首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Instrumental variable (IV) methods have potential to consistently estimate the causal effect of an exposure on an outcome in the presence of unmeasured confounding. However, validity of IV methods relies on strong assumptions, some of which cannot be conclusively verified from observational data. One such assumption is that the effect of the proposed instrument on the outcome is completely mediated by the exposure. We consider the situation where this assumption is violated, but the remaining IV assumptions hold; that is, the proposed IV (1) is associated with the exposure and (2) has no unmeasured causes in common with the outcome. We propose a method to estimate multiplicative structural mean models of binary outcomes in this scenario in the presence of unmeasured confounding. We also extend the method to address multiple scenarios, including mediation analysis. The method adapts the asymptotically efficient G‐estimation approach that was previously proposed for additive structural mean models, and it can be carried out using off‐the‐shelf software for generalized method of moments. Monte Carlo simulation studies show that the method has low bias and accurate coverage. We applied the method to a case study of circulating vitamin D and depressive symptoms using season of blood collection as a (potentially invalid) instrumental variable. Potential applications of the proposed method include randomized intervention studies as well as Mendelian randomization studies with genetic variants that affect multiple phenotypes, possibly including the outcome. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

3.
Causal inference with observational longitudinal data and time‐varying exposures is complicated due to the potential for time‐dependent confounding and unmeasured confounding. Most causal inference methods that handle time‐dependent confounding rely on either the assumption of no unmeasured confounders or the availability of an unconfounded variable that is associated with the exposure (eg, an instrumental variable). Furthermore, when data are incomplete, validity of many methods often depends on the assumption of missing at random. We propose an approach that combines a parametric joint mixed‐effects model for the study outcome and the exposure with g‐computation to identify and estimate causal effects in the presence of time‐dependent confounding and unmeasured confounding. G‐computation can estimate participant‐specific or population‐average causal effects using parameters of the joint model. The joint model is a type of shared parameter model where the outcome and exposure‐selection models share common random effect(s). We also extend the joint model to handle missing data and truncation by death when missingness is possibly not at random. We evaluate the performance of the proposed method using simulation studies and compare the method to both linear mixed‐ and fixed‐effects models combined with g‐computation as well as to targeted maximum likelihood estimation. We apply the method to an epidemiologic study of vitamin D and depressive symptoms in older adults and include code using SAS PROC NLMIXED software to enhance the accessibility of the method to applied researchers.  相似文献   

4.
Instrumental variable estimates of causal effects can be biased when using many instruments that are only weakly associated with the exposure. We describe several techniques to reduce this bias and estimate corrected standard errors. We present our findings using a simulation study and an empirical application. For the latter, we estimate the effect of height on lung function, using genetic variants as instruments for height. Our simulation study demonstrates that, using many weak individual variants, two‐stage least squares (2SLS) is biased, whereas the limited information maximum likelihood (LIML) and the continuously updating estimator (CUE) are unbiased and have accurate rejection frequencies when standard errors are corrected for the presence of many weak instruments. Our illustrative empirical example uses data on 3631 children from England. We used 180 genetic variants as instruments and compared conventional ordinary least squares estimates with results for the 2SLS, LIML, and CUE instrumental variable estimators using the individual height variants. We further compare these with instrumental variable estimates using an unweighted or weighted allele score as single instruments. In conclusion, the allele scores and CUE gave consistent estimates of the causal effect. In our empirical example, estimates using the allele score were more efficient. CUE with corrected standard errors, however, provides a useful additional statistical tool in applications with many weak instruments. The CUE may be preferred over an allele score if the population weights for the allele score are unknown or when the causal effects of multiple risk factors are estimated jointly. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.  相似文献   

5.
Unmeasured confounding is a common concern when researchers attempt to estimate a treatment effect using observational data or randomized studies with nonperfect compliance. To address this concern, instrumental variable methods, such as 2‐stage predictor substitution (2SPS) and 2‐stage residual inclusion (2SRI), have been widely adopted. In many clinical studies of binary and survival outcomes, 2SRI has been accepted as the method of choice over 2SPS, but a compelling theoretical rationale has not been postulated. We evaluate the bias and consistency in estimating the conditional treatment effect for both 2SPS and 2SRI when the outcome is binary, count, or time to event. We demonstrate analytically that the bias in 2SPS and 2SRI estimators can be reframed to mirror the problem of omitted variables in nonlinear models and that there is a direct relationship with the collapsibility of effect measures. In contrast to conclusions made by previous studies (Terza et al, 2008), we demonstrate that the consistency of 2SRI estimators only holds under the following conditions: (1) when the null hypothesis is true; (2) when the outcome model is collapsible; or (3) when estimating the nonnull causal effect from Cox or logistic regression models, the strong and unrealistic assumption that the effect of the unmeasured covariates on the treatment is proportional to their effect on the outcome needs to hold. We propose a novel dissimilarity metric to provide an intuitive explanation of the bias of 2SRI estimators in noncollapsible models and demonstrate that with increasing dissimilarity between the effects of the unmeasured covariates on the treatment versus outcome, the bias of 2SRI increases in magnitude.  相似文献   

6.
《Statistics in medicine》2017,36(29):4705-4718
Methods have been developed for Mendelian randomization that can obtain consistent causal estimates while relaxing the instrumental variable assumptions. These include multivariable Mendelian randomization, in which a genetic variant may be associated with multiple risk factors so long as any association with the outcome is via the measured risk factors (measured pleiotropy), and the MR‐Egger (Mendelian randomization‐Egger) method, in which a genetic variant may be directly associated with the outcome not via the risk factor of interest, so long as the direct effects of the variants on the outcome are uncorrelated with their associations with the risk factor (unmeasured pleiotropy). In this paper, we extend the MR‐Egger method to a multivariable setting to correct for both measured and unmeasured pleiotropy. We show, through theoretical arguments and a simulation study, that the multivariable MR‐Egger method has advantages over its univariable counterpart in terms of plausibility of the assumption needed for consistent causal estimation and power to detect a causal effect when this assumption is satisfied. The methods are compared in an applied analysis to investigate the causal effect of high‐density lipoprotein cholesterol on coronary heart disease risk. The multivariable MR‐Egger method will be useful to analyse high‐dimensional data in situations where the risk factors are highly related and it is difficult to find genetic variants specifically associated with the risk factor of interest (multivariable by design), and as a sensitivity analysis when the genetic variants are known to have pleiotropic effects on measured risk factors.  相似文献   

7.
In this paper, we discuss causal inference on the efficacy of a treatment or medication on a time‐to‐event outcome with competing risks. Although the treatment group can be randomized, there can be confoundings between the compliance and the outcome. Unmeasured confoundings may exist even after adjustment for measured covariates. Instrumental variable methods are commonly used to yield consistent estimations of causal parameters in the presence of unmeasured confoundings. On the basis of a semiparametric additive hazard model for the subdistribution hazard, we propose an instrumental variable estimator to yield consistent estimation of efficacy in the presence of unmeasured confoundings for competing risk settings. We derived the asymptotic properties for the proposed estimator. The estimator is shown to be well performed under finite sample size according to simulation results. We applied our method to a real transplant data example and showed that the unmeasured confoundings lead to significant bias in the estimation of the effect (about 50% attenuated). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Structural accelerated failure time models form a unique tool for the analysis of causal effects of observed exposures in randomized trials. When actual exposure levels are not completely controlled they may be selective, i.e. depend on unmeasured prognostic factors. Nevertheless, consistent randomization-based estimators have been derived for the effect of such exposures on a right-censored survival outcome. In this paper, we extend the methodology to allow for estimation of the structural effect of an experimental vaginal gel on repeated occurrences of genital lesions. The marginal distribution of each ordered event is modelled assuming a common treatment effect. Estimation is possible by inverting alpha-level tests using a robust variance estimator to allow for correlated repeated events. We discuss the logical constraints imposed by this model choice as well as new challenges posed on recensoring.  相似文献   

9.
Missing data are common in longitudinal studies and can occur in the exposure interest. There has been little work assessing the impact of missing data in marginal structural models (MSMs), which are used to estimate the effect of an exposure history on an outcome when time‐dependent confounding is present. We design a series of simulations based on the Framingham Heart Study data set to investigate the impact of missing data in the primary exposure of interest in a complex, realistic setting. We use a standard application of MSMs to estimate the causal odds ratio of a specific activity history on outcome. We report and discuss the results of four missing data methods, under seven possible missing data structures, including scenarios in which an unmeasured variable predicts missing information. In all missing data structures, we found that a complete case analysis, where all subjects with missing exposure data are removed from the analysis, provided the least bias. An analysis that censored individuals at the first occasion of missing exposure and includes a censorship model as well as a propensity model when creating the inverse probability weights also performed well. The presence of an unmeasured predictor of missing data only slightly increased bias, except in the situation such that the exposure had a large impact on missing data and the unmeasured variable had a large impact on missing data and outcome. A discussion of the results is provided using causal diagrams, showing the usefulness of drawing such diagrams before conducting an analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Mendelian randomization (MR) uses genetic information as an instrumental variable (IV) to estimate the causal effect of an exposure of interest on an outcome in the presence of unknown confounding. We are interested in the causal effect of cigarette smoking on lung cancer survival, which is subject to confounding by underlying pulmonary functions. Despite the well-developed IV analyses for the continuous and binary outcomes, the scarcity of methodology for the survival outcome limits its utility for the time-to-event data collected in many observational studies. We propose an IV analysis method in the survival context, estimating causal effects on a transformed survival time and survival probabilities using semiparametric linear transformation models. We study the conditions under which hazard ratio and the effect on survival probability can be approximated. For statistical inference, we construct estimating equations to circumvent the difficulty in deriving joint likelihood of the exposure and the outcome, due to the unknown confounding. Asymptotic properties of the proposed estimators are established without parametric assumptions about confounders. We study the finite sample performance in extensive simulation studies. The MR analysis of a lung cancer study suggests a harmful prognostic effect of smoking pack-years that would have been missed by the crude association.  相似文献   

11.
Mediation analysis is a popular approach to examine the extent to which the effect of an exposure on an outcome is through an intermediate variable (mediator) and the extent to which the effect is direct. When the mediator is mis‐measured, the validity of mediation analysis can be severely undermined. In this paper, we first study the bias of classical, non‐differential measurement error on a continuous mediator in the estimation of direct and indirect causal effects in generalized linear models when the outcome is either continuous or discrete and exposure–mediator interaction may be present. Our theoretical results as well as a numerical study demonstrate that in the presence of non‐linearities, the bias of naive estimators for direct and indirect effects that ignore measurement error can take unintuitive directions. We then develop methods to correct for measurement error. Three correction approaches using method of moments, regression calibration, and SIMEX are compared. We apply the proposed method to the Massachusetts General Hospital lung cancer study to evaluate the effect of genetic variants mediated through smoking on lung cancer risk. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A goal of many health studies is to determine the causal effect of a treatment or intervention on health outcomes. Often, it is not ethically or practically possible to conduct a perfectly randomized experiment, and instead, an observational study must be used. A major challenge to the validity of observational studies is the possibility of unmeasured confounding (i.e., unmeasured ways in which the treatment and control groups differ before treatment administration, which also affect the outcome). Instrumental variables analysis is a method for controlling for unmeasured confounding. This type of analysis requires the measurement of a valid instrumental variable, which is a variable that (i) is independent of the unmeasured confounding; (ii) affects the treatment; and (iii) affects the outcome only indirectly through its effect on the treatment. This tutorial discusses the types of causal effects that can be estimated by instrumental variables analysis; the assumptions needed for instrumental variables analysis to provide valid estimates of causal effects and sensitivity analysis for those assumptions; methods of estimation of causal effects using instrumental variables; and sources of instrumental variables in health studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
An important scientific goal of studies in the health and social sciences is increasingly to determine to what extent the total effect of a point exposure is mediated by an intermediate variable on the causal pathway between the exposure and the outcome. A causal framework has recently been proposed for mediation analysis, which gives rise to new definitions, formal identification results and novel estimators of direct and indirect effects. In the present paper, the author describes a new inverse odds ratio‐weighted approach to estimate so‐called natural direct and indirect effects. The approach, which uses as a weight the inverse of an estimate of the odds ratio function relating the exposure and the mediator, is universal in that it can be used to decompose total effects in a number of regression models commonly used in practice. Specifically, the approach may be used for effect decomposition in generalized linear models with a nonlinear link function, and in a number of other commonly used models such as the Cox proportional hazards regression for a survival outcome. The approach is simple and can be implemented in standard software provided a weight can be specified for each observation. An additional advantage of the method is that it easily incorporates multiple mediators of a categorical, discrete or continuous nature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A critical issue in the analysis of clinical trials is patients' noncompliance to assigned treatments. In the context of a binary treatment with all or nothing compliance, the intent‐to‐treat analysis is a straightforward approach to estimating the effectiveness of the trial. In contrast, there exist 3 commonly used estimators with varying statistical properties for the efficacy of the trial, formally known as the complier‐average causal effect. The instrumental variable estimator may be unbiased but can be extremely variable in many settings. The as treated and per protocol estimators are usually more efficient than the instrumental variable estimator, but they may suffer from selection bias. We propose a synthetic approach that incorporates all 3 estimators in a data‐driven manner. The synthetic estimator is a linear convex combination of the instrumental variable, per protocol, and as treated estimators, resembling the popular model‐averaging approach in the statistical literature. However, our synthetic approach is nonparametric; thus, it is applicable to a variety of outcome types without specific distributional assumptions. We also discuss the construction of the synthetic estimator using an analytic form derived from a simple normal mixture distribution. We apply the synthetic approach to a clinical trial for post‐traumatic stress disorder.  相似文献   

15.
A frequent concern in making statistical inference for causal effects of a policy or treatment based on observational studies is that there are unmeasured confounding variables. The instrumental variable method is an approach to estimating a causal relationship in the presence of unmeasured confounding variables. A valid instrumental variable needs to be independent of the unmeasured confounding variables. It is important to control for the confounding variable if it is correlated with the instrument. In health services research, socioeconomic status variables are often considered as confounding variables. In recent studies, distance to a specialty care center has been used as an instrument for the effect of specialty care vs. general care. Because the instrument may be correlated with socioeconomic status variables, it is important that socioeconomic status variables are controlled for in the instrumental variables regression. However, health data sets often lack individual socioeconomic information but contain area average socioeconomic information from the US Census, e.g., average income or education level in a county. We study the effects on the bias of the two stage least squares estimates in instrumental variables regression when using an area-level variable as a controlled confounding variable that may be correlated with the instrument. We propose the aggregated instrumental variables regression using the concept of Wald’s method of grouping, provided the assumption that the grouping is independent of the errors. We present simulation results and an application to a study of perinatal care for premature infants.  相似文献   

16.
Mendelian randomization uses genetic variants to make causal inferences about a modifiable exposure. Subject to a genetic variant satisfying the instrumental variable assumptions, an association between the variant and outcome implies a causal effect of the exposure on the outcome. Complications arise with a binary exposure that is a dichotomization of a continuous risk factor (for example, hypertension is a dichotomization of blood pressure). This can lead to violation of the exclusion restriction assumption: the genetic variant can influence the outcome via the continuous risk factor even if the binary exposure does not change. Provided the instrumental variable assumptions are satisfied for the underlying continuous risk factor, causal inferences for the binary exposure are valid for the continuous risk factor. Causal estimates for the binary exposure assume the causal effect is a stepwise function at the point of dichotomization. Even then, estimation requires further parametric assumptions. Under monotonicity, the causal estimate represents the average causal effect in ‘compliers’, individuals for whom the binary exposure would be present if they have the genetic variant and absent otherwise. Unlike in randomized trials, genetic compliers are unlikely to be a large or representative subgroup of the population. Under homogeneity, the causal effect of the exposure on the outcome is assumed constant in all individuals; rarely a plausible assumption. We here provide methods for causal estimation with a binary exposure (although subject to all the above caveats). Mendelian randomization investigations with a dichotomized binary exposure should be conceptualized in terms of an underlying continuous variable.  相似文献   

17.
We propose a method for estimating the marginal causal log-odds ratio for binary outcomes under treatment non-compliance in placebo-randomized trials. This estimation method is a marginal alternative to the causal logistic approach by Nagelkerke et al. (2000) that conditions on partially unknown compliance (that is, adherence to treatment) status, and also differs from previous approaches that estimate risk differences or ratios in subgroups defined by compliance status. The marginal causal method proposed in this paper is based on an extension of Robins' G-estimation approach for fitting linear or log-linear structural nested models to a logistic model. Comparing the marginal and conditional causal log-odds ratio estimates provides a way of assessing the magnitude of unmeasured confounding of the treatment effect due to treatment non-adherence. More specifically, we show through simulations that under weak confounding, the conditional and marginal procedures yield similar estimates, whereas under stronger confounding, they behave differently in terms of bias and confidence interval coverage. The parametric structures that represent such confounding are not identifiable. Hence, the proof of consistency of causal estimators and corresponding simulations are based on two different models that fully identify the causal effects being estimated. These models differ in the way that compliance is related to potential outcomes, and thus differ in the way that the causal effect is identified. The simulations also show that the proposed marginal causal estimation approach performs well in terms of bias under the different levels of confounding due to non-adherence and under different causal logistic models. We also provide results from the analyses of two data sets further showing how a comparison of the marginal and conditional estimators can help evaluate the magnitude of confounding due to non-adherence.  相似文献   

18.
Cai B  Small DS  Have TR 《Statistics in medicine》2011,30(15):1809-1824
We present closed-form expressions of asymptotic bias for the causal odds ratio from two estimation approaches of instrumental variable logistic regression: (i) the two-stage predictor substitution (2SPS) method and (ii) the two-stage residual inclusion (2SRI) approach. Under the 2SPS approach, the first stage model yields the predicted value of treatment as a function of an instrument and covariates, and in the second stage model for the outcome, this predicted value replaces the observed value of treatment as a covariate. Under the 2SRI approach, the first stage is the same, but the residual term of the first stage regression is included in the second stage regression, retaining the observed treatment as a covariate. Our bias assessment is for a different context from that of Terza (J. Health Econ. 2008; 27(3):531-543), who focused on the causal odds ratio conditional on the unmeasured confounder, whereas we focus on the causal odds ratio among compliers under the principal stratification framework. Our closed-form bias results show that the 2SPS logistic regression generates asymptotically biased estimates of this causal odds ratio when there is no unmeasured confounding and that this bias increases with increasing unmeasured confounding. The 2SRI logistic regression is asymptotically unbiased when there is no unmeasured confounding, but when there is unmeasured confounding, there is bias and it increases with increasing unmeasured confounding. The closed-form bias results provide guidance for using these IV logistic regression methods. Our simulation results are consistent with our closed-form analytic results under different combinations of parameter settings.  相似文献   

19.
This note implements an unstructured decaying product matrix via the quasi‐least squares approach for estimation of the correlation parameters in the framework of generalized estimating equations. The structure we consider is fairly general without requiring the large number of parameters that are involved in a fully unstructured matrix. It is straightforward to show that the quasi‐least squares estimators of the correlation parameters yield feasible values for the unstructured decaying product structure. Furthermore, subject to conditions that are easily checked, the quasi‐least squares estimators are valid for longitudinal Bernoulli data. We demonstrate implementation of the structure in a longitudinal clinical trial with both a continuous and binary outcome variable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Even in the absence of unmeasured confounding factors or model misspecification, standard methods for estimating the causal effect of a time-varying treatment on the mean of a repeated measures outcome (for example, GEE regression) may be biased when there are time-dependent variables that are simultaneously confounders of the effect of interest and are predicted by previous treatment. In contrast, the recently developed marginal structural models (MSMs) can provide consistent estimates of causal effects when unmeasured confounding and model misspecification are absent. We describe an MSM for repeated measures that parameterizes the marginal means of counterfactual outcomes corresponding to prespecified treatment regimes. The parameters of MSMs are estimated using a new class of estimators - inverse-probability of treatment weighted estimators. We used an MSM to estimate the effect of zidovudine therapy on mean CD4 count among HIV-infected men in the Multicenter AIDS Cohort Study. We estimated a potential expected increase of 5.4 (95 per cent confidence interval -1.8,12.7) CD4 lymphocytes/l per additional study visit while on zidovudine therapy. We also explain the theory and implementation of MSMs for repeated measures data and draw upon a simple example to illustrate the basic ideas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号