrastriatal injection of 6-hydroxydopamine.

KEY RESULTS

CAPE protected dopaminergic neurons in slice cultures from IFN-γ/LPS-induced injury. The effect of CAPE was inhibited by zinc protoporphyrin IX, an HO-1 inhibitor, and by neutralizing antibody against brain-derived neurotrophic factor (BDNF). A p38 MAPK inhibitor SB203580 prevented activation of NF-E2-related factor 2, attenuated increased expression of HO-1 and BDNF, and blocked the neuroprotective actions of CAPE. In the LPS-injected mouse model, daily intraperitoneal administration of CAPE protected dopaminergic neurons, up-regulated HO-1 and BDNF, and reduced the increase of activated microglia/macrophages. Neuroprotective effects of CAPE against LPS-induced injury was prevented by zinc protoporphyrin IX or anti-BDNF antibody. CAPE protected dopaminergic neurons and alleviated methamphetamine-induced rotational behaviour also in 6-hydroxydopamine hemiparkinsonian mice.

CONCLUSION AND IMPLICATIONS

CAPE is a novel type of neuroprotective agent whose actions are mediated by both HO-1 and BDNF. These findings may provide novel clues to develop neuroprotective agents for treatment of neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号