首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods for using the propensity score to estimate treatment effects: covariate adjustment using the propensity score, stratification on the propensity score, propensity‐score matching, and inverse probability of treatment weighting (IPTW) using the propensity score. When outcomes are binary, the effect of treatment on the outcome can be described using odds ratios, relative risks, risk differences, or the number needed to treat. Several clinical commentators suggested that risk differences and numbers needed to treat are more meaningful for clinical decision making than are odds ratios or relative risks. However, there is a paucity of information about the relative performance of the different propensity‐score methods for estimating risk differences. We conducted a series of Monte Carlo simulations to examine this issue. We examined bias, variance estimation, coverage of confidence intervals, mean‐squared error (MSE), and type I error rates. A doubly robust version of IPTW had superior performance compared with the other propensity‐score methods. It resulted in unbiased estimation of risk differences, treatment effects with the lowest standard errors, confidence intervals with the correct coverage rates, and correct type I error rates. Stratification, matching on the propensity score, and covariate adjustment using the propensity score resulted in minor to modest bias in estimating risk differences. Estimators based on IPTW had lower MSE compared with other propensity‐score methods. Differences between IPTW and propensity‐score matching may reflect that these two methods estimate the average treatment effect and the average treatment effect for the treated, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Propensity score methods are increasingly being used to reduce or minimize the effects of confounding when estimating the effects of treatments, exposures, or interventions when using observational or non‐randomized data. Under the assumption of no unmeasured confounders, previous research has shown that propensity score methods allow for unbiased estimation of linear treatment effects (e.g., differences in means or proportions). However, in biomedical research, time‐to‐event outcomes occur frequently. There is a paucity of research into the performance of different propensity score methods for estimating the effect of treatment on time‐to‐event outcomes. Furthermore, propensity score methods allow for the estimation of marginal or population‐average treatment effects. We conducted an extensive series of Monte Carlo simulations to examine the performance of propensity score matching (1:1 greedy nearest‐neighbor matching within propensity score calipers), stratification on the propensity score, inverse probability of treatment weighting (IPTW) using the propensity score, and covariate adjustment using the propensity score to estimate marginal hazard ratios. We found that both propensity score matching and IPTW using the propensity score allow for the estimation of marginal hazard ratios with minimal bias. Of these two approaches, IPTW using the propensity score resulted in estimates with lower mean squared error when estimating the effect of treatment in the treated. Stratification on the propensity score and covariate adjustment using the propensity score result in biased estimation of both marginal and conditional hazard ratios. Applied researchers are encouraged to use propensity score matching and IPTW using the propensity score when estimating the relative effect of treatment on time‐to‐event outcomes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Covariate adjustment using linear models for continuous outcomes in randomized trials has been shown to increase efficiency and power over the unadjusted method in estimating the marginal effect of treatment. However, for binary outcomes, investigators generally rely on the unadjusted estimate as the literature indicates that covariate-adjusted estimates based on the logistic regression models are less efficient. The crucial step that has been missing when adjusting for covariates is that one must integrate/average the adjusted estimate over those covariates in order to obtain the marginal effect. We apply the method of targeted maximum likelihood estimation (tMLE) to obtain estimators for the marginal effect using covariate adjustment for binary outcomes. We show that the covariate adjustment in randomized trials using the logistic regression models can be mapped, by averaging over the covariate(s), to obtain a fully robust and efficient estimator of the marginal effect, which equals a targeted maximum likelihood estimator. This tMLE is obtained by simply adding a clever covariate to a fixed initial regression. We present simulation studies that demonstrate that this tMLE increases efficiency and power over the unadjusted method, particularly for smaller sample sizes, even when the regression model is mis-specified.  相似文献   

4.
Propensity score methods are increasingly being used to estimate causal treatment effects in the medical literature. Conditioning on the propensity score results in unbiased estimation of the expected difference in observed responses to two treatments. The degree to which conditioning on the propensity score introduces bias into the estimation of the conditional odds ratio or conditional hazard ratio, which are frequently used as measures of treatment effect in observational studies, has not been extensively studied. We conducted Monte Carlo simulations to determine the degree to which propensity score matching, stratification on the quintiles of the propensity score, and covariate adjustment using the propensity score result in biased estimation of conditional odds ratios, hazard ratios, and rate ratios. We found that conditioning on the propensity score resulted in biased estimation of the true conditional odds ratio and the true conditional hazard ratio. In all scenarios examined, treatment effects were biased towards the null treatment effect. However, conditioning on the propensity score did not result in biased estimation of the true conditional rate ratio. In contrast, conventional regression methods allowed unbiased estimation of the true conditional treatment effect when all variables associated with the outcome were included in the regression model. The observed bias in propensity score methods is due to the fact that regression models allow one to estimate conditional treatment effects, whereas propensity score methods allow one to estimate marginal treatment effects. In several settings with non-linear treatment effects, marginal and conditional treatment effects do not coincide.  相似文献   

5.
Propensity score methods are increasingly used to estimate the effect of a treatment or exposure on an outcome in non-randomised studies. We focus on one such method, stratification on the propensity score, comparing it with the method of inverse-probability weighting by the propensity score. The propensity score--the conditional probability of receiving the treatment given observed covariates--is usually an unknown probability estimated from the data. Estimators for the variance of treatment effect estimates typically used in practice, however, do not take into account that the propensity score itself has been estimated from the data. By deriving the asymptotic marginal variance of the stratified estimate of treatment effect, correctly taking into account the estimation of the propensity score, we show that routinely used variance estimators are likely to produce confidence intervals that are too conservative when the propensity score model includes variables that predict (cause) the outcome, but only weakly predict the treatment. In contrast, a comparison with the analogous marginal variance for the inverse probability weighted (IPW) estimator shows that routinely used variance estimators for the IPW estimator are likely to produce confidence intervals that are almost always too conservative. Because exact calculation of the asymptotic marginal variance is likely to be complex, particularly for the stratified estimator, we suggest that bootstrap estimates of variance should be used in practice.  相似文献   

6.
For a continuous treatment, the generalised propensity score (GPS) is defined as the conditional density of the treatment, given covariates. GPS adjustment may be implemented by including it as a covariate in an outcome regression. Here, the unbiased estimation of the dose–response function assumes correct specification of both the GPS and the outcome‐treatment relationship. This paper introduces a machine learning method, the ‘Super Learner’, to address model selection in this context. In the two‐stage estimation approach proposed, the Super Learner selects a GPS and then a dose–response function conditional on the GPS, as the convex combination of candidate prediction algorithms. We compare this approach with parametric implementations of the GPS and to regression methods. We contrast the methods in the Risk Adjustment in Neurocritical care cohort study, in which we estimate the marginal effects of increasing transfer time from emergency departments to specialised neuroscience centres, for patients with acute traumatic brain injury. With parametric models for the outcome, we find that dose–response curves differ according to choice of specification. With the Super Learner approach to both regression and the GPS, we find that transfer time does not have a statistically significant marginal effect on the outcomes. © 2015 The Authors. Health Economics Published by John Wiley & Sons Ltd.  相似文献   

7.
Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model‐based variance estimator; (ii) a robust sandwich‐type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.  相似文献   

8.
The propensity score which is the probability of exposure to a specific treatment conditional on observed variables. Conditioning on the propensity score results in unbiased estimation of the expected difference in observed responses to two treatments. In the medical literature, propensity score methods are frequently used for estimating odds ratios. The performance of propensity score methods for estimating marginal odds ratios has not been studied. We performed a series of Monte Carlo simulations to assess the performance of propensity score matching, stratifying on the propensity score, and covariate adjustment using the propensity score to estimate marginal odds ratios. We assessed bias, precision, and mean-squared error (MSE) of the propensity score estimators, in addition to the proportion of bias eliminated due to conditioning on the propensity score. When the true marginal odds ratio was one, then matching on the propensity score and covariate adjustment using the propensity score resulted in unbiased estimation of the true treatment effect, whereas stratification on the propensity score resulted in minor bias in estimating the true marginal odds ratio. When the true marginal odds ratio ranged from 2 to 10, then matching on the propensity score resulted in the least bias, with a relative biases ranging from 2.3 to 13.3 per cent. Stratifying on the propensity score resulted in moderate bias, with relative biases ranging from 15.8 to 59.2 per cent. For both methods, relative bias was proportional to the true odds ratio. Finally, matching on the propensity score tended to result in estimators with the lowest MSE.  相似文献   

9.
ObjectivesInverse probability of treatment weighting (IPTW) has been used in observational studies to reduce selection bias. For estimates of the main effects to be obtained, a pseudo data set is created by weighting each subject by IPTW and analyzed with conventional regression models. Currently, variance estimation requires additional work depending on type of outcomes. Our goal is to demonstrate a statistical approach to directly obtain appropriate estimates of variance of the main effects in regression models.MethodsWe carried out theoretical and simulation studies to show that the variance of the main effects estimated directly from regressions using IPTW is underestimated and that the type I error rate is higher because of the inflated sample size in the pseudo data. The robust variance estimator using IPTW often slightly overestimates the variance of the main effects. We propose to use the stabilized weights to directly estimate both the main effect and its variance from conventional regression models.ResultsWe applied the approach to a study examining the effectiveness of serum potassium monitoring in reducing hyperkalemia-associated adverse events among 27,355 diabetic patients newly prescribed with a renin-angiotensin-aldosterone system inhibitor. The incidence rate ratio (with monitoring vs. without monitoring) and confidence intervals were 0.46 (0.34, 0.61) using the stabilized weights compared with 0.46 (0.38, 0.55) using typical IPTW.ConclusionsOur theoretical, simulation results and real data example demonstrate that the use of the stabilized weights in the pseudo data preserves the sample size of the original data, produces appropriate estimation of the variance of main effect, and maintains an appropriate type I error rate.  相似文献   

10.
The use of propensity score methods to adjust for selection bias in observational studies has become increasingly popular in public health and medical research. A substantial portion of studies using propensity score adjustment treat the propensity score as a conventional regression predictor. Through a Monte Carlo simulation study, Austin and colleagues. investigated the bias associated with treatment effect estimation when the propensity score is used as a covariate in nonlinear regression models, such as logistic regression and Cox proportional hazards models. We show that the bias exists even in a linear regression model when the estimated propensity score is used and derive the explicit form of the bias. We also conduct an extensive simulation study to compare the performance of such covariate adjustment with propensity score stratification, propensity score matching, inverse probability of treatment weighted method, and nonparametric functional estimation using splines. The simulation scenarios are designed to reflect real data analysis practice. Instead of specifying a known parametric propensity score model, we generate the data by considering various degrees of overlap of the covariate distributions between treated and control groups. Propensity score matching excels when the treated group is contained within a larger control pool, while the model‐based adjustment may have an edge when treated and control groups do not have too much overlap. Overall, adjusting for the propensity score through stratification or matching followed by regression or using splines, appears to be a good practical strategy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Propensity scores are widely adopted in observational research because they enable adjustment for high‐dimensional confounders without requiring models for their association with the outcome of interest. The results of statistical analyses based on stratification, matching or inverse weighting by the propensity score are therefore less susceptible to model extrapolation than those based solely on outcome regression models. This is attractive because extrapolation in outcome regression models may be alarming, yet difficult to diagnose, when the exposed and unexposed individuals have very different covariate distributions. Standard regression adjustment for the propensity score forms an alternative to the aforementioned propensity score methods, but the benefits of this are less clear because it still involves modelling the outcome in addition to the propensity score. In this article, we develop novel insights into the properties of this adjustment method. We demonstrate that standard tests of the null hypothesis of no exposure effect (based on robust variance estimators), as well as particular standardised effects obtained from such adjusted regression models, are robust against misspecification of the outcome model when a propensity score model is correctly specified; they are thus not vulnerable to the aforementioned problem of extrapolation. We moreover propose efficient estimators for these standardised effects, which retain a useful causal interpretation even when the propensity score model is misspecified, provided the outcome regression model is correctly specified. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Propensity score methods are increasingly being used to estimate the effects of treatments and exposures when using observational data. The propensity score was initially developed for use with binary exposures. The generalized propensity score (GPS) is an extension of the propensity score for use with quantitative or continuous exposures (eg, dose or quantity of medication, income, or years of education). We used Monte Carlo simulations to examine the performance of different methods of using the GPS to estimate the effect of continuous exposures on binary outcomes. We examined covariate adjustment using the GPS and weighting using weights based on the inverse of the GPS. We examined both the use of ordinary least squares to estimate the propensity function and the use of the covariate balancing propensity score algorithm. The use of methods based on the GPS was compared with the use of G‐computation. All methods resulted in essentially unbiased estimation of the population dose‐response function. However, GPS‐based weighting tended to result in estimates that displayed greater variability and had higher mean squared error when the magnitude of confounding was strong. Of the methods based on the GPS, covariate adjustment using the GPS tended to result in estimates with lower variability and mean squared error when the magnitude of confounding was strong. We illustrate the application of these methods by estimating the effect of average neighborhood income on the probability of death within 1 year of hospitalization for an acute myocardial infarction.  相似文献   

13.
In causal inference, often the interest lies in the estimation of the average causal effect. Other quantities such as the quantile treatment effect may be of interest as well. In this article, we propose a multiply robust method for estimating the marginal quantiles of potential outcomes by achieving mean balance in (a) the propensity score, and (b) the conditional distributions of potential outcomes. An empirical likelihood or entropy measure approach can be utilized for estimation instead of inverse probability weighting, which is known to be sensitive to the misspecification of the propensity score model. Simulation studies are conducted across different scenarios of correctness in both the propensity score models and the outcome models. Both simulation results and theoretical development indicate that our proposed estimator is consistent if any of the models are correctly specified. In the data analysis, we investigate the quantile treatment effect of mothers' smoking status on infants' birthweight.  相似文献   

14.
Senn S  Graf E  Caputo A 《Statistics in medicine》2007,26(30):5529-5544
Stratifying and matching by the propensity score are increasingly popular approaches to deal with confounding in medical studies investigating effects of a treatment or exposure. A more traditional alternative technique is the direct adjustment for confounding in regression models.This paper discusses fundamental differences between the two approaches, with a focus on linear regression and propensity score stratification, and identifies points to be considered for an adequate comparison. The treatment estimators are examined for unbiasedness and efficiency. This is illustrated in an application to real data and supplemented by an investigation on properties of the estimators for a range of underlying linear models. We demonstrate that in specific circumstances the propensity score estimator is identical to the effect estimated from a full linear model, even if it is built on coarser covariate strata than the linear model. As a consequence the coarsening property of the propensity score-adjustment for a one-dimensional confounder instead of a high-dimensional covariate-may be viewed as a way to implement a pre-specified, richly parametrized linear model. We conclude that the propensity score estimator inherits the potential for overfitting and that care should be taken to restrict covariates to those relevant for outcome.  相似文献   

15.
In situations in which one cannot specify a single primary outcome, epidemiologic analyses often examine multiple associations between outcomes and explanatory covariates or risk factors. To compare alternative approaches to the analysis of multiple outcomes in regression models, I used generalized estimating equations (GEE) models, a multivariate extension of generalized linear models, to incorporate the dependence among the outcomes from the same subject and to provide robust variance estimates of the regression coefficients. I applied the methods in a hospital-population-based study of complications of surgical anaesthesia, using GEE model fitting and quasi-likelihood score and Wald tests. In one GEE model specification, I allowed the associations between each of the outcomes and a covariate to differ, yielding a regression coefficient for each of the outcome and covariate combinations; I obtained the covariances among the set of outcome-specific regression coefficients for each covariate from the robust ‘sandwich’ variance estimator. To address the problem of multiple inference, I used simultaneous methods that make adjustments to the test statistic p-values and the confidence interval widths, to control type I error and simultaneous coverage, respectively. In a second model specification, for each of the covariates I assumed a common association between the outcomes and the covariate, which eliminates the problem of multiplicity by use of a global test of association. In an alternative approach to multiplicity, I used empirical Bayes methods to shrink the outcome-specific coefficients toward a pooled mean that is similar to the common effect coefficient. GEE regression models can provide a flexible framework for estimation and testing of multiple outcomes. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Inverse probability of treatment weighted (IPTW) estimation for marginal structural models (MSMs) requires the specification of a nuisance model describing the conditional relationship between treatment allocation and confounders. However, there is still limited information on the best strategy for building these treatment models in practice. We developed a series of simulations to systematically determine the effect of including different types of candidate variables in such models. We explored the performance of IPTW estimators across several scenarios of increasing complexity, including one designed to mimic the complexity typically seen in large pharmacoepidemiologic studies.Our results show that including pure predictors of treatment (i.e. not confounders) in treatment models can lead to estimators that are biased and highly variable, particularly in the context of small samples. The bias and mean-squared error of the MSM-based IPTW estimator increase as the complexity of the problem increases. The performance of the estimator is improved by either increasing the sample size or using only variables related to the outcome to develop the treatment model. Estimates of treatment effect based on the true model for the probability of treatment are asymptotically unbiased.We recommend including only pure risk factors and confounders in the treatment model when developing an IPTW-based MSM.  相似文献   

17.
In investigations of the effect of treatment on outcome, the propensity score is a tool to eliminate imbalance in the distribution of confounding variables between treatment groups. Recent work has suggested that Super Learner, an ensemble method, outperforms logistic regression in nonlinear settings; however, experience with real-data analyses tends to show overfitting of the propensity score model using this approach. We investigated a wide range of simulated settings of varying complexities including simulations based on real data to compare the performances of logistic regression, generalized boosted models, and Super Learner in providing balance and for estimating the average treatment effect via propensity score regression, propensity score matching, and inverse probability of treatment weighting. We found that Super Learner and logistic regression are comparable in terms of covariate balance, bias, and mean squared error (MSE); however, Super Learner is computationally very expensive thus leaving no clear advantage to the more complex approach. Propensity scores estimated by generalized boosted models were inferior to the other two estimation approaches. We also found that propensity score regression adjustment was superior to either matching or inverse weighting when the form of the dependence on the treatment on the outcome is correctly specified.  相似文献   

18.
Nonrandomized studies of treatments from electronic healthcare databases are critical for producing the evidence necessary to making informed treatment decisions, but often rely on comparing rates of events observed in a small number of patients. In addition, studies constructed from electronic healthcare databases, for example, administrative claims data, often adjust for many, possibly hundreds, of potential confounders. Despite the importance of maximizing efficiency when there are many confounders and few observed outcome events, there has been relatively little research on the relative performance of different propensity score methods in this context. In this paper, we compare a wide variety of propensity‐based estimators of the marginal relative risk. In contrast to prior research that has focused on specific statistical methods in isolation of other analytic choices, we instead consider a method to be defined by the complete multistep process from propensity score modeling to final treatment effect estimation. Propensity score model estimation methods considered include ordinary logistic regression, Bayesian logistic regression, lasso, and boosted regression trees. Methods for utilizing the propensity score include pair matching, full matching, decile strata, fine strata, regression adjustment using one or two nonlinear splines, inverse propensity weighting, and matching weights. We evaluate methods via a ‘plasmode’ simulation study, which creates simulated datasets on the basis of a real cohort study of two treatments constructed from administrative claims data. Our results suggest that regression adjustment and matching weights, regardless of the propensity score model estimation method, provide lower bias and mean squared error in the context of rare binary outcomes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Methods for estimating average treatment effects, under the assumption of no unmeasured confounders, include regression models; propensity score adjustments using stratification, weighting, or matching; and doubly robust estimators (a combination of both). Researchers continue to debate about the best estimator for outcomes such as health care cost data, as they are usually characterized by an asymmetric distribution and heterogeneous treatment effects,. Challenges in finding the right specifications for regression models are well documented in the literature. Propensity score estimators are proposed as alternatives to overcoming these challenges. Using simulations, we find that in moderate size samples (n= 5000), balancing on propensity scores that are estimated from saturated specifications can balance the covariate means across treatment arms but fails to balance higher-order moments and covariances amongst covariates. Therefore, unlike regression model, even if a formal model for outcomes is not required, propensity score estimators can be inefficient at best and biased at worst for health care cost data. Our simulation study, designed to take a 'proof by contradiction' approach, proves that no one estimator can be considered the best under all data generating processes for outcomes such as costs. The inverse-propensity weighted estimator is most likely to be unbiased under alternate data generating processes but is prone to bias under misspecification of the propensity score model and is inefficient compared to an unbiased regression estimator. Our results show that there are no 'magic bullets' when it comes to estimating treatment effects in health care costs. Care should be taken before naively applying any one estimator to estimate average treatment effects in these data. We illustrate the performance of alternative methods in a cost dataset on breast cancer treatment.  相似文献   

20.
The quality of propensity scores is traditionally measured by assessing how well they make the distributions of covariates in the treatment and control groups match, which we refer to as "good balance". Good balance guarantees less biased estimates of the treatment effect. However, the cost of achieving good balance is that the variance of the estimates increases due to a reduction in effective sample size, either through the introduction of propensity score weights or dropping cases when propensity score matching. In this paper, we investigate whether it is best to optimize the balance or to settle for a less than optimal balance and use double robust estimation to adjust for remaining differences. We compare treatment effect estimates from regression, propensity score weighting, and double robust estimation with varying levels of effort expended to achieve balance using data from a study about the differences in outcomes by HIV status in heterosexually active homeless men residing in Los Angeles. Because of how costly data collection efforts are for this population, it is important to find an alternative estimation method that does not reduce effective sample size as much as methods that aggressively aim to optimize balance. Results from a simulation study suggest that there are instances in which we can obtain more precise treatment effect estimates without increasing bias too much by using a combination of regression and propensity score weights that achieve a less than optimal balance. There is a bias-variance tradeoff at work in propensity score estimation; every step toward better balance usually means an increase in variance and at some point a marginal decrease in bias may not be worth the associated increase in variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号