首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anticipatory movements are motor responses occurring before likely sensory events in contrast to reflexive actions. Anticipatory movements are necessary to compensate for delays present in sensory and motor systems. Smooth pursuit eye movements are often used as a paradigmatic example for the study of anticipation. However, the neural control of anticipatory pursuit is unknown. A previous study suggested that the supplementary eye fields (SEFs) could play a role in the guidance of smooth pursuit to predictable target motion. In this study, we favored anticipatory responses in monkeys by making the parameters of target motion highly predictable and electrically stimulated the SEF before and during this behavior. Stimulation sites were restricted to regions of the SEF where saccades could not be evoked at the same low currents. We found that electrical microstimulation in the SEF increased the velocity of anticipatory pursuit movements and decreased their latency. These effects will be referred to as anticipatory pursuit facilitation. The degree of facilitation was the largest if the stimulation train was delivered near the end of the fixation period, before the moment when anticipatory pursuit usually begins. No anticipatory smooth eye movements could be evoked during fixation without an expectation of target motion. These results suggest that the SEF pursuit area might be involved in the process of guiding anticipatory pursuit.  相似文献   

2.
Reduction of retinal speed and alignment of the line of sight are believed to be the respective primary functions of smooth pursuit and saccadic eye movements. As the eye muscles strength can change in the short-term, continuous adjustments of motor signals are required to achieve constant accuracy. While adaptation of saccade amplitude to systematic position errors has been extensively studied, we know less about the adaptive response to position errors during smooth pursuit initiation, when target motion has to be taken into account to program saccades, and when position errors at the saccade endpoint could also be corrected by increasing pursuit velocity. To study short-term adaptation (250 adaptation trials) of tracking eye movements, we introduced a position error during the first catch-up saccade made during the initiation of smooth pursuit—in a ramp-step-ramp paradigm. The target position was either shifted in the direction of the horizontally moving target (forward step), against it (backward step) or orthogonally to it (vertical step). Results indicate adaptation of catch-up saccade amplitude to back and forward steps. With vertical steps, saccades became oblique, by an inflexion of the early or late saccade trajectory. With a similar time course, post-saccadic pursuit velocity was increased in the step direction, adding further evidence that under some conditions pursuit and saccades can act synergistically to reduce position errors.  相似文献   

3.
Visual tracking of moving targets requires the combination of smooth pursuit eye movements with catch-up saccades. In primates, catch-up saccades usually take place only during pursuit initiation because pursuit gain is close to unity. This contrasts with the lower and more variable gain of smooth pursuit in cats, where smooth eye movements are intermingled with catch-up saccades during steady-state pursuit. In this paper, we studied in detail the role of retinal slip in the prediction of target motion during smooth and saccadic pursuit in the cat. We found that the typical pattern of pursuit in the cat was a combination of smooth eye movements with saccades. During smooth pursuit initiation, there was a correlation between peak eye acceleration and target velocity. During pursuit maintenance, eye velocity oscillated at approximately 3 Hz around a steady-state value. The average gain of smooth pursuit was approximately 0.5. Trained cats were able to continue pursuing in the absence of a visible target, suggesting a role of the prediction of future target motion in this species. The analysis of catch-up saccades showed that the smooth-pursuit motor command is added to the saccadic command during catch-up saccades and that both position error and retinal slip are taken into account in their programming. The influence of retinal slip on catch-up saccades showed that prediction about future target motion is used in the programming of catch-up saccades. Altogether, these results suggest that pursuit systems in primates and cats are qualitatively similar, with a lower average gain in the cat and that prediction affects both saccades and smooth eye movements during pursuit.  相似文献   

4.
The oculomotor system coordinates different types of eye movements in order to orient the visual axis, including saccade and smooth pursuit,. It was traditionally thought that the premotor pathways for these different eye movements are largely separate. In particular, a group of midline cells in the pons called omnipause neurons were considered to be part of only the saccadic system. Recent experimental findings have shown activity modulation of these brainstem premotor neurons during both kinds of eye movements. In this study, we propose a new computational model of the brainstem circuitry underlying the generation of saccades and smooth pursuit eye movements. Similar models have been developed earlier, but mainly looking at pure saccades. Here, we integrated recent neurophysiological findings on omnipause neuron activity during smooth pursuit. Our computational model can mimic some new experimental findings as the similarity of "eye velocity profile" with "omnipause neuron pattern of activity" in pursuit movement. We showed that pursuit neuron activity is augmented during catch-up saccades; this increment depends on the initial pursuit velocity in catch-up saccade onset. We conclude that saccadic and pursuit components of catch-up saccades are added to each other nonlinearly.  相似文献   

5.
The premotor pathways subserving saccades and smooth-pursuit eye movements are usually thought to be different. Indeed, saccade and smooth-pursuit eye movements have different dynamics and functions. In particular, a group of midline cells in the pons called omnipause neurons (OPNs) are considered to be part of the saccadic system only. It has been established that OPNs keep premotor neurons for saccades under constant inhibition during fixation periods. Saccades occur only when the activity of OPNs has completely stopped or paused. Accordingly, electrical stimulation in the region of OPNs inhibits premotor neurons and interrupts saccades. The premotor relay for smooth pursuit is thought to be organized differently and omnipause neurons are not supposed to be involved in smooth-pursuit eye movements. To investigate this supposition, OPNs were recorded during saccades and during smooth pursuit in the monkey (Macaca mulatta). Unexpectedly, we found that neuronal activity of OPNs decreased during smooth pursuit. The resulting activity reduction reached statistical significance in approximately 50% of OPNs recorded during pursuit of a target moving at 40 degrees /s. On average, activity was reduced by 34% but never completely stopped or paused. The onset of activity reduction coincided with the onset of smooth pursuit. The duration of activity reduction was correlated with pursuit duration and its intensity was correlated with eye velocity. Activity reduction was observed even in the absence of catch-up saccades that frequently occur during pursuit. Electrical microstimulation in the OPNs' area induced a strong deceleration of the eye during smooth pursuit. These results suggest that OPNs form an inhibitory mechanism that could control the time course of smooth pursuit. This inhibitory mechanism is part of the fixation system and is probably needed to avoid reflexive eye movements toward targets that are not purposefully selected. This study shows that saccades and smooth pursuit, although they are different kinds of eye movements, are controlled by the same inhibitory system.  相似文献   

6.
Periarcuate frontal cortex is involved in the control of smooth pursuit eye movements, but its role remains unclear. To better understand the control of pursuit by the "frontal pursuit area" (FPA), we applied electrical microstimulation when the monkeys were performing a variety of oculomotor tasks. In agreement with previous studies, electrical stimulation consisting of a train of 50-microA pulses at 333 Hz during fixation of a stationary target elicited smooth eye movements with a short latency (approximately 26 ms). The size of the elicited smooth eye movements was enhanced when the stimulation pulses were delivered during the maintenance of pursuit. The enhancement increased as a function of ongoing pursuit speed and was greater during pursuit in the same versus opposite direction of the eye movements evoked at a site. If stimulation was delivered during pursuit in eight different directions, the elicited eye velocity was fit best by a model incorporating two stimulation effects: a directional signal that drives eye velocity and an increase in the gain of ongoing pursuit eye speed in all directions. Separate experiments tested the effect of stimulation on the response to specific image motions. Stimulation consisted of a train of pulses at 100 or 200 Hz delivered during fixation so that only small smooth eye movements were elicited. If the stationary target was perturbed briefly during microstimulation, normally weak eye movement responses showed strong enhancement. If delivered at the initiation of pursuit, the same microstimulation caused enhancement of the presaccadic initiation of pursuit for steps of target velocity that moved the target either away from the position of fixation or in the direction of the eye movement caused by stimulation at the site. Stimulation in the FPA increased the latency of saccades to stationary or moving targets. Our results show that the FPA has two kinds of effects on the pursuit system. One drives smooth eye velocity in a fixed direction and is subject to on-line gain control by ongoing pursuit. The other causes enhancement of both the speed of ongoing pursuit and the responses to visual motion in a way that is not strongly selective for the direction of pursuit. Enhancement may operate either at a single site or at multiple sites. We conclude that the FPA plays an important role in on-line gain control for pursuit as well as possibly delivering commands for the direction and speed of smooth eye motion.  相似文献   

7.
During visual tracking of a moving stimulus, primates orient their visual axis by combining two very different types of eye movements, smooth pursuit and saccades. The purpose of this paper was to investigate quantitatively the catch-up saccades occurring during sustained pursuit. We used a ramp-step-ramp paradigm to evoke catch-up saccades during sustained pursuit. In general, catch-up saccades followed the unexpected steps in position and velocity of the target. We observed catch-up saccades in the same direction as the smooth eye movement (forward saccades) as well as in the opposite direction (reverse saccades). We made a comparison of the main sequences of forward saccades, reverse saccades, and control saccades made to stationary targets. They were all three significantly different from each other and were fully compatible with the hypothesis that the smooth pursuit component is added to the saccadic component during catch-up saccades. A multiple linear regression analysis was performed on the saccadic component to find the parameters determining the amplitude of catch-up saccades. We found that both position error and retinal slip are taken into account in catch-up saccade programming to predict the future trajectory of the moving target. We also demonstrated that the saccadic system needs a minimum period of approximately 90 ms for taking into account changes in target trajectory. Finally, we reported a saturation (above 15 degrees /s) in the contribution of retinal slip to the amplitude of catch-up saccades.  相似文献   

8.
Neurons in the intermediate and deep layers of the rostral superior colliculus (SC) of monkeys are active during attentive fixation, small saccades, and smooth-pursuit eye movements. Alterations of SC activity have been shown to alter saccades and fixation, but similar manipulations have not been shown to influence smooth-pursuit eye movements. Therefore we both activated (electrical stimulation) and inactivated (reversible chemical injection) rostral SC neurons to establish a causal role for the activity of these neurons in smooth pursuit. First, we stimulated the rostral SC during pursuit initiation as well as pursuit maintenance. For pursuit initiation, stimulation of the rostral SC suppressed pursuit to ipsiversive moving targets primarily and had modest effects on contraversive pursuit. The effect of stimulation on pursuit varied with the location of the stimulation with the most rostral sites producing the most effective inhibition of ipsiversive pursuit. Stimulation was more effective on higher pursuit speeds than on lower and did not evoke smooth-pursuit eye movements during fixation. As with the effects on pursuit initiation, ipsiversive maintained pursuit was suppressed, whereas contraversive pursuit was less affected. The stimulation effect on smooth pursuit did not result from a generalized inhibition because the suppression of smooth pursuit was greater than the suppression of smooth eye movements evoked by head rotations (vestibular-ocular reflex). Nor was the stimulation effect due to the activation of superficial layer visual neurons rather than the intermediate layers of the SC because stimulation of the superficial layers produced effects opposite to those found with intermediate layer stimulation. Second, we inactivated the rostral SC with muscimol and found that contraversive pursuit initiation was reduced and ipsiversive pursuit was increased slightly, changes that were opposite to those resulting from stimulation. The results of both the stimulation and the muscimol injection experiments on pursuit are consistent with the effects of these activation and inactivation experiments on saccades, and the effects on pursuit are consistent with the hypothesis that the SC provides a position signal that is used by the smooth-pursuit eye-movement system.  相似文献   

9.
Lid-eye coordination during vertical gaze changes in man and monkey   总被引:1,自引:0,他引:1  
1. To investigate the coordination between the upper lid and the eye during vertical gaze changes, the movements of the lid and the eye were measured by the electromagnetic search-coil technique in three humans and two monkeys. 2. In both man and monkey, there was a close correspondence between the metrics of the lid movement and those of the concomitant eye movement during vertical fixation, smooth pursuit, and saccades. 3. During steady fixation, the eye and lid assumed essentially equal average positions; however, in man the lid would often undergo small idiosyncratic movements of up to 5 degrees when the eye was completely stationary. 4. During sinusoidal smooth pursuit between 0.2 and 1.0 Hz, the gain and phase shift of eye and lid movements were remarkably similar. The smaller gain and larger phase lag for downward smooth pursuit eye movements was mirrored in a similar reduced gain and increased phase lag for downward lid movements. 5. The time course of vertical lid movements associated with saccades was generally a faithful replica of the time course of the concomitant saccade; the similarity was especially impressive when the details of the velocity profiles were compared. Consequently, lid movements associated with vertical eye saccades are called lid saccades. 6. On average, lid saccades start some 5 ms later than the concomitant eye saccades but reach peak velocity at about the same time as the eye saccade. Concurrent lid and eye saccades in the downward direction have similar amplitudes and velocities. Lid saccades in the upward direction are often smaller and slower than the concomitant eye saccades. The relation of peak velocity versus amplitude and of duration versus amplitude are similar for lid and eye saccades. 7. To investigate the neural signal responsible for lid saccades, isometric tension and EMG activity were recorded from the lids of the two authors. 8. The isometric tensions during upward lid saccades exceeded the tensions required to hold the lid in its final position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
When objects move in our environment, the orientation of the visual axis in space requires the coordination of two types of eye movements: saccades and smooth pursuit. The principal input to the saccadic system is position error, whereas it is velocity error for the smooth pursuit system. Recently, it has been shown that catch-up saccades to moving targets are triggered and programmed by using velocity error in addition to position error. Here, we show that, when a visual target is flashed during ongoing smooth pursuit, it evokes a smooth eye movement toward the flash. The velocity of this evoked smooth movement is proportional to the position error of the flash; it is neither influenced by the velocity of the ongoing smooth pursuit eye movement nor by the occurrence of a saccade, but the effect is absent if the flash is ignored by the subject. Furthermore, the response started around 85 ms after the flash presentation and decayed with an average time constant of 276 ms. Thus this is the first direct evidence of a position input to the smooth pursuit system. This study shows further evidence for a coupling between saccadic and smooth pursuit systems. It also suggests that there is an interaction between position and velocity error signals in the control of more complex movements.  相似文献   

11.
In this study, we investigated the influence of smooth-pursuit eye movements on saccade initiation in response to a sudden jump of a continuously moving target. We replicated the finding by Tanaka et al. (1998) that saccadic eye movements in the direction opposite to preceding pursuit have longer latencies than those in the same direction. We confirmed that this asymmetry is indeed due to an inhibitory effect of smooth pursuit on saccade initiation in the opposite direction rather than facilitation of saccade initiation in the same direction. The inhibitory effect decreased strongly when subjects knew the jump direction in advance. This supports the notion that the prolonged latencies of backward saccades are not due to orbital mechanics or low-level motor processing. Furthermore, we found that the range of saccade directions inhibited by a pursuit movement is broad, covering all directions that did not have the same horizontal component as the pursuit direction. This is in contrast with the predictions of "Inhibition of Saccade Return" (ISR, Hooge and Frens 2000), which is restricted to a smaller confined area. Electronic Publication  相似文献   

12.
This study was performed to characterize the properties of the suppression of smooth pursuit eye movement induced by electrical stimulation of the frontal eye field (FEF) in trained monkeys. At the stimulation sites tested, we first determined the threshold for generating electrically evoked saccades (Esacs). We then examined the suppressive effects of stimulation on smooth pursuit at intensities that were below the threshold for eliciting Esacs. We observed that FEF stimulation induced a clear deceleration of pursuit at pursuit initiation and also during the maintenance of pursuit at subthreshold intensities. The suppression of pursuit occurred even in the absence of catch-up saccades during pursuit, indicating that suppression influenced pursuit per se. We mapped the FEF area that was associated with the suppressive effect of stimulation on pursuit. In a wide area in the FEF, suppressive effects were observed for ipsiversive, but not contraversive, pursuit. In contrast, we observed the bilateral suppression of both ipsiversive and contraversive pursuit in a localized area in the FEF. This area coincided with the area in which we have previously shown that stimulation suppressed the generation of saccades in bilateral directions and also where fixation neurons that discharged during fixation were concentrated. On the basis of these results, we compared the FEF suppression of pursuit with that of saccades with regard to several physiological properties and then discussed the role of the FEF in the suppression of both pursuit and saccades, and particularly in the maintenance of visual fixation.  相似文献   

13.
The study of the saccadic system has focused mainly on neurons active before the beginning of saccades, in order to determine their contribution in movement planning and execution. However, most oculomotor structures contain also neurons whose activity starts only after the onset of saccades, the maximum of their activity sometimes occurring near saccade end. Their characteristics are still largely unknown. We investigated pretectal neurons with saccade-related activity in the alert cat during eye movements towards a moving target. They emitted a high-frequency burst of action potentials after the onset of saccades, irrespective of their direction, and will be referred to as "pretectal saccade-related neurons". The delay between saccade onset and cell activity varied from 17 to 66 ms on average. We found that burst parameters were correlated with the parameters of saccades; the peak eye velocity was correlated with the peak of the spike density function, the saccade amplitude with the number of spikes in the burst, and burst duration increased with saccade duration. The activity of six pretectal saccade-related neurons was studied during smooth pursuit at different velocities. A correlation was found between smooth pursuit velocity and mean firing rate. A minority of these neurons (2/6) were also visually responsive. Their visual activity was proportional to the difference between eye and target velocity during smooth pursuit (retinal slip). These results indicate that the activity of pretectal saccade-related neurons is correlated with the characteristics of eye movements. This finding is in agreement with the known anatomical projections from premotor regions of the saccadic system to the pretectum.  相似文献   

14.
A vast knowledge exists about saccadic reaction times (RT) and their bi- or multimodal distributions with very fast (express) and regular RT. Recently, there has been some evidence that the smooth pursuit system may show a similar RT behavior. Since moving targets usually evoke a combined pursuit/saccade response, we asked which processes influence the initiation of pursuit and saccadic eye movements. Furthermore, we investigated whether and how the pursuit and saccadic system interact during the initiation of eye movements to moving targets. We measured the RT of the initial smooth pursuit (iSP) response and of the first corrective saccade and compared the RT behavior of both. Furthermore we compared the behavior of the corrective saccades to moving targets to that of saccades to stationary targets, known from the literature. The stimulus consisted of a target that moved suddenly at constant velocity (ramp). In addition, prior to the movement, a temporal gap, a position step or a combination of both could occur (gap-ramp, step-ramp, gap-step-ramp, respectively). Differently from most previous studies, we chose step and ramp with the same direction to provoke competition between the pursuit and saccade system. For the first time we investigated pursuit initiation in "express-saccade makers" (ES makers), a subject group known to produce an abnormally high percentage of short-latency saccades in saccade tasks. We compared their results with subject groups who were either naive or trained with respect to saccade tasks. The iSP started at approximately 100 ms, which corresponds to express saccade latencies. These short iSP-RT occurred reflex-like and almost independent of the experimental task. A bimodal frequency distribution of RT with a second peak of longer iSP-RT occurred exclusively in the ramp paradigm. The RT of the first corrective saccades in a pursuit task were comparable with that in a saccade task and depended on the stimulus. The ability of ES makers to produce a high number of express saccades was transferred to corrective saccades in the pursuit task, but not to pursuit initiation. In summary, short-latency pursuit responses differ from express saccades with respect to their independence of experiment and subject group. Therefore, a simple analogy to express saccades cannot be drawn, although some mechanisms seem to act similarly on both the pursuit and the saccade system (such as disengagement of attention with the gap effect). Furthermore, we found evidence that the initial pursuit response and the first corrective saccade are processed independently of each other. The first corrective saccades to moving targets behave like saccades to stationary targets. Normal pursuit but abnormal saccade RT of ES makers can be explained by recent theories of superior colliculus (SC) function in terms of retinal error handling.  相似文献   

15.
Neural regions in the dorsomedial frontal cortex (DMFC), including the supplementary eye field (SEF) and the presupplementary motor area (pre-SMA), are likely candidates for generating top-down control of saccade target selection. To investigate this, we applied electrical microstimulation to these structures while saccades were being planned to visual targets. Stimulation administered to superficial and lateral DMFC sites that were within or close to the SEF delayed ipsilateral and facilitated contralateral saccades. Facilitation was limited to saccades made toward targets in a narrow, contralateral movement field that had endpoints consistent with the goal of evoked saccades. Facilitation occurred with current delivered before target onset and delay with current applied after this time. Stimulation at deeper, medial sites that encompassed the pre-SMA resulted in mostly bilateral delay. The amount of delay at these sites was usually greater for ipsilateral saccades and increased with current amplitude. Changes in saccade latency were not accompanied by altered endpoint, trajectory, or peak velocity. The spatial specificity of SEF stimulation in inducing latency changes suggests that the SEF participates in selecting saccade goals. The less specific delay with pre-SMA stimulation suggests that it is involved in postponing visually guided saccades, thus likely permitting other oculomotor structures to select saccade goals.  相似文献   

16.
In what frame of reference does the supplementary eye field (SEF) encode saccadic eye movements? In this study, the "saccade collision" test was used to determine whether a saccade electrically evoked in the monkey's SEF is programmed to reach an oculocentric goal or a nonoculocentric (e.g., head or body-centered) goal. If the eyes start moving just before or when an oculocentric goal is imposed by electrical stimulation, the trajectory of the saccade to that goal should compensate for the ongoing movement. Conversely, if the goal imposed by electrical stimulation is nonoculocentric, the trajectory of the evoked saccade should not be altered. In head-fixed experiments, we mapped the trajectories of evoked saccades while the monkey fixated at each of 25 positions 10 degrees apart in a 40 x 40 degrees grid. For each studied SEF site, we calculated convergences indices and found that "convergent" and "nonconvergent" sites were separately clustered: nonconvergent rostral to convergent. Then, the "saccade collision" test was systematically applied. We found compensation at sites where saccades were of the nonconvergent type and practically no compensation at sites where saccades were of the convergent type. The results indicate that the SEF can encode saccade goals in at least two frames of reference and suggest a rostrocaudal segregation in the representation of these two modes.  相似文献   

17.
When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).  相似文献   

18.
The overall goals of the studies presented here were to compare (1) the accuracies of saccades to moving targets with either a novel or a known target motion, and (2) the relationships between the measures of target motion and saccadic amplitude during pursuit initiation and maintenance. Since resampling of position error just prior to saccade initiation can confound the interpretation of results, the target ramp was masked during the planning and execution of the saccade. The results suggest that saccades to moving targets were significantly more accurate if the target motion was known from the early part of the trial (e.g., during pursuit maintenance) than in the case of novel target motion (e.g., during pursuit initiation); both these types of saccades were more accuate than those when target motion information was not available. Using target velocity in space as a rough estimate of the magnitude of the extra-retinal signal during pursuit maintenance, the saccadic amplitude was significantly associated with the extra-retinal target motion information after accounting for the position error. In most subjects, this association was stronger than the one between retinal slip velocity and saccadic amplitude during pursuit initiation. The results were similar even when the smooth eye motion prior to the saccade was controlled. These results suggest that different sources of target motion information (retinal image velocity vs internal representation of previous target motion in space) are used in planning saccades during different stages of pursuit. The association between retinal slip velocity and saccadic amplitude is weak during initiation, thus explaining poor saccadic accuracy during this stage of pursuit.  相似文献   

19.
The primate lobulus petrosus (LP) of the cerebellar paraflocculus receives inputs from visual system-related pontine nuclei, and projects to eye movement-related cerebellar nuclei. To reveal a potential involvement of LP in oculomotor control, we lesioned LP unilaterally by local injections of ibotenic acid in three Macaca fuscata. We examined the effects of lesion on eye movements evoked by step (3 degrees )-ramp (5-15 degrees/s) moving target. To step-ramp moving target, the monkeys showed an initial slow eye movement and later a small catch-up saccade, which was followed by the post-saccadic pursuit nearly matching to the velocity of the ramp target motion. After LP lesioning, the velocity of post-saccadic pursuits in the ipsiversive and down-ward directions decreased by 20-40% in all three monkeys. These deficits lasted for at least 1 month, and some recovery was observed. In the amplitudes of catch-up saccades, no consistent changes were seen among the three monkeys after LP lesioning. These results suggest an involvement of LP in the primate smooth pursuit eye movement control.  相似文献   

20.
The purpose of this study was to investigate the temporal relationship between presaccadic neuronal discharges in the frontal eye fields (FEF) and supplementary eye fields (SEF) and the initiation of saccadic eye movements in macaque. We utilized an analytical technique that could reliably identify periods of neuronal modulation in individual spike trains. By comparing the observed activity of neurons with the random Poisson distribution generated from the mean discharge rate during the trial period, the period during which neural activity was significantly elevated with a predetermined confidence level was identified in each spike train. In certain neurons, bursts of action potentials were identified by determining the period in each spike train in which the activation deviated most from the expected Poisson distribution. Using this method, we related these defined periods of modulation to saccade initiation in specific cell types recorded in FEF and SEF. Cells were recorded in SEF while monkeys made saccades to targets presented alone. Cells were recorded in FEF while monkeys made saccades to targets presented alone or with surrounding distractors. There were no significant differences in the time-course of activity of the population of FEF presaccadic movement cells prior to saccades generated to singly presented or distractor-embedded targets. The discharge of presaccadic movement cells in FEF and SEF could be subdivided quantitatively into an early prelude followed by a high-rate burst of activity that occurred at a consistent interval before saccade initiation. The time of burst onset relative to saccade onset in SEF presaccadic movement cells was earlier and more variable than in FEF presaccadic movement cells. The termination of activity of another population of SEF neurons, known as preparatory set cells, was time-locked to saccade initiation. In addition, the cessation of SEF preparatory set cell activity coincided precisely with the beginning of the burst of SEF presaccadic movement cells. This finding raises the possibility that SEF preparatory set cells may be involved in saccade initiation by regulating the activation of SEF presaccadic movement cells. These results demonstrate the utility of the Poisson spike train analysis to relate periods of neuronal modulation to behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号