首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel mtDNA point mutation was detected in the tRNAleu(CUN) gene (G to A at position 12315) in a sporadic patient with chronic progressive external ophthalmoplegia, ptosis, limb weakness, sensorineural hearing loss and a pigmentary retinopathy. The mutation disrupts base pairing in the T psi C stem at a site which has been conserved throughout evolution. Although the other mtDNA tRNAleu gene (UUR) is a hotspot for mutation, this is the first pathogenic mutation to be reported in the gene coding for tRNAleu(CUN). MtDNAs carrying the mutation constituted 94% of total mtDNAs in two separate muscle biopsies. Single fibre analysis showed that skeletal muscle fibres without detectable cytochrome c oxidase activity (COX-ve fibres) contained predominantly mutant mtDNAs (93-98%) while fibres with apparently normal COX activity had up to 90% mutant mtDNAs, demonstrating that the G12315A mutation is functionally recessive. Immunofluorescence studies with specific antibodies to mtDNA- or nuclear-encoded subunits of COX were consistent with a defect in mitochondrial protein translation. The mutation was not present in blood cells or cultured fibroblasts and surprisingly, it could not be detected in satellite cells cultured from the patient's muscle. This pattern, which may by typical of patients who have inherited new germline pathogenic mtDNA mutations, possibly reflects loss of the mutation by random genetic drift in mitotic tissues and proliferation of mitochondria containing the mutant mtDNA in post- mitotic cells. The absence of mtDNA carrying the mutation in satellite cells suggests that regeneration of skeletal muscle fibres from satellite cells could restore a wild-type mtDNA genotype and normal muscle function.   相似文献   

2.
Although mutations in mitochondrial tRNAs constitute the most common mtDNA defect, the presence of pathological variants in mitochondrial tRNA(Asn) is extremely rare. We were able to identify a novel mtDNA tRNA(Asn) gene pathogenic mutation associated with a myopathic phenotype and a previously unreported respiratory impairment. Our proband is an adult woman with ophthalmoparesis and respiratory impairment. Her muscle biopsy presented several cytochrome c oxidase-negative (COX-) fibres and signs of mitochondrial proliferation (ragged red fibres). Sequence analysis of the muscle-derived mtDNA revealed an m.5709T>C substitution, affecting mitochondrial tRNA(Asn) gene. Restriction-fragment length polymorphism analysis of the mutation in isolated muscle fibres showed that a threshold of at least 91.9% mutated mtDNA results in the COX deficiency phenotype. The new phenotype further increases the clinical spectrum of mitochondrial diseases caused by mutations in the tRNA(Asn) gene.  相似文献   

3.
Leber's hereditary optic neuropathy (LHON), the most frequent mitochondrial disorder, is mostly due to three mitochondrial DNA (mtDNA) mutations in respiratory chain complex I subunit genes: 3460/ND1, 11778/ND4 and 14484/ND6. Despite considerable clinical evidences, a genetic modifying role of the mtDNA haplogroup background in the clinical expression of LHON remains experimentally unproven. We investigated the effect of mtDNA haplogroups on the assembly of oxidative phosphorylation (OXPHOS) complexes in transmitochondrial hybrids (cybrids) harboring the three common LHON mutations. The steady-state levels of respiratory chain complexes appeared normal in mutant cybrids. However, an accumulation of low molecular weight subcomplexes suggested a complex I assembly/stability defect, which was further demonstrated by reversibly inhibiting mitochondrial protein translation with doxycycline. Our results showed differentially delayed assembly rates of respiratory chain complexes I, III and IV amongst mutants belonging to different mtDNA haplogroups, revealing that specific mtDNA polymorphisms may modify the pathogenic potential of LHON mutations by affecting the overall assembly kinetics of OXPHOS complexes.  相似文献   

4.
The mitochondrial translation system is responsible for the synthesis of 13 proteins required for oxidative phosphorylation (OXPHOS), the major energy-generating process of our cells. Mitochondrial translation is controlled by various nuclear encoded proteins. In 27 patients with combined OXPHOS deficiencies, in whom complex II (the only complex that is entirely encoded by the nuclear DNA) showed normal activities, and mutations in the mitochondrial genome as well as polymerase gamma were excluded, we screened all mitochondrial translation factors for mutations. Here, we report a mutation in mitochondrial elongation factor G1 (GFM1) in a patient affected by severe, rapidly progressive mitochondrial encephalopathy. This mutation is predicted to result in an Arg250Trp substitution in subdomain G' of the elongation factor G1 protein and is presumed to hamper ribosome-dependent GTP hydrolysis. Strikingly, the decrease in enzyme activities of complex I, III and IV detected in patient fibroblasts was not found in muscle tissue. The OXPHOS system defects and the impairment in mitochondrial translation in fibroblasts were rescued by overexpressing wild-type GFM1, establishing the GFM1 defect as the cause of the fatal mitochondrial disease. Furthermore, this study evinces the importance of a thorough diagnostic biochemical analysis of both muscle tissue and fibroblasts in patients suspected to suffer from a mitochondrial disorder, as enzyme deficiencies can be selectively expressed.  相似文献   

5.
Although most components of the mitochondrial translation apparatus are encoded by nuclear genes, all known molecular defects associated with impaired mitochondrial translation are due to mutations in mitochondrial DNA. We investigated two siblings with a severe defect in mitochondrial translation, reduced levels of oxidative phosphorylation complexes containing mitochondrial DNA (mtDNA)-encoded subunits, and progressive hepatoencephalopathy. We mapped the defective gene to a region on chromosome 3q containing elongation factor G1 (EFG1), which encodes a mitochondrial translation factor. Sequencing of EFG1 revealed a mutation affecting a conserved residue of the guanosine triphosphate (GTP)-binding domain. These results define a new class of gene defects underlying disorders of oxidative phosphorylation.  相似文献   

6.
BackgroundA 65-year-old patient developed an unexplained and ultimately lethal metabolic acidosis under prolonged treatment with tigecycline. Tigecycline is known to have a selective inhibitory effect on eukaryotic mitochondrial translation. The underlying molecular mechanisms of the metabolic acidosis in this patient were explored.MethodsOxidative phosphorylation system (OXPHOS) analysis, blue native polyacrylamide gel electrophoresis followed by in-gel activity staining in mitochondria, molecular analysis of mitochondrial DNA (mtDNA) for genomic rearrangements and sequencing of the rRNA genes was performed on the subject's skeletal muscle.ResultsOXPHOS analysis revealed a combined deficiency of the complexes I, III, IV and V, with a preserved function of complex II (encoded by nuclear DNA), thus demonstrating a defective mtDNA translation. There were no known underlying mitochondrial genetic defects. The patient had a (m.1391T>A) variant within the 12SrRNA gene in heteroplasmy (50–60%).ConclusionsThis patient developed an ultimately lethal mitochondrial toxicity while receiving prolonged treatment with tigecycline, which was caused by a defective translation of the mtDNA. Tigecycline is known to suppress eukaryotic mitochondrial DNA translation, but until now this effect has been considered to be clinically insignificant. The observations in this patient suggest a clinically significant mitochondrial toxicity of tigecycline in this patient, and warrant further investigation.  相似文献   

7.
Mitochondrial DNA (mtDNA) mutations cause heterogeneous disorders in humans. MtDNA exists in multiple copies per cell, and mutations need to accumulate beyond a critical threshold to cause disease, because coexisting wild-type mtDNA can complement the genetic defect. A better understanding of the molecular determinants of functional complementation among mtDNA molecules could help us shedding some light on the mechanisms modulating the phenotypic expression of mtDNA mutations in mitochondrial diseases. We studied mtDNA complementation in human cells by fusing two cell lines, one containing a homoplasmic mutation in a subunit of respiratory chain complex IV, COX I, and the other a distinct homoplasmic mutation in a subunit of complex III, cytochrome b. Upon cell fusion, respiration is recovered in hybrids cells, indicating that mitochondria fuse and exchange genetic and protein materials. Mitochondrial functional complementation occurs frequently, but with variable efficiency. We have investigated by native gel electrophoresis the molecular organization of the mitochondrial respiratory chain in complementing hybrid cells. We show that the recovery of mitochondrial respiration correlates with the presence of supramolecular structures (supercomplexes) containing complexes I, III and IV. We suggest that critical amounts of complexes III or IV are required in order for supercomplexes to form and provide mitochondrial functional complementation. From these findings, supercomplex assembly emerges as a necessary step for respiration, and its defect sets the threshold for respiratory impairment in mtDNA mutant cells.  相似文献   

8.
Defects in oxidative phosphorylation (OXPHOS) are genetically unique because the different components involved in this process, respiratory chain enzyme complexes (I, III, and IV) and complex V, are encoded by nuclear and mitochondrial genome. The objective of the study was to assess whether there are clinical differences in patients suffering from OXPHOS defects caused by nuclear or mitochondrial DNA (mtDNA) mutations. We studied 16 families with > or = two siblings with a genetically established OXPHOS deficiency, four due to a nuclear gene mutation and 12 due to a mtDNA mutation. Siblings with a nuclear gene mutation showed very similar clinical pictures that became manifest in the first years (ranging from first months to early childhood). There was a severe progressive course. Seven of the eight children died in their first decade. Conversely, siblings with a mtDNA mutation had clinical pictures that varied from almost alike to very distinct. They became symptomatic at an older age (ranging from childhood to adulthood), with the exception of defects associated with Leigh or Leigh-like phenotype. The clinical course was more gradual and relatively less severe; four of the 26 patients died, one in his second year, another in her second decade and two in their sixth decade. There are differences in age at onset, severity of clinical course, outcome, and intrafamilial variability in patients affected of an OXPHOS defect due to nuclear or mtDNA mutations. Patients with nuclear mutations become symptomatic at a young age, and have a severe clinical course. Patients with mtDNA mutations show a wider clinical spectrum of age at onset and severity. These differences may be of importance regarding the choice of which genome to study in affected patients as well as with respect to genetic counseling.  相似文献   

9.
10.
11.
12.
Summary Previous studies have revealed an increase of cytochrome c oxidase-deficient fibres/cells in the skeletal and heart muscle of humans during ageing. The enzyme defect is due to a lack of both mitochondrial and nuclear coded enzyme subunits. In the present investigation in situ hybridization of mitochondrial DNA (mtDNA) has been performed on extraocular muscles of humans over 70 years of age to show whether mutated mtDNA with the so called common deletion of 4,977 basepairs at position 8,482–13,460 of mtDNA accumulates in the cytochrome c oxidase-deficient fibres. The cytochrome c oxidase-deficient fibres revealed different hybridization patterns: a normal hybridization signal with three different mtDNA probes, a reduced or lacking signal with all three probes indicating depletion of mtDNA and a selective hybridization defect with the probe recognizing the common deletion region of mtDNA as evidence of mtDNA deletion. The results suggest that during ageing defects of cytochrome c oxidase are associated with different molecular alterations of mtDNA. Deletion and depletion of mtDNA are not the only nor probably the leading mechanisms responsible for the loss of respiratory chain capacity during ageing. The normal hybridization signal in most of the cytochrome c oxidase-deficient fibres and the loss of mitochondrial and nuclear protein subunits indicate the involvement of other, especially nuclear factors.  相似文献   

13.

Purpose

To identify molecular defects in a girl with clinical features of MELAS (mitochondrial encephalomyopathy and lactic acidosis) and MERRF (ragged‐red fibres) syndromes.

Methods

The enzyme complex activities of the mitochondrial respiratory chain were assayed. Temporal temperature gradient gel electrophoresis was used to scan the entire mitochondrial genome for unknown mitochondrial DNA (mtDNA) alterations, which were then identified by direct DNA sequencing.

Results

A novel heteroplasmic mtDNA mutation, G12207A, in the tRNASer(AGY) gene was identified in the patient who had a history of developmental delay, feeding difficulty, lesions within her basal ganglia, cerebral atrophy, proximal muscle weakness, increased blood lactate, liver dysfunction, and fatty infiltration of her muscle. Muscle biopsy revealed ragged red fibres and pleomorphic mitochondria. Study of skeletal muscle mitochondria revealed complex I deficiency associated with mitochondrial proliferation. Real time quantitative PCR analysis showed elevated mtDNA content, 2.5 times higher than normal. The tRNASer(AGY) mutation was found in heteroplasmic state (92%) in the patient''s skeletal muscle. It was not present in her unaffected mother''s blood or in 200 healthy controls. This mutation occurs at the first nucleotide of the 5′ end of tRNA, which is involved in the formation of the stem region of the amino acid acceptor arm. Mutation at this position may affect processing of the precursor RNA, the stability and amino acid charging efficiency of the tRNA, and overall efficiency of protein translation.

Conclusion

This case underscores the importance of comprehensive mutational analysis of the entire mitochondrial genome when a mtDNA defect is strongly suggested.  相似文献   

14.
Mitochondrial diseases have been shown to result from mutations in mitochondrial genes located in either the nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Mitochondrial OXPHOS complex I has 45 subunits encoded by 38 nuclear and 7 mitochondrial genes. Two male patients in a putative X-linked pedigree exhibiting a progressive neurodegenerative disorder and a severe muscle complex I enzyme defect were analyzed for mutations in the 38 nDNA and seven mtDNA encoded complex I subunits. The nDNA X-linked NDUFA1 gene (MWFE polypeptide) was discovered to harbor a novel missense mutation which changed a highly conserved glycine at position 32 to an arginine, shown to segregate with the disease. When this mutation was introduced into a NDUFA1 null hamster cell line, a substantial decrease in the complex I assembly and activity was observed. When the mtDNA of the patient was analyzed, potentially relevant missense mutations were observed in the complex I genes. Transmitochondrial cybrids containing the patient’s mtDNA resulted in a mild complex I deficiency. Interestingly enough, the nDNA encoded MWFE polypeptide has been shown to interact with various mtDNA encoded complex I subunits. Therefore, we hypothesize that the novel G32R mutation in NDUFA1 is causing complex I deficiency either by itself or in synergy with additional mtDNA variants.  相似文献   

15.
Defects in mitochondrial translation are associated with a remarkable, but unexplained diversity of clinical phenotypes. Here we have investigated the molecular basis for tissue specificity in patients with a fatal hepatopathy due to mutations in the mitochondrial translation elongation factor EFG1. Blue-native gel electrophoresis revealed unique, tissue-specific patterns in the nature and severity of the defect. Liver was the most severely affected tissue, with less than 10% residual assembly of complexes I and IV, and a 50% decrease in complex V. Skeletal muscle showed a 50% reduction in complex I, and complexes IV and V were 20% of control. In fibroblasts, complexes I and IV were 20% of control, and there was a 40-60% reduction in complexes III and V. In contrast, except for a 50% decrease in complex IV, all complexes were near normal in heart. The severity of the defect paralleled the steady-state level of the mutant EFG1 protein, which varied from 60% of control in heart to undetectable in liver. The ratio of translation elongation factors EFTu:EFTs increased from 1:6 to 1:2 in patient heart, whereas in liver it decreased from 1:1 to 1:4. Over-expression of either EFTu or EFTs in control and patient fibroblasts produced dominant negative effects, indicating that the relative abundance of these factors is an important determinant of translation efficiency. Our results demonstrate marked differences among tissues in the organization of the mitochondrial translation system and its response to dysfunction, and explain the severe hepatopathy, but normal cardiac function in EFG1 patients.  相似文献   

16.
Although over 200 pathogenic mitochondrial DNA (mtDNA) mutations have been reported to date, determining the genetic aetiology of many cases of mitochondrial disease is still not straightforward. Here, we describe the investigations undertaken to uncover the underlying molecular defect(s) in two unrelated Caucasian patients with suspected mtDNA disease, who presented with similar symptoms of myopathy, deafness, neurodevelopmental delay, epilepsy, marked fatigue and, in one case, retinal degeneration. Histochemical and biochemical evidence of mitochondrial respiratory chain deficiency was observed in the patient muscle biopsies and both patients were discovered to harbour a novel heteroplasmic mitochondrial tRNA (mt-tRNA)(Ser(AGY)) (MTTS2) mutation (m.12264C>T and m.12261T>C, respectively). Clear segregation of the m.12261T>C mutation with the biochemical defect, as demonstrated by single-fibre radioactive RFLP, confirmed the pathogenicity of this novel variant in patient 2. However, unusually high levels of m.12264C>T mutation within both COX-positive (98.4 ± 1.5%) and COX-deficient (98.2 ± 2.1%) fibres in patient 1 necessitated further functional investigations to prove its pathogenicity. Northern blot analysis demonstrated the detrimental effect of the m.12264C>T mutation on mt-tRNA(Ser(AGY)) stability, ultimately resulting in decreased steady-state levels of fully assembled complexes I and IV, as shown by blue-native polyacrylamide gel electrophoresis. Our findings expand the spectrum of pathogenic mutations associated with the MTTS2 gene and highlight MTTS2 mutations as an important cause of retinal and syndromic auditory impairment.  相似文献   

17.
Mitochondrial neurogastrointestinal encephalomyopathy syndrome (MNGIE) is a rare autosomal recessive neurologic disorder characterised by multiple mitochondrial DNA deletions. In this study, five Turkish MNGIE patients are investigated for mtDNA deletions and TP gene mutations. The probands presented all the clinical criteria of the typical MNGIE phenotype; the muscle biopsy specimens also confirmed the diagnosis with ragged red fibres and cytochrome C oxidase (COX) negative fibres. The mitochondrial DNA analysis revealed no deletions in the probands' skeletal muscle samples. We have identified four novel mutations in the TP gene while one of the patients also harboured a nucleotide change, which was previously reported as a mutation.  相似文献   

18.
Replicative segregation of mitochondrial DNA (mtDNA) can produce large differences in the proportions of wild-type and mutant mtDNAs in different cell types of patients with mitochondrial encephalomyopathy. This is particularly striking in the skeletal muscle of patients with Kearns-Sayre syndrome (KSS), a sporadic disease associated with large- scale mtDNA deletions, and in sporadic patients with tRNA point mutations. Although the skeletal muscle fibres of these patients invariably contain a large proportion of mutant mtDNAs, mutant mtDNAs are rare or undetectable in satellite cells cultured from the same muscle biopsy specimens. Since satellite cells are responsible for muscle fibre regeneration, restoration of the wild-type mtDNA genotype might be achieved in these patients by encouraging muscle regeneration. To test this concept, we re-biopsied a patient with a KSS phenotype and a mtDNA point mutation in the tRNAleu(CUN)gene and analysed muscle fibres regenerating at the site of the original muscle biopsy. Regenerating fibres were identified by morphological criteria and by expression of neural cell adhesion molecule (NCAM). All such fibers were positive for cytochrome c oxidase (COX) activity by cytochemistry and essentially homoplasmic for wild-type mtDNA, while the majority of non-regenerating fibres were COX-negative and contained predominantly mutant mtDNAs. These results demonstrate that it may be possible to improve muscle function in similar patients by methods that promote satellite cell incorporation into existing myofibres.   相似文献   

19.
Defects of the mitochondrial respiratory chain are associated with a diverse spectrum of clinical phenotypes, and may be caused by mutations in either the nuclear or the mitochondrial genome (mitochondrial DNA (mtDNA)). Isolated complex I deficiency is the most common enzyme defect in mitochondrial disorders, particularly in children in whom family history is often consistent with sporadic or autosomal recessive inheritance, implicating a nuclear genetic cause. In contrast, although a number of recurrent, pathogenic mtDNA mutations have been described, historically, these have been perceived as rare causes of paediatric complex I deficiency. We reviewed the clinical and genetic findings in a large cohort of 109 paediatric patients with isolated complex I deficiency from 101 families. Pathogenic mtDNA mutations were found in 29 of 101 probands (29%), 21 in MTND subunit genes and 8 in mtDNA tRNA genes. Nuclear gene defects were inferred in 38 of 101 (38%) probands based on cell hybrid studies, mtDNA sequencing or mutation analysis (nuclear gene mutations were identified in 22 probands). Leigh or Leigh-like disease was the most common clinical presentation in both mtDNA and nuclear genetic defects. The median age at onset was higher in mtDNA patients (12 months) than in patients with a nuclear gene defect (3 months). However, considerable overlap existed, with onset varying from 0 to >60 months in both groups. Our findings confirm that pathogenic mtDNA mutations are a significant cause of complex I deficiency in children. In the absence of parental consanguinity, we recommend whole mitochondrial genome sequencing as a key approach to elucidate the underlying molecular genetic abnormality.  相似文献   

20.
Mitochondria produce adenosine triphosphate (ATP) for energy requirements via the mitochondrial oxidative phosphorylation (OXPHOS) system. One of the hallmarks of cancer is the energy shift toward glycolysis. Low OXPHOS activity and increased glycolysis are associated with aggressive types of cancer. Mitochondria have their own genome (mitochondrial DNA [mtDNA]) encoding for 13 essential subunits of the OXPHOS enzyme complexes. We studied mtDNA in childhood acute lymphoblastic leukemia (ALL) to detect potential pathogenic mutations in OXPHOS complexes. The whole mtDNA from blood and bone marrow samples at diagnosis and follow‐up from 36 ALL patients were analyzed. Novel or previously described pathogenic mtDNA mutations were identified in 8 out of 36 patients. Six out of these 8 patients had died from ALL. Five out of 36 patients had an identified poor prognosis genetic marker, and 4 of these patients had mtDNA mutations. Missense or nonsense mtDNA mutations were detected in the genes encoding subunits of OXPHOS complexes, as follows: MT‐ND1, MT‐ND2, MT‐ND4L and MT‐ND6 of complex I; MT‐CO3 of complex IV; and MT‐ATP6 and MT‐ATP8 of complex V. We discovered mtDNA mutations in childhood ALL supporting the hypothesis that non‐neutral variants in mtDNA affecting the OXPHOS function may be related to leukemic clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号