首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
pH sensitive liposomes were prepared using a terminally-alkylated copolymer of N-isopropylacrylamide (NIPAM) and methacrylic acid (MAA) and poly(ethylene glycol) phospholipid derivative. The pH-triggered content release was evaluated before and after incubation in serum. Pharmacokinetic and biodistribution profiles of the formulations were established in rats. This study showed that a pH-sensitive, serum-stable and long-circulating liposomal formulation can be produced.  相似文献   

2.
A composite device was developed to provide a biphasic drug release using poly(vinyl alcohol) (PVA) and poly(methylmethacrylate-co-methacrylic acid) (P(MMA/MAA)) spheres. Azidothymidine (AZT), an anti-HIV agent with a short biological half-life, was used as the model drug. Dynamic and equilibrium swelling of the polymers, and kinetics of AZT release from these polymers were determined in pH 1.2 and 6.8 buffer solutions. The swelling of PVA and release of AZT from PVA disks were fast and nearly pH-independent, whereas the swelling behavior and drug release kinetics of P(MMA/MAA) spheres were strongly pH-dependent. A swelling interface number for the spheres at pH 6.8 was determined to be Sw&z.Lt;1 and time dependent. Nevertheless, Fickian diffusion might also contribute to the drug release in this system. The composite disks consisting of PVA matrix and P(MMA/MAA) spheres provided prolonged (over 20 h) and more steady release profiles, differing profoundly from individual components. Such release profiles resulted from the second phase release at pH 6.8 and the presence of PVA layer. The relative drug loading in the matrix could be tailored to produce release profiles varying from a distinct bimodal release to a pseudo zero-order release with an initial burst.  相似文献   

3.
Poly (N-isopropylacrylamide) (PNIPAAm) hydrogels possess a lower critical solution temperature (LCST) at around 32 degrees C. When the external temperature is raised above the LCST, the hydrogels experience abrupt and drastic shrinkage. This unique property makes them very useful for biomedical applications such as on-off switches for modulated drug delivery and tissue engineering. The aim of this work was to study the potential of using PNIPAAm hydrogels for protein delivery, and to obtain basic understandings of the protein-gel interactions as well as their effect on protein loading and release. PNIPAAm gels were synthesized with different crosslinker contents. The effects of crosslinker content, in vitro release temperature, protein loading level and molecular size as well as temperature cycling on protein release from PNIPAAm gels were examined. Greater amount of BSA was loaded using gels fabricated with lower crosslinker contents and loading solution with higher concentrations of BSA. An incomplete release of encapsulated BSA from the gels was observed in all cases. Enhanced mass transfer created by oscillating swelling-deswelling in response to temperature cycling across the LCST and lowering in vitro release temperature did not promote BSA release because of strong BSA-gel interactions. Evidence for the residual BSA in the gels after in vitro release was provided by dyeing the gels with protein determination reagent and shift in the LCST of the gels. In contrast, insulin release was much faster and more complete when compared to BSA because of its smaller size. The protein-gel interactions were analysed by investigating the LCST of, and state of water in, the blank and protein-loaded hydrogels.  相似文献   

4.
We have developed the epoch-making contact lens that is equipped with drug delivery system. The hydrogels contain cationic functional group in its side chain were prepared with 2-hydroxyethyl methacylate (HEMA) and methacrylamide propyltrimethylammonium chloride (MAPTAC). The obtained hydrogel is capable to store the anionic drug such as azulene based on ion-exchange reaction. The incorporated anionic drug would be released in physiological condition. The size change of the hydrogel may occur before and after drug release, but we have discovered that the addition of anionic monomer such as methacrylic acid (MAA) and 2-methacryloxyethyl acid phosphate (MOEP) to the above-mentioned composition is effective to prevent the size change, indicating that this hydrogel has the possibility to be applied as a significant drug delivery system device.  相似文献   

5.
Hydrogels of poly(methacrylic acid-g-ethylene glycol) were prepared using different reaction water contents in order to vary the network mesh size, swelling behavior and insulin loading/release kinetics. Gels prepared with greater reaction solvent contents swelled to a greater degree and had a larger network mesh size. All of the hydrogels were able to incorporate insulin and protected it from release in acidic media. At higher pH (7.4), the release rates increased with reaction solvent content. Using a closed loop animal model, all of the insulin loaded formulations produced significant insulin absorption in the upper small intestine combined with hypoglycemic effects. In these studies, bioavailabilities ranged from 4.6% to 7.2% and were dependent on reaction solvent content.  相似文献   

6.
Sequential interpenetrating network (IPN) of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were prepared and crosslinked with glutaraldehyde (GA) to form pH-sensitive microspheres by the water-in-oil (w/o) emulsification method. Microspheres were used to deliver a model anti-inflammatory drug, diclofenac sodium (DS), to the intestine. The formed IPN was analyzed by Fourier transform infrared spectroscopy (FTIR). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses were done on the drug-loaded microspheres to confirm the polymorphism of DS. Results indicated a molecular level dispersion of DS in the IPN. Microspheres formed were spherical with the smooth surfaces as evidenced by scanning electron microscopy (SEM). Particle size and size distribution was studied using laser light diffraction particle size analyzer. Particle size analysis was also done by optical microscope for the selected microspheres; the change in diameter of the microspheres when soaked in different media at different time intervals was measured by optical microscope. Microspheres showed a pulsatile swelling behavior when the pH of the swelling media was changed. The swelling data were fitted to an empirical equation to understand the phenomenon of water transport as well as to calculate the diffusion coefficient (D). Values of D in acidic media were lower than those found in basic media. The values of D decrease with increasing crosslinking of the matrix. In-vitro release studies have been performed in 1.2 and 7.4 pH media to simulate gastric and intestinal conditions. The results indicated a dependence on the pH of the release media, extent of crosslinking and the amount of drug loading.  相似文献   

7.
New thermo-responsive, pH-responsive, and biodegradable nanoparticles comprised of poly(D,L-lactide)-graft-poly(N-isopropyl acrylamide-co-methacrylic acid) (PLA-g-P(NIPAm-co-MAA)) were developed by grafting biodegradable poly(D,L-lactide) onto N-isopropyl acrylamide and methacrylic acid. A core-shell type nano-structure was formed with a hydrophilic outer shell and a hydrophobic inner core, which exhibited a phase transition temperature above 37 degrees C suitable for biomedical application. Upon heating above the phase transition temperature, PLA-g-P(NIPAm-co-MAA) nanoparticle showed a polarity increase of pyrene in either buffer solution or intra-hepato-carcinoma cells as determined by fluorescence measurement, indicating that the structure of nanoparticles caused leakages from outer shell copolymers aggregation and collapsed. The drug loading level of 5-fluorouracil (5-FU) encapsulated in the PLA-g-P(NIPAm-co-MAA) nanoparticles can be as high as 20%. The release of 5-FU from nanoparticles was strongly controlled by the pH in the aqueous solution. Based on these results, PLA-g-P(NIPAm-co-MAA) nanoparticles can be used as a drug carrier for intracellular delivery of anti-cancer drug.  相似文献   

8.
We have designed a new mucoadhesive drug delivery formulation based on H-bonded complexes of poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) with the poly(ethylene glycol) (PEG), of a (PEG)-drug conjugate. The PEGylated prodrugs are synthesized with degradable PEG-anhydride-drug bonds for eventual delivery of free drug from the formulation. In this work we have used indomethacin as the model drug which is PEGylated via anhydride bonds to the PEG. The complexes are designed first to dissociate as the formulation swells in contact with mucosal surfaces at pH 7.4, releasing PEG-indomethacin, which then hydrolyses to release free drug and free PEG. We found that as MW of PAA increases, the dissociation rate of the complex decreases, which results in decreased rate of release of the drug. On the other hand, the drug release from PEG-indomethacin alone and from solid mixture of PEG-indomethacin+PAA was much faster than that from the H-bonded complexes. Due to the differences in the thermal stability, PMAA complex exhibited slightly faster drug release than that of the PAA complex of comparable MW. These H-bonded complexes of degradable PEGylated drugs with bioadhesive polymers should be useful for mucosal drug delivery.  相似文献   

9.
Granules and beads of methacrylic acid (MAA) and granules of N-acryloyl-alanine polymer (NAA) were produced using ethylene glycol dimethacrylate as cross-linking monomer either by bulk (in the case of granules) or suspension (in the case of beads) polymerization. Either R- or S-propranolol, were used as an imprint molecule, acting as a template, with a view to conferring enantioselectivity of release upon the polymer. The molecularly imprinted polymers (MIPs) or nonMIPs (control) were formulated with racemic propranolol and other excipients and compressed to form matrix tablets. Enantioselective release of propranolol in vitro was monitored using a stereoselective HPLC assay. The influence of the method of polymer synthesis, drug: polymer ratio, pH and temperature on the release of the two enantiomers was determined. Stereoselectivity of release was identified in tablets containing either MAA or NAA granules or MAA beads, with the latter showing the greatest differences between enantiomers. Release of the enantiomer used as the print was always faster than the release of the nonprint enantiomer. In the case of S-propranolol-MIP bead matrices composed of MAA, greater differences in the release of enantiomers could be promoted by increasing the polymer: drug ratio of the tablet. Differences in the release rate of the two propranolol enantiomers was still apparent as the pH was varied between 3 and 7.4 and when the temperature was decreased from 37 to 25 degrees C. S-Propranolol-MIP bead matrices demonstrated cross-reactivities of stereoselective dissolution for enantiomers of pindolol and oxprenolol, both of which have structural similarities to the imprint molecule. It is concluded that polymers of this type may have great potential in controlling, via means of formulation, the release of drug eutomer whilst enhancing retention of distomer in the dosage form.  相似文献   

10.
Micro-capsules normally encapsulate therapeutic agents only inside their cavities. In this paper, we report on the synthesis of dually responsive poly(N-isopropylacrylamide) (PNiPAM)-co-acrylic acid (AA) hydrogel cages sub-micrometer in size and the use of these cages as drug carriers. The cavity structure of the cages can enhance volume phase transition compared to solid gel particles, thus favoring drug loading and release. TEM images and FT-IR spectra confirmed that the model drug isoniazid (INH) is located in two regions: within the shell and inside the cavity of the cages. The drugs residing in the shell can form hydrogen bonds with the cage matrix, while the drugs in the cavity are interaction free with the carrier. This difference from the residency of drugs exploited to a structure induced drug release which was programmable controlled by external pH and temperature. In vitro drug release studies showed that in a neutral medium (pH=7.4), major drugs were preserved within the shell, while in an acidic medium (pH=1.2), nearly all of the drugs were released due to the dissociation of hydrogen bonds.  相似文献   

11.
A positively thermosensitive drug-release microcapsule (MC) with diameter around 100 microm was designed and its preparation was carried out by using an air suspension coating technique (the Wurster process). The MC had a core layered with carbazochrome sodium sulfonate (CCSS, a water-soluble model drug) particles and a thermosensitive coat composed of an ethylcellulose matrix containing nano-sized thermosensitive hydrogels. The hydrogel particles consisted of a newly synthesized composite latex with a poly(N-isopropylacrylamide (NIPAAm)) shell that could reversibly change the shell thickness in water with response to an environmental temperature change. This MC demonstrated a positively thermosensitive drug release: the release rate was remarkably enhanced at temperatures above a lower gel collapse point (temperature for complete deswelling) of 32 degrees C, suggesting that the shrinkage of poly(NIPAAm) shells most likely created many voids in the coat and thereby imparted the higher water-permeability to the coat. Thermosensitivity of drug release highly depended on the composite latex particle content in the coat. It became most distinct when its content reached 12.5 and 15 wt%. In addition, it was found that the present MC membrane made it possible to obtain an 'on-off' pulsatile release, which could alter the release rate in the order of a minute, in response to stepwise temperature changes between 30 and 50 degrees C.  相似文献   

12.
The colloidal phenomenon of soft particles is becoming an important field of research due to the growing interest in using polymeric system in drug delivery. Previous studies have focused on techniques that require intermediate process step such as dialysis or centrifugation, which introduces additional errors in obtaining the diffusion kinetic data. In this study, a drug selective electrode was used to directly measure the concentration of procaine hydrochloride (PrHy) released from methacrylic acid-ethyl acrylate (MAA-EA) microgel, thereby eliminating the intermediate process step. PrHy selective membrane constructed using a modified poly (vinyl chloride) (PVC) membrane and poly (ethylene-co-vinyl acetate-co-carbon monoxide) as plasticizer exhibited excellent reproducibility and stability. The response was reproducible at pH of between 3 to 8.5 and the selectivity coefficients against various organic and inorganic cations were evaluated. Drug release was conducted using the drug electrode under different pHs and the release rate increased with pH. The release behavior of the system under different pH exhibited obvious gradient release characteristics.  相似文献   

13.
Dexamethasone- or rapamycin-loaded nanoparticles based on poly(ethylene oxide) and poly(dl-lactic-co-glycolic acid) block copolymers (PEO-PLGA) were prepared without additional stabilizer using the salting-out method. A fast release of drug in PBS (pH 7.4) at 37 degrees C resulting in 100% release within 5 h was observed for both drugs. The rate of drug release was substantially reduced by treating the particles with gelatin or albumin after drug loading, resulting in a linear drug release in time. It was shown that the rate of drug release is related to the amount of protein associated with the nanoparticles. After gelatin treatment of drug-loaded nanoparticles, sustained release of dexamethasone for 17 days and of rapamycin for 50 days could be achieved.  相似文献   

14.
Poly(methacrylic acid) (P(MAA)), poly(acrylamide) (P(AAm)) and poly(3-acrylamidopropyltrimethyl ammonium chloride) (P(APTMACl)) were synthesized as anionic, neutral and cationic hydrogels, respectively. The synthesized hydrogels have the ability to be used as absorbents for the removal of selected heavy metal ions such as Cu2+, Co2+, Ni2+ and Zn2+ from aqueous media. Absorption studies revealed that the absorption of metal ions by the hydrogels followed the order Cu2+ > Ni2+ > Co2+ > Zn2+. For the mechanism of absorption, both Freundlich and Langmuir absorption isotherms were applied. Metal ion entrapped hydrogels were treated using an in situ chemical reduction method in order to convert the metal ions into metal nanoparticles for the synthesis of hybrid hydrogels. The synthesis and morphology were confirmed using FT-IR and SEM, while the absorbed metal amounts were measured using TGA and AAS. The hybrid hydrogels were further used as catalysts for the reduction of macro (methylene blue, methyl orange and congo red) and micro (4-nitrophenol and nitrobenzene) pollutants from the aqueous environment. The catalytic performance and re-usability of the hybrid hydrogels were successfully investigated.

Poly(methacrylic acid) (P(MAA)), poly(acrylamide) (P(AAm)) and poly(3-acrylamidopropyltrimethyl ammonium chloride) (P(APTMACl)) were synthesized as anionic, neutral and cationic hydrogels respectively.  相似文献   

15.
The objective of this study was to investigate the insulin incorporation and release properties of poly(methacrylic acid-g-ethylene glycol) P(MAA-g-EG) microparticles as a function of copolymer composition. These microparticles exhibited unique pH-responsive characteristics in which interpolymer complexes were formed in acidic media and dissociated in neutral/basic environments. The microparticles containing equimolar amounts of MAA and PEG were capable of efficient insulin loading using equilibrium partitioning (>90%). Additionally, insulin release from the gel was significantly retarded in acidic media while rapid release occurred under neutral/basic conditions. In contrast, as the amount of MAA of the polymer was increased, the entrapment efficiency of insulin within the gel greatly reduced and the insulin was readily released from the polymer network in the acidic and neutral/basic media. In addition, in order to evaluate the potential application of the microparticles to other drugs, theophylline, vancomycin, fluorescein-isothiocyanate-labeled dextrans (FITC-Ds) with average molecular weights of 4400 (FITC-D-4), 12,000 (FITC-D-10) and 19,500 (FITC-D-20) were utilized as model hydrophilic drugs. The incorporation profiles showed that the uptake of theophylline and vancomycin to the microparticles was lower than that of insulin. Additionally, polymer microparticles loaded with theophylline and vancomycin exhibited pH-sensitive release behavior, however, the oscillatory behavior is less pronounced than those of insulin. The values of drug incorporation ratio showed that the microparticles were capable of incorporating almost 90% of insulin and 15% of vancomycin from solution. On the other hand, the other hydrophilic drugs showed very low incorporation efficiency to the microparticles. These data suggest that gels containing equimolar amounts of MAA:EG have the potential to be used as an oral carrier of peptide drugs, especially for insulin.  相似文献   

16.
This research investigates the in vitro release of transforming growth factor-beta1 (TGF-beta1) from novel, injectable hydrogels based on the polymer oligo(poly(ethylene glycol) fumarate) (OPF). These hydrogels can be used to encapsulate TGF-beta1-loaded-gelatin microparticles and can be crosslinked at physiological conditions within a clinically relevant time period. Experiments revealed that OPF formulation and crosslinking time may be adjusted to influence the equilibrium swelling ratio, elastic modulus, strain at fracture, and mesh size of these hydrogels. Studies with OPF-gelatin microparticle composites revealed that OPF formulation and crosslinking time, as well as microparticle loading and crosslinking extent, influence composite swelling. In vitro TGF-beta1 release studies demonstrated that burst release from OPF hydrogels with a mesh size of 136 A was approximately 53%, while burst release from hydrogels with a mesh size of 93 A was only 34%. For hydrogels with a large mesh size (136 A), encapsulation of loaded gelatin microparticles allowed burst release to be reduced to 29-32%, depending on microparticle loading. Likewise, final cumulative release after 28 days was reduced from 71% to 48-66% by encapsulation of loaded microparticles. However, inclusion of gelatin microparticles within OPF hydrogels of smaller mesh size (93 A) was seen to increase TGF-beta1 release rates. The equilibrium swelling ratio of the microparticle component of these composites was shown to be greater than the equilibrium swelling ratio of the OPF component. Therefore, increased release rates are the result of disruption of the polymer network during swelling. These combined results indicate that the kinetics of TGF-beta1 release can be controlled by adjusting OPF formulation and microparticle loading, factors affecting the swelling behavior these composites. By systematically altering these parameters, in vitro release rates from hydrogels and composites loaded with TGF-beta1 at concentrations of 200 ng/ml can be varied from 13 to 170 pg TGF-beta1/day for days 1-3 and from 7 to 47 pg TGF-beta1/day for days 6-21. Therefore, these studies demonstrate the potential of these novel hydrogels and composites in the sustained delivery of low dosages of TGF-beta1 to articular cartilage defects.  相似文献   

17.
Poly(D,L-lactide-co-ethyl ethylene phosphate)s as new drug carriers.   总被引:2,自引:0,他引:2  
Many biodegradable polymers have been developed for controlled drug delivery. The plethora of drug therapies and types of drugs demand different formulations, fabrications conditions and release kinetics. No one single polymer can satisfy all the requirements. To extend the properties of poly(D,L-lactide) (PLA), we synthesized copolymers of PLA and poly(ethylethylene phosphate) (PEEP) by ring-opening polymerization using Al(Oipr)3 as the initiator. The copolymers were structurally characterized by IR and 1H NMR. DSC data confirmed the formation of random microphase structure in all the copolymers, and showed a decrease of Tg from 43.2 to -22.6 degrees C when the molar content of ethylethylene phosphate (EEP) increased from 5 to 40%. The hydrophilicity of the copolymers increased with EEP content. In contrast to the degradation behavior of PLA, disc samples made of PLAEEP90 showed a linear weight loss profile in PBS (pH 7.4) at 37 degrees C. BSA microspheres using PLAEEP90 were prepared by double-emulsion method, yielding a loading level of 4.3% and a loading efficiency of 75%. The BSA release profile consisted of an initial burst (9%) on the first day, followed by a daily 4% release for the following 40 days, resulting in 91% of the BSA release in a near linear manner. The released BSA remained intact according to SDS-PAGE data. Cytotoxicity and histopathology studies showed low toxicity in HeLa cells and good tissue biocompatibility in mouse brain, respectively. PLAEEP is a promising biodegradable polymer for controlled drug delivery.  相似文献   

18.
Triblock copolymers of poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) (PCLLA-PEG-PCLLA) were synthesized by ring opening copolymerization of caprolactone and lactide in the presence of poly(ethylene glycol) (PEG). With such triblock copolymers, PCLLA-PEG-PCLLA nanoparticles entrapping 10-hydroxycamptothecin-10,20-diisobutyl dicarbonate (HCPT-1), a derivative of the antitumor drug 10-hydroxycamptothecin (HCPT), were prepared by nano-precipitation method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The investigations on drug loading, in vitro release and body distribution in mice after intravenous (i.v.) administration were also carried out. It is found that the obtained nanoparticles showed smooth surface and spherical shape with the controllable size in the range of 70-180 nm, and drug loading content varied from 3.3% to 7.0% depending on the copolymer composition and preparation conditions. The in vitro release behavior exhibited a sustaining release manner and was affected by particle size as well as copolymer composition. The results of body distribution study in mice show that the blood concentration of HCPT-1 could be maintained for a long period and the tissue distribution was influenced by the particle size to some extent. These results suggest that the PCLLA-PEG-PCLLA nanoparticles seem to be a promising delivery system for poorly soluble antitumor drugs or their derivatives.  相似文献   

19.
As a novel temperature-sensitive drug delivery system, we have designed liposomes coated with poly(N-isopropylacrylamide), which exhibits a coil-globule transition at 32-35 degrees C. In a previous study [ K. Kono, H. Hayashi, T. Takagishi, J. Control. Release 30 (1994) 69-75], it was shown that the release of contents from the polymer-coated liposomes is enhanced above the transition temperature of the polymer but the release is not controlled completely by the conformational change of the polymer. In this study, to improve temperature-sensitivity of the poly(N-isopropylacrylamide)-modified liposomes, the influence of lipid composition on the temperature-sensitivity of the liposomes was investigated. A copolymer of N-isopropylacrylamide and N, N-didodecylacrylamide was synthesized by free radical copolymerization. While the copolymer was insoluble in water, it exhibited a coil-globule transition around 28 degrees C when incorporated into an egg yolk phosphatidylcholine membrane. The copolymer-modified egg yolk phosphatidylcholine/dioleoylphosphatidylethanolamine liposomes were prepared by sonication or reverse phase evaporation. Release of calcein from the copolymer-modified liposomes was very slow below the transition temperature of the copolymer, whereas the release was enhanced above the transition temperature. Incorporation of dioleoylphosphatidylethanolamine into liposome membranes enhanced release greatly above the transition temperature of the copolymer. Fluorometric measurements using 8-anilino-1-naphthalenesulfonate and 1,6-diphenyl-1,3,5-hexatriene suggested that the copolymer decreases membrane fluidity of the liposomes near and above the transition temperature of the copolymer and that interaction between the copolymer and the liposome membranes is enhanced by inclusion of dioleoylphosphatidylethanolamine.  相似文献   

20.
The aim of this work was to evaluate the utility of molecular imprinting for improving the loading capability of weakly cross-linked hydrogels, with a view to their use as soft contact lenses for administration of timolol. Imprinted hydrogels were prepared considering preformation of complexes between methacrylic acid (functional monomers) and timolol (target molecules), and polymerization with N,N-diethylacrylamide and ethylenglycol dimethacrylate (EGDMA, cross-linker) after injection in moulds (0.3 mm thickness) and UV irradiation at room temperature. After polymerization, timolol molecules were removed by washing. When the gels were immersed in timolol solutions, the imprinted gels adsorbed much more timolol than the corresponding non-imprinted ones, especially above 60 mM EGDMA. The minimum cross-linker concentration for the imprinting to be effective was 80 mM EGDMA. The imprinted contact lenses improved significantly the affinity of the hydrogels for timolol, estimated after fitting Langmuir equation to the adsorption isotherms. These results indicated that adsorption sites capable of capturing the target molecules were encoded effectively into the polymer network by the molecular imprinting technique and, in consequence, improved the drug loading capacity of the gels. Loaded imprinted contact lenses were able to prolong timolol release, in 0.9% NaCl aqueous solution, for more than 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号