首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homologue (pp60c-src) appear to be protein kinases that phosphorylate tyrosine in a variety of protein substrates. In addition, pp60v-src and pp60-c-src are themselves phosphorylated on serine and tyrosine. It is likely that these phosphorylations serve to regulate the function(s) of pp60v-src and pp60c-src. We have therefore characterized the sites of tyrosine phosphorylation in the two proteins. Tyrosine phosphorylation of pp60v-src in infected cells occurs mainly (if not entirely) at residue 419 in the deduced amino acid sequence of the protein. Surrounding this residue is the sequence Leu-Ile-Glu-Asp-Asn-Glu-Tyr(P)-Thr-Ala-Arg. This peptide is distinguished by the fact that three out of the four amino acids that precede the phosphorylated tyrosine are acidic in nature. These results define what may prove to be a widely used site for tyrosine phosphorylation in the regulation of cellular function. The same site was phosphorylated when partially purified pp60v-src was used in a phosphotransfer reaction in vitro. The results with pp60c-src were more complex. The site of tyrosine phosphorylation in vitro appeared to be the same as that found in pp60v-src. By contrast, phosphorylation of pp60c-src in vivo apparently occurred at a different, and currently unidentified, tyrosine residue. It is therefore possible that pp60v-src and pp60c-src respond differently to regulatory influences in the intact cell.  相似文献   

2.
The major site of tyrosine phosphorylation of the transforming protein of Rous sarcoma virus, pp60v-src (tyrosine-416), is different from the major site of tyrosine phosphorylation of its nontransforming normal cellular counterpart, pp60c-src. We have shown that antibodies against a synthetic peptide modeled on the carboxyl-terminal 13 residues of pp60c-src specifically immunoprecipitate the major phosphotyrosine tryptic peptide of pp60c-src from both chicken and rat fibroblasts. These experiments localize the major site of tyrosine phosphorylation to one or more of the three tyrosine residues in the carboxyl-terminal tryptic peptide at positions 511, 519, and 527 of the amino acid sequence of chicken pp60c-src. Tyrosines-519 and -527 are in the carboxyl-terminal 19-amino acid segment of pp60c-src that is deleted and replaced by an unrelated sequence in pp60v-src. It is possible that phosphorylation of tyrosine in the carboxyl-terminal tryptic peptide may be involved in the normal regulation of pp60c-src. The absence of this phosphorylation site in pp60v-src may, in part, contribute to its oncogenic properties.  相似文献   

3.
Phosphorylation of the carboxyl terminus of pp60c-src, the product of the c-src protooncogene, at Tyr-527 suppresses its tyrosine kinase activity and transforming potential. It has been proposed that the phosphorylated carboxyl terminus of pp60c-src inhibits kinase activity by binding to the SH2 (src homology 2) domain. We have synthesized peptides corresponding to the carboxyl-terminal 13 residues of pp60c-src phosphorylated and nonphosphorylated at Tyr-527. A highly transforming mutant, pp60c-src(F527), in which Tyr-527 is mutated to Phe, bound to the phosphorylated peptide immobilized to Affi-Gel 10. Binding of the phosphorylated peptide was abolished by deletion of residues 144-175 in the SH2 domain but not by deletion of residues 93-143, which removes most of the SH3 domain. The phosphorylated peptide also bound to pp60v-src, the transforming protein of Rous sarcoma virus. Only traces of pp60v-src and pp60c-src(F527) bound to the corresponding nonphosphorylated c-src peptide. Normal pp60c-src bound much less efficiently to the phosphorylated peptide than did pp60c-src(F527). A phosphorylated peptide corresponding to the carboxyl terminus of the c-fgr protein also bound to pp60c-src(F527), but with weaker affinity. Furthermore, the phosphorylated synthetic carboxyl-terminal pp60c-src peptide markedly inhibited phosphorylation of pp60c-src(F527) during cytoskeletal kinase assays. These results provide direct evidence for models in which the phosphorylated carboxyl terminus of pp60c-src binds intramolecularly or intermolecularly to the SH2 domain of the c-src protein.  相似文献   

4.
Heat-shock protein hsp90 governs the activity of pp60v-src kinase.   总被引:20,自引:1,他引:19       下载免费PDF全文
During or immediately after synthesis in vertebrate cells, the oncogenic protein-tyrosine kinase pp60v-src associates with the approximately 90-kDa heat-shock protein (hsp90). In this complex, pp60v-src is not functional as a kinase. When pp60v-src is subsequently found inserted into the plasma membrane, it is active as a kinase and is no longer associated with hsp90. We have taken advantage of genetic manipulations possible in Saccharomyces cerevisiae to investigate the function and specificity of the association between hsp90 and pp60v-src. Expression of pp60v-src is known to be toxic to S. cerevisiae cells. We find that this toxicity is due to a very specific effect on growth, arrest at a particular point in the cell cycle. In cells expressing v-src, a mutation that lowers the level of hsp90 expression (i) relieves cell cycle arrest and rescues growth, (ii) reduces the level of tyrosine phosphorylation mediated by pp60v-src, (iii) changes the pattern of tyrosine phosphorylation, and (iv) reduces the concentration of pp60v-src. We conclude that hsp90 does not simply suppress pp60v-src kinase activity during transit to the plasma membrane, as previously suggested, but also stabilizes the protein and affects both its activity and specificity. This function of hsp90 is highly selective for pp60v-src: the same hsp90 mutation has no effect on the activity or specificity of the exogenous pp160v-abl tyrosine kinase; similarly, it does not affect the specificity and has only a very small effect on the activity of the exogenous pp60c-src kinase.  相似文献   

5.
A recombinant baculovirus was constructed for the production of the serine-specific protein kinase, pp90rsk (where rsk is ribosomal S6 kinase), in insect cells. The Xenopus pp90rsk expressed in the infected cells had nearly undetectable enzyme activity in contrast to the same enzyme coproduced with the v-src oncogene product pp60v-src. The transforming gene product pp60v-src very effectively activated pp90rsk, whereas the products of c-src and the myristoylation-minus nontransforming virus NY315 were markedly less effective. Only a fraction of the total pp90rsk population was activated, and it could be partially separated from unactivated protein by ion-exchange chromatography. When compared to the unactivated form, the activated enzyme displayed about a 4000-fold increase in the capacity to phosphorylate the ribosomal protein S6. The enhanced enzymatic activity appeared to be due to phosphorylation of pp90rsk.  相似文献   

6.
We have examined the in vitro phosphorylation of cellular src protein (pp60c-src) molecules associated with the polyoma virus middle-sized tumor antigen in polyoma virus-transformed cells. These pp60c-src molecules possessed an enhanced tyrosyl kinase activity, migrated aberrantly on NaDodSO4/polyacrylamide gels, and contained a novel site of tyrosine phosphorylation within the amino-terminal region of the molecule. The pp60c-src molecules not associated with the middle-sized tumor antigen were phosphorylated exclusively on a tyrosine residue within the carboxyl-terminal domain of pp60c-src. A similar modified form of the middle-sized tumor antigen-associated pp60c-src protein was detected in lysates from polyoma virus-transformed cells labeled in vivo with [32P]orthophosphate in the presence of sodium orthovanadate, an inhibitor of phosphotyrosyl phosphatases.  相似文献   

7.
Transformation of cells in culture by polyomavirus is mediated by one of its early gene products, middle-sized tumor antigen (MTAg). This protein forms multiple complexes with cellular enzymes such as tyrosine kinases (pp60c-src), a phosphatidylinositol 3-kinase, and phosphatase 2A. Association with MTAg leads to the activation of pp60c-src through interference with phosphorylation at Tyr-527, a site negatively regulating src kinase activity. MTAg abrogates mitosis-specific activation of pp60c-src, resulting in constitutive high kinase activity of the enzyme throughout all phases of the cell cycle. Here we report that MTAg is transiently modified during mitosis, resulting in an increase in its apparent molecular size on SDS/acrylamide gels. Similarly, MTAg isolated from interphase cells and phosphorylated by the cell cycle-regulated serine/threonine kinase p34cdc2 in vitro has increased molecular mass. The large molecular mass form of the protein can be converted to the authentic 56-kDa form upon dephosphorylation by potato acid phosphatase. Two putative phosphorylation sites for a cdc2-like kinase were identified as Thr-160 and -291, respectively. Conversion of Thr-160 to Ala resulted in a transformation-defective mutant protein that was still capable of associating with pp60c-src, phosphatidylinositol 3-kinase, and phosphatase 2A, while the corresponding mutant in position 291 was wild type with respect to all parameters measured so far. These data suggest that phosphorylation by p34cdc2 or a related cell cycle-regulated kinase modulates the interaction of MTAg with cellular targets that are crucial for cell transformation.  相似文献   

8.
GTPase-activating protein (GAP), which regulates the activities of Ras proteins, is implicated in mitogenic signal transduction by growth-factor receptors and oncoproteins with tyrosine kinase activity. Oncogenic viral Src (p60v-src) encoded in Rous sarcoma virus possesses elevated tyrosine kinase activity compared with its nononcogenic normal homolog, cellular Src (p60c-src). To examine molecular interactions between GAP and the two Src kinases, immunoprecipitates of Src or GAP prepared from cell lystates were resolved by gel electrophoresis and analyzed by an immunoblot procedure with antibodies to GAP or Src used as probes. Results suggest that p60c-src is associated with a complex containing GAP in immunoprecipitates from lysates of normal rat and chicken cells. However, GAP is not phosphorylated in p60c-src immunoprecipitates subjected to in vitro kinase reactions. By contrast, GAP undergoes tyrosyl phosphorylation in vitro when immunoprecipitates of p60v-src prepared from transformed cell lysates are incubated with ATP. Our findings suggest that p60v-src and p60c-src associate with complexes containing GAP and provide a biochemical link between both kinases and GAP/Ras signal transduction pathways. These results are consistent with the hypothesis that GAP has a role in mediating normal functions of p60c-src as well as oncogenic activities of p60v-src.  相似文献   

9.
We have examined human and rabbit blood platelets for expression of pp60c-src, the normal cellular homolog of the transforming protein of Rous sarcoma virus. pp60c-src kinase activity was determined by an immune-complex kinase assay that uses enolase as the substrate, and pp60c-src protein levels were determined by an immunoblot assay. Lysates from platelets expressed high levels of pp60c-src-specific kinase activity and pp60c-src protein compared to the levels found in other tissues. pp60c-src was also found to be one of the major proteins phosphorylated in vitro in membranes isolated from platelets. Multiple protein species other than pp60c-src were also phosphorylated on tyrosine in the membrane phosphorylation reactions, and phosphotyrosine represented approximately equal to 80% of the total phosphoamino acid residues phosphorylated in the membranes. These results indicate that tyrosine kinases represent the major protein phosphorylating enzymes detected in isolated platelet membranes. Although the association of tyrosine kinase activity with many viral oncogene products and cellular growth hormone receptors has suggested a role for these enzymes in the regulation of cell proliferation, these results indicate that the expression of high levels of tyrosine kinase activity is not exclusively associated with proliferating cells.  相似文献   

10.
Avian and viral p60src proteins were expressed from a galactose-inducible promoter in the yeast Saccharomyces cerevisiae. Both the viral and cellular src proteins produced in yeast cells were myristoylated at their amino termini, as is the case for src proteins expressed in chicken embryo fibroblasts. The viral src protein produced in yeast autophosphorylated at tyrosine-416 in vivo and had approximately the same level of in vitro kinase activity as p60v-src expressed in Rous sarcoma virus-transformed cells. Unlike p60c-src expressed in chicken cells, which is phosphorylated on tyrosine in vivo almost exclusively at tyrosine-527, p60c-src expressed in yeast was phosphorylated 2.5-3 times more at tyrosine-416 than at tyrosine-527. The specific activity of the p60c-src produced in yeast was 2.5-5.0 times higher than that of p60c-src overexpressed from a retroviral vector in chicken cells, implicating the altered state of in vivo phosphorylation in modulation of the in vitro kinase activity. The expression of p60v-src substantially slowed down the growth of the yeast cells, suggesting that phosphorylation of yeast proteins essential for cell growth may have interfered with their proper functioning.  相似文献   

11.
12.
We have compared the tumorigenicity of two src oncogenes, v-src and c-src(527), whose respective protein products pp60v-src and pp60c-src(527) show a different spectrum of amino acid substitutions vis-à-vis the c-src protooncogene-encoded product pp60c-src. Whereas the extent of primary tumor growth induced by c-src(527) was quite similar in the two chicken lines tested, the extent of v-src-induced tumor growth showed a marked line dependence. As examined with a line of chickens that shows immune-mediated regression of v-src-induced tumors, a weaker tumor immunity, as correlated with a greater level of primary tumor growth, resulted from inoculation of c-src(527) DNA than of v-src DNA. These observations indicated that the v-src-specific amino acid substitutions define a major tumor antigenicity. That a separate src-associated antigenicity is also targetable by the tumor immune response followed from the finding that the level of protective immunity against the growth of c-src(527) DNA-induced tumors was augmented under conditions of the prior regression of v-src DNA-induced tumors. As this latter antigenicity may include one or more c-src(527)-encoded peptides that are equivalent to c-src-encoded self peptides, these observations suggest that a host tolerance to pp60c-src can be broken so as to permit a tumor immune response based on recognition of self peptides of pp60c-src(527).  相似文献   

13.
Expression of the Rous sarcoma virus-encoded oncoprotein, pp60v-src, subverts the normal regulation of cell growth, which results in oncogenic transformation. This process requires the intrinsic protein-tyrosine kinase activity of pp60v-src and is associated with an increase in tyrosine phosphorylation of a number of cellular proteins, candidate substrates for pp60v-src. We report here the isolation of a cDNA encoding a protein, pp125, that is a major phosphotyrosine-containing protein in untransformed chicken embryo cells and exhibits an increase in phosphotyrosine in pp60v-src-transformed chicken embryo cells. This cDNA encodes a cytoplasmic protein-tyrosine kinase which, based upon its predicted amino acid sequence and structure, is the prototype for an additional family of protein-tyrosine kinases. Immunofluorescence localization experiments show that pp125 is localized to focal adhesions; hence, we suggest the name focal adhesion kinase.  相似文献   

14.
Protein phosphatase 1, one of four major protein phosphatases involved in cellular regulation, was phosphorylated in vitro by pp60v-src, the transforming gene product of Rous sarcoma virus. Phosphorylation was accompanied by a loss of protein phosphatase activity. The inactivation of protein phosphatase 1 was time-dependent and the extent of inactivation correlated closely with the stoichiometry of phosphorylation. Under optimal conditions, 0.34 +/- 0.01 mol of phosphate were incorporated per mol of protein phosphatase and the activity of the enzyme was decreased by 39 +/- 2%. The inactivation required the presence of both MgATP and pp60v-src. There was no loss of activity when adenosine 5'-[beta gamma-imido]triphosphate was used in place of ATP. Phosphorylation of protein phosphatase 1 occurred exclusively on tyrosine residues and was blocked by specific antibodies to pp60v-src. During preincubation of pp60v-src at 41 degrees C, its protein kinase activity towards casein was lost rapidly. The ability of pp60v-src to phosphorylate and inactivate protein phosphatase 1 declined in parallel with the loss of casein kinase activity. Limited chymotryptic digestion of 32P-labeled protein phosphatase 1 (Mr 37,000) resulted in its quantitative conversion to a Mr 33,000 species. Conversion to this species was accompanied by the loss of 32P-labeling and by reactivation of the protein phosphatase. When various concentrations of chymotrypsin were used in the digestion, there was a close correlation between conversion to the Mr 33,000 species and the restoration of protein phosphatase activity. pp60v-src was unable to phosphorylate or inactivate a partially proteolyzed species of protein phosphatase 1 (Mr 33,000/34,000).  相似文献   

15.
More than 70% of wild-type Rous sarcoma virus p60v-src was found to be associated with a cellular structure resistant to nonionic detergent extraction that consists primarily of cytoskeletal proteins. On the other hand, nontransforming src proteins, including cellular p60c-src, nonmyristoylated forms, and those inactive in protein kinase, were found in the fraction solubilized by the detergent extraction. p60c-src was detergent-soluble even in transformed cells, suggesting that the association of p60v-src is not a result of cell transformation. Analyses with a variety of Rous sarcoma virus mutants showed a good correlation between the degree of association with the detergent-resistant structure and the extent of cell transformation caused by mutant src proteins, suggesting that this association may be significant for the process of cell transformation by Rous sarcoma virus.  相似文献   

16.
Phosphorylation of pp60c-src by p34cdc2 at three amino-proximal serine/threonine residues is temporally correlated with, but insufficient for, mitotic activation of c-Src kinase. The direct cause of activation during mitosis appears to be temporally correlated partial dephosphorylation of Tyr-527, a residue whose phosphorylation strongly suppresses pp60c-src activity. Site-directed mutagenesis of the serine/threonine phosphorylation sites blocks half the mitosis-specific decrease in Tyr-527 phosphorylation and half the increase in pp60c-src kinase activity. We conclude that p34cdc2 partially activates pp60c-src by a two-step process in which its serine/threonine phosphorylations either sensitize pp60c-src to a Tyr-527 phosphatase or desensitize it to a Tyr-527 kinase. Furthermore, additional events, independent of these p34cdc2-mediated phosphorylations, participate in mitotic activation of pp60c-src.  相似文献   

17.
Although there is evidence of alterations in brain protein phosphorylation patterns with age, it is not known if the protein kinases that phosphorylate only at tyrosine residues are involved in these changes. For this reason, we examined the age-related expression of pp60c-src, a tyrosine protein kinase enriched in neural tissues, in whole brain of adult Fischer-344 rats. The pp60c-src kinase activity was immunoprecipitated using a monoclonal antibody and the incorporation of [32P] from radiolabeled ATP into an exogenous substrate (casein) measured. The results showed that there was a substantial amount of pp60c-src kinase activity in brain of the adult animals ranging in age from 4 to 23 months and that it was not significantly different among these groups. Also, immunoprecipitates obtained under conditions of monoclonal antibody excess and utilized for immunoblot analysis indicated that the relative levels of the pp60c-src protein were unchanged in the same animals. These results suggest that, at the whole brain level, the pp60c-src kinase has a stable turnover and that a high amount of activity is biologically important in brain of adult rats through early senescence.  相似文献   

18.
Transit of pp60v-src to the plasma membrane.   总被引:44,自引:1,他引:43  
The protein kinase (pp60v-src) encoded by the transforming gene (v-src) of Rous sarcoma virus is synthesized on free polyribosomes and then translocated to the plasma membrane of infected cells. Neither the mechanism of the translocation nor the physiological significance of the membrane localization has been elucidated. We have explored these problems by pursuing previous observations of a complex between pp60v-src and two cellular proteins with molecular weights of 50,000 and 89,000. We found the complex located entirely in the cytoplasm, where it appears to form immediately after the synthesis of pp60v-src. While in the complex, pp60v-src has little detectable kinase activity and is phosphorylated predominantly on serine. After transfer from the complex to the plasma membrane, pp60v-src becomes phosphorylated on tyrosine as well as serine and acquires kinase activity. Under restrictive conditions, temperature-sensitive pp60v-src is produced in normal quantities, but translocation to the plasma membrane is diminished. As an apparent consequence, the cytoplasmic complex accumulates to abnormal abundance. Alternatively, temperature-sensitive pp60v-src that has been synthesized and translocated to the plasma membrane under permissive conditions appears to be released from the membrane and returns to the cytoplasmic complex when the infected cells are shifted to the restrictive temperature. We conclude that the cytoplasmic complex may be the vehicle by which pp60v-src reaches the plasma membrane. It is possible that other proteins may follow a similar route to the membrane. Binding to plasma membrane appears to be a discrete step in the biogenesis of pp60v-src and may be essential to the function of the protein.  相似文献   

19.
20.
NIH 3T3 mouse cells were transfected with plasmids that induce efficient expression of either (i) the Rous sarcoma virus v-src gene, (ii) the chicken c-src gene, or (iii) a recombinant gene combining the 5' portion of c-src with the 3' end of v-src. Focus formation in tissue culture and formation of large colonies in soft agar did not occur in cells transfected with c-src. Cells transfected with c-src expression plasmids did not form foci but were isolated using a coselectable biological marker. They display morphological and substrate-independent growth characteristics intermediate between those of normal and v-src-transformed mouse cells, and lysates from these cells have enhanced in vitro tyrosine kinase activity. Transfection with the c-src-v-src recombinant induced focus formation with an efficiency similar to that obtained with a v-src expression plasmid. These results imply that v-src-induced transformation does not result just from overexpression of an essentially normal cellular protein but, at least in part, depends on the mutations distinguishing the cellular and viral proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号