首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, age-related changes in the striatal dopaminergic system were examined in the living brains of conscious young (6.2 +/- 1.5 years old) and aged (20.2 +/- 2.6 years old) monkeys (Macaca mulatta) using positron emission tomography (PET). L-[beta-(11)C]DOPA and [(11)C]beta-CFT were applied to determine dopamine presynaptic functions such as synthesis rate and transporter (DAT) availability, respectively. Striatal dopamine D(1)- (D(1)R) and D(2)-like receptor (D(2)R) binding were measured with [(11)C]SCH23390 and [(11)C]raclopride, respectively. Although the markers of presynaptic terminals showed parallel age-related declines, the reduction of dopamine synthesis rate measured with L-[beta-(11)C]DOPA was slightly smaller than that of DAT determined with [(11)C]beta-CFT. The binding of [(11)C]raclopride to D(2)R in vivo was significantly reduced with aging, while that of [(11)C]SCH23390 to D(1)R showed no such marked age-related reduction. When the DAT inhibitor GBR12909 (0.5 and 5 mg/kg) was administered, DAT availability, dopamine synthesis, and D(2)R binding were significantly decreased in a dose-dependent manner in both age groups; however, the degrees of the decreases in these parameters were significantly higher in young rather than in aged animals. Dopamine concentration in the striatal extracellular fluid (ECF), as measured by microdialysis, was increased by administration of GBR12909 in a dose-dependent manner and the degree of the increase in dopamine level decreased with age. These results demonstrate that age-related changes of dopamine neuronal functions were not limited to the resting condition but were also seen in the functional responses to the neurotransmitter modulation.  相似文献   

2.
To evaluate the cholinergic and dopaminergic neuronal interaction in the striatum, the effects of scopolamine, a muscarinic cholinergic antagonist, on the striatal dopaminergic system were evaluated multi-parametrically in the conscious monkey brain using high-resolution positron emission tomography in combination with microdialysis. l-3,4-Dihydroxyphenylalanine (l-[beta-(11)C]DOPA) and 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane ([beta-(11)C]CFT) were used to measure dopamine synthesis rate and dopamine transporter (DAT) availability, respectively. For assessment of dopamine D(2) receptor binding in vivo, [(11)C]raclopride was applied because this labeled compound, which has relatively low affinity to dopamine D(2) receptors, was hypothesized to be sensitive to the striatal synaptic dopamine concentration. Systemic administration of scopolamine at doses of 10 and 100 microg/kg dose-dependently increased both dopamine synthesis and DAT availability as measured by l-[beta-(11)C]DOPA and [beta-(11)C]CFT, respectively. Scopolamine decreased the binding of [(11)C]raclopride in a dose-dependent manner. Scopolamine induced no significant changes in dopamine concentration in the striatal extracellular fluid (ECF) as determined by microdialysis. However, scopolamine dose-dependently facilitated the striatal ECF dopamine induced by the DAT inhibitor GBR12909 at a dose of 0.5 mg/kg. Scatchard plot analysis in vivo of [(11)C]raclopride revealed that scopolamine reduced the apparent affinity of dopamine D(2) receptors. These results suggested that the inhibition of muscarinic cholinergic neuronal activity modulates dopamine turnover in the striatum by simultaneous enhancement of the dynamics of dopamine synthesis and DAT availability, resulting in no significant changes in apparent "static" ECF dopamine level but showing a decrease in [(11)C]raclopride binding in vivo attributable to the reduction of affinity of dopamine D(2) receptors.  相似文献   

3.
The effects of ketamine anesthesia on the binding of [(11)C]-labeled cocaine analogs, [(11)C]beta-CFT (2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane) and [(11)C]beta-CIT-FE (N-(2-fluoroethyl)-2beta-carbomethoxy-3beta-(4-iodophenyl)tropane), to the striatal dopamine transporter (DAT) were evaluated in the monkey brain using positron emission tomography (PET). We sequentially measured the kinetics of these labeled compounds in the brains of five young-adult male rhesus monkeys (Macaca mulatta) in the conscious state, followed by those under ketamine anesthesia with continuous infusion (3 and 10 mg/kg/h). After intravenous injection, [(11)C]beta-CFT and [(11)C]beta-CIT-FE were predominantly accumulated in the striatum in both conscious and ketamine-anesthetized states. In the conscious state, the striatal uptake of [(11)C]beta-CFT and [(11)C]beta-CIT-FE continuously increased with time up to 91 min after injection. Continuous infusion of ketamine-induced higher levels of uptake of [(11)C]beta-CFT and [(11)C]beta-CIT-FE into the brain in a dose-dependent manner as compared with conscious state, and kinetic analysis with metabolite-corrected arterial input function indicated that the binding potentials (BP = k(3)/k(4)) of both compounds were elevated by ketamine. Not only [(11)C]beta-CIT-FE but also [(11)C]beta-CFT reached the equilibrium state of specific binding in the striatum within 40-50 min after injection. The present results demonstrated that ketamine significantly alters the DAT availability as measured with [(11)C]beta-CFT and [(11)C]beta-CIT-FE in the brain.  相似文献   

4.
The dose-response and duration effects of acute administration of the dopamine transporter (DAT) blocker cocaine and GBR12909 on dopamine synthesis and transporter availability were evaluated in the brains of conscious monkeys using high-resolution positron emission tomography (PET) in combination with microdialysis. Rate of dopamine synthesis and DAT availability were evaluated using L-[beta-11C]DOPA and [11C]beta-CFT (WIN35,428), respectively. Administration of cocaine (0.5, 2 and 5 mg/kg) resulted in dose-dependent elevation of dopamine level in the striatal extracellular fluid (ECF) at 0.5 h after injection, and returned to the baseline level within 1.5 h post-injection. At 0.5 post-injection, cocaine reduced dopamine synthesis rate and DAT availability in a dose-dependent manner. The reduction of DAT availability by cocaine (2 mg/kg) returned to baseline level at 3 h post-injection and thereafter. Interestingly, dopamine synthesis rate was significantly higher at 3 h than baseline level and returned to baseline level 5.5 h post-injection. When GBR12909 (0.5, 2 and 5 mg/kg) was administered 0.5 h before tracer injection, dopamine synthesis rate and DAT availability were significantly decreased in a dose-dependent manner. These reductions induced by GBR12909 (2 mg/kg) lasted at least until 5.5 h post-injection. GBR12909 induced dose-dependent elevation of dopamine level in ECF, and the elevation lasted up to 7 h. The present results indicated that cocaine and GBR12909 affect dopamine synthesis rate and DAT availability in the striatum with difference time courses as measured by PET in the conscious monkey brains.  相似文献   

5.
The effects of dopamine release manipulated by drugs on the in vivo binding of [11C]raclopride in the striatum were evaluated in conscious monkeys combined with microdialysis. The in vivo binding of [11C]raclopride was evaluated by high resolution positron emission tomography (PET), and the dopamine concentrations in the striatal extracellular fluid (ECF) were measured by microdialysis in the same animals. The systemic administration of the direct dopamine enhancers, GBR12909 (a dopamine transporter (DAT) blocker, at 0.5, 2 and 5 mg/kg) or methamphetamine (a dopamine releaser, at 0.1, 0.3 and 1 mg/kg) dose-dependently increased the dopamine concentration in the striatal ECF, and decreased in vivo [11C]raclopride binding in the striatum. The administration of the indirect dopamine modulators benztropine (a muscarinic cholinergic antagonist, at 0.1, 0.3 and 1 mg/kg) or ketanserine (a 5-HT2 antagonist, at 0.3, 1 and 3 mg/kg) also increased dopamine level in the striatal ECF, and decreased [11C]raclopride binding in a dose-dependent manner. However, the plots of percentage change in dopamine concentration in striatal EFC against that in [11C] raclopride binding indicated different relationships between the effects of direct dopamine enhancers (GBR12909 and methamphetamine) and indirect dopamine modulators (benztropine and ketanserine). These results suggested that the alternation of [11C]raclopride binding in vivo as measured by PET was differently affected by different neuronal manipulations, and not simply by the synaptic concentration of dopamine.  相似文献   

6.
A dopamine transporter (DAT) ligand 2beta-carbomethoxy-3beta-(4-fluoro-phenyl)-8-(2-[(18)F]fluoroethyl)nortropane ([(18)F]beta-CFT-FE) was synthesized and evaluated in comparison with [(11)C]beta-CFT in monkey brain using animal positron emission tomography (PET). [(18)F]beta-CFT-FE and [(11)C]beta-CFT were injected intravenously to conscious monkeys for a 91-min PET scan with arterial blood sampling for metabolite analysis. In the conscious state, [(18)F]beta-CFT-FE provided a peak about 20 min after the injection and declined thereafter in the striatum of monkey brain, while [(11)C]beta-CFT continuously increased with time up to 91 min after injection. Metabolite analysis revealed that [(18)F]beta-CFT-FE was more rapidly metabolized in plasma than [(11)C]beta-CFT. The striatal binding of both ligands was dose-dependently displaced by preadministration of a specific DAT inhibitor, GBR12909, at doses of 0.5 and 5 mg/kg; however, the displacement degree of [(11)C]beta-CFT-FE was higher than that of [(18)F]beta-CFT. The effects of the anesthetics, ketamine and isoflurane, on binding were more prominent in [(11)C]beta-CFT than [(18)F]beta-CFT-FE. Specificity and affinity of beta-CFT-FE to DAT were evaluated in an in vitro assay using cloned human DAT, serotonin transporter, and norepinephrine transporter in comparison with other conventional DAT ligands, showing that beta-CFT-FE had lower affinity and higher specificity to DAT than beta-CFT and beta-CIT. These results suggested that [(18)F]beta-CFT-FE could be a potential imaging agent for DAT, providing excellent selectivity and tracer kinetics for quantitative PET imaging.  相似文献   

7.
The present study evaluated the effects of methamphetamine and scopolamine on the striatal dopamine D(1) receptor binding, measured by [(11)C]SCH23390, and D(1) receptor-coupled cAMP messenger system, determined as phosphodiesterase type-IV (PDE-IV) activity, were evaluated in the brains of conscious monkeys using positron emission tomography (PET) with microdialysis. When methamphetamine (0.1, 0.3, and 1 mg/kg) or scopolamine (0.01, 0.03, and 0.1 mg/kg) was systemically administered, [(11)C]SCH23390 binding to D(1) receptors was not affected. With administration of methamphetamine, the striatal PDE-IV activity, as measured with R-[(11)C]rolipram (active form) and S-[(11)C]rolipram (inactive form), was dose-dependently facilitated with enhanced dopamine level in the striatal ECF. Administration of scopolamine also induced facilitated PDE-IV activity without any apparent changes in the ECF dopamine. These facilitations of PDE-IV activity were abolished by preadministration of SCH23390, but not by raclopride. These results demonstrate that, as evaluated by PDE-IV activity, the inhibition of muscarinic cholinergic receptors actually facilitated dopamine neuronal signal transduction through D(1) receptors, as observed previously on D(2) receptors with no apparent increase in the striatal ECF dopamine level, but the enhanced dopamine transmission could not detected by [(11)C]SCH23390.  相似文献   

8.
Previous brain imaging studies with [(11)C]raclopride have suggested that the psychotogenic effects of the noncompetitive N-methyl-D-aspartate antagonist ketamine in humans might be mediated by increased dopamine (DA) release and increased stimulation of DA D(2) receptors in the striatum. The goal of the present study was to assess the effect of ketamine on D(2) receptor availability in subregions of the striatum (dorsal caudate, DCA; dorsal putamen, DPU; ventral striatum, VST) in humans. Ten healthy subjects were studied twice. In a first group of five subjects, PET scanning was obtained twice for 90 min during bolus plus constant infusion of [(11)C]raclopride. No significant differences were observed in [(11)C]raclopride specific-to-nonspecific activity ratios (V(")(3)) measured during an early interval (30-50 min) and late interval (70-90 min), confirming that a state of sustained equilibrium had been established from 30-90 min (end of infusion). In a second group of five subjects, a similar experiment was performed twice, except that ketamine was administered beginning at 50 min (0.12 mg/kg i.v. bolus followed by 0.65 mg/kg/h i.v. infusion for 70 min). Raclopride V(")(3) measured before ketamine (30-50-min interval) was compared to [(11)C]raclopride V(")(3) measured during ketamine infusion (70-90-min interval). Ketamine induced a robust dissociative state. However, no significant differences were observed in D(2) receptor availability measured before and during the ketamine infusion (n = 10) in any of the regions examined (DCA, DPU, and VST). These data fail to demonstrate an effect of ketamine on [(11)C]raclopride BP and are consistent with microdialysis studies in rodents and nonhuman primates which reported only small effects of acute NMDA receptor blockade on extracellular striatal DA concentration.  相似文献   

9.
In common with many addictive substances and behaviors nicotine activates the mesolimbic dopaminergic system. Brain microdialysis studies in rodents have consistently shown increases in extrasynaptic DA levels in the striatum after administration of nicotine but PET experiments in primates have given contradicting results. A recent PET study assessing the effect of smoking in humans showed no change in [(11)C]raclopride binding in the brain, but did find that "hedonia" correlated with a reduction in [(11)C]raclopride binding suggesting that DA may mediate the positive reinforcing effects of nicotine. In this experiment we measured the effect of nicotine, administered via a nasal spray, on DA release using [(11)C]raclopride PET, in 10 regular smokers. There was no overall change in [(11)C]raclopride binding after nicotine administration in any of the striatal regions examined. However, the individual change in [(11)C]raclopride binding correlated with change in subjective measures of "amused" and "happiness" in the associative striatum (AST) and sensorimotor striatum (SMST). Nicotine concentration correlated negatively with change in BP in the limbic striatum. Nicotine had significant effects on cardiovascular measures including pulse rate, systolic blood pressure (BPr), and diastolic BPr. Baseline [(11)C]raclopride binding potential (BP) in the AST correlated negatively with the Fagerstr?m score, an index of nicotine dependence. These results support a role for the DA system in nicotine addiction, but reveal a more complex relationship than suggested by studies in animals.  相似文献   

10.
Positron emission tomography (PET) is a useful technique for the consecutive investigation of the relationship between changes in neurotransmission biomarkers and behavioral signs in animal models of Parkinson's disease (PD). In this study, we aimed to investigate the threshold of dopamine (DA) neuron damage for the appearance of tremor by observing the longitudinal changes of pre- and post-synaptic DA biomarkers in awake monkeys using PET with multiple tracers. Three cynomolgus monkeys were treated with MPTP every 3-6 weeks until tremor was observed. Brain uptake of [11C]PE2I, [beta-11C]DOPA, and [11C]raclopride for DA transporter (DAT), DOPA utilization, and DA D2 receptor were measured using PET as a single set in awake condition. Sets of PET scans were repeated in parallel with continuous behavioral estimation. The pre-synaptic biomarkers of DA neuron in the striatum decreased [11C]PE2I binding and [beta-11C]DOPA uptake in an MPTP dose-dependent manner. Tremor was not observed until striatal [11C]PE2I binding was reduced to about 15% of the pretreatment level and [beta-11C]DOPA uptake was reduced to about 34%. DA D2 receptor measured by [11C]raclopride was not significantly changed throughout the experiment. Our results revealed that it is possible to quantitatively define the threshold of the onset of behavioral PD signs by monitoring spontaneous motor activity, and in vivo PET with DAT marker can be a biomarker for early diagnosis at the presymptomatic stage of PD and for high-risk groups.  相似文献   

11.
Though the blockade of dopamine transporters (DAT) is associated with cocaine's and methylphenidate's reinforcing effects, it is the stimulation of dopamine (DA) receptors, achieved by increases in synaptic DA, that enables these effects to occur. Positron emission tomography (PET) and [11C]raclopride were used to assess the levels of occupancy of DA D2 receptors by dopamine achieved by doses of cocaine or methylphenidate previously documented to block over 70% of DAT. Studies were performed in five baboons using a paired scan protocol designed to measure DA D2 receptor availability (Bmax/Kd) at baseline conditions and after intravenous administration of either cocaine or methylphenidate. Cocaine (1-2 mg/kg) or methylphenidate (0.5 mg/kg) administered 5 min prior to [11C]raclopride decreased Bmax/Kd by 29+/-3% and 32 + 4%, respectively. Smaller reductions in Bmax/Kd (13% for cocaine given 30 min before [11C]raclopride and 25+/-10% for methylphenidate given 40 min before [11C]raclopride) were seen with longer periods between drug and radioligand. These observations are consistent with the slower striatal clearance kinetics of [11C]methylphenidate than [1C]cocaine observed in previous PET experiments and with the approximately twofold higher potency of methylphenidate than cocaine in in vitro experiments. Though the elevation of synaptic DA induced by >70% occupancy of DAT by these drugs lead to a modest increase in occupancy of D2 receptors (25-30%), further studies are required to assess if this is an underestimation because of differences in D2 receptor binding kinetics between raclopride and DA.  相似文献   

12.
Nicotine injections and nicotine skin patches significantly improve attention, memory, and learning in Alzheimer's disease. In animal studies, nicotine improves the performance of various memory-related tasks, an effect that is thought to be mediated by the neuronal dopaminergic system as systemic administration of nicotine decreased [(11)C]raclopride binding in the anesthetized state. Since high doses of systemically administered nicotine are harmful, we administrated it directly into the rat striatum via microdialysis. We then examined the acute effects of continuous central administration of high doses of nicotine on striatal dopamine concentrations by measuring [(11)C]raclopride binding by positron emission tomography. The concentration of dopamine in the dialysates was significantly increased from basal levels when microdialysis with 100 mM nicotine was initiated. However, contrary to expectations, the binding potential (BP) of [(11)C]raclopride in the nicotine-perfused striatum was significantly higher than that in control striatum. Preinjection of mecamylamine (3 mg/kg), a nicotinic antagonist, had no effect on either extracellular dopamine levels or on the BP of [(11)C]raclopride. These findings suggest that the high dose of local nicotine administration induced mecamylamine-insensitive local increases in extracellular dopamine, but might have decreased the total amount of extracellular dopamine in the striatum.  相似文献   

13.
Dopa-responsive dystonia (DRD) is a lifelong disorder in which dopamine deficiency is not associated with neuronal loss and therefore it is an ideal human model for investigating the compensatory changes that occur in response to this biochemical abnormality. Using positron emission tomography (PET), we examined the (+/-)-alpha-[(11)C]dihydrotetrabenazine ([(11)C]DTBZ) binding potential of untreated DRD patients and normal controls. Two other PET markers of presynaptic nigrostriatal function, d-threo-[(11)C]methylphenidate ([(11)C]MP) and 6-[(18)F]fluoro-L-dopa ([(18)F]-dopa), and [(11)C]raclopride were also used in the study. We found increased [(11)C]DTBZ binding potential in the striatum of DRD patients. By contrast, no significant changes were detected in either [(11)C]MP binding potential or [(18)F]-dopa uptake rate constant. In addition, we found evidence for increased dopamine turnover in one DRD patient by examining changes in [(11)C]raclopride binding potential in relation to levodopa treatment. We propose that the increase in [(11)C]DTBZ binding likely reflects the dramatic decrease in the intravesicular concentration of dopamine that occurs in DRD; upregulation of vesicular monoamine transporter type 2 (VMAT2) expression may also contribute. Our findings suggest that the striatal expression of VMAT2 (as estimated by [(11)C]DTBZ binding) is not coregulated with dopamine synthesis. This is in keeping with a role for VMAT2 in other cellular processes (i.e., sequestration and release from the cell of potential toxic products), in addition to its importance for the quantal release of monoamines.  相似文献   

14.
Guttman M  Stewart D  Hussey D  Wilson A  Houle S  Kish S 《Neurology》2001,56(11):1559-1564
BACKGROUND: Animal data indicate that chronic exposure to dopaminergic drugs can alter levels of the dopamine transporter (DAT), which is critically involved in regulation of synaptic dopamine levels. DAT changes could influence the response to therapy in PD. METHODS: A randomized, assessor-blinded, placebo-controlled clinical trial was performed in subjects with early PD to determine whether L-dopa or pramipexole might regulate striatal DAT binding as measured by PET with [(11)C]RTI-32. Thirty clinically asymmetrical patients were randomly assigned to receive 6 weeks of L-dopa (300/75 mg/d), pramipexole (1.5 mg/d), or placebo; PET studies were performed before and after treatment. RESULTS: Mean interval change in DAT binding was significantly reduced by 16% to 22% in all striatal regions (caudate, anterior and posterior putamen) of the L-dopa-treated patients, whereas significant changes in the pramipexole-treated patients were limited to the contralateral caudate (-15%), ipsilateral anterior putamen (-14%), and posterior putamen (-20%). In the placebo group there were significant changes in contralateral caudate (-11%) and ipsilateral anterior putamen (-12%). L-dopa and pramipexole produced similar clinical benefit. CONCLUSIONS: Short-term therapy with L-dopa and, to a lesser extent, pramipexole can modestly down-regulate striatal DAT in patients with early PD. Decreased striatal DAT could increase dopaminergic neurotransmission with potential benefit, but might also play a role in the development of dopamine-related response fluctuations in patients with advanced disease. Our data also suggest caution in interpretation of longitudinal imaging studies employing DAT to assess disease progression and the efficacy of neuroprotective agents.  相似文献   

15.
Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [(11)C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([(11)C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [(11)C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.  相似文献   

16.
OBJECTIVE: Several antidepressants raise striatal dopamine, but the role of striatal dopamine during major depressive episodes is unclear. Striatal [(11)C]raclopride binding potential measured with positron emission tomography is an index of D(2) type receptors and is sensitive to extracellular dopamine levels (higher D(2) binding potential occurs when dopamine is lower). It was hypothesized that putamen D(2) binding potential would be higher during major depressive episodes featuring motor retardation. METHOD: Drug-free, nonsmoking subjects experiencing a major depressive episode (N=21) underwent [(11)C]raclopride PET imaging as did 21 healthy age-matched comparison subjects. Motor retardation was measured with the finger tapping test. RESULTS: The depressed subjects exhibiting motor retardation had significantly higher D(2) binding potential in both the left and right putamen than did healthy subjects, and putamen D(2) binding potential correlated significantly with motor speed in the depressed subjects. CONCLUSIONS: The results argue that extracellular dopamine is lower in subjects experiencing a major depressive episode that features motor retardation. This depression subtype should preferentially benefit from dopamine-increasing medications and should be targeted in future clinical trials of dopamine reuptake inhibitors.  相似文献   

17.
Animal studies indicate that mu-opioids indirectly modulate neurotransmission in the nigrostriatal dopaminergic pathway. We used positron emission tomography (PET) to study the effects of alfentanil (a mu-opioid receptor agonist) on striatal dopamine D2 receptor binding in eight healthy male volunteers. D2 receptor binding was determined by using [(11)C]raclopride as radioligand. Each subject underwent two PET sessions on the same day, the first without the drug (control) and the second during alfentanil infusion. Alfentanil was administered as target-controlled infusion to maintain pseudo steady-state plasma concentration of 80 ng/ml throughout the PET session. A freeze lesion model was used for pain testing at the end of both PET sessions. A mechanical pain stimulus of 5 N was rated by the subjects using a visual analog scale. Regions of interest for the putamen, caudate nucleus, and cerebellum were drawn on MRI images and transferred to PET images. Alfentanil increased the binding potential of [(11)C]raclopride in the putamen by 6.0% (P = 0.04) and in the caudate nucleus by 7.4% (P = 0.008). Alfentanil caused a small reduction in respiratory rate (P = 0.046) and oxygen saturation (P < 0.001), and a moderate consistent increase in end-tidal CO(2) (P < 0.001). Pain scores were significantly smaller after alfentanil PET scan (median VAS 9 (0-42) vs. 23.5 (15-52), P = 0.008). These results indicate that pharmacologically relevant concentrations of alfentanil increase D2 dopamine receptor binding in the striatum in man. This increase is assumed to reflect reduced dopamine release.  相似文献   

18.
BACKGROUND: The hypothesis that altered dopamine transmission underlies hyperactive-inattentive behavior in children with attention-deficit/hyperactivity disorder (ADHD) is based on genetic studies and the efficacy of psychostimulants. Most of previous positron emission tomography (PET) and single photon emission tomography (SPET) studies have shown altered binding of dopamine markers in the basal ganglia. Yet, the functional role of the neurochemical disturbances are poorly understood. The purpose of our study was to examine dopamine transporter (DAT) and dopamine D2 receptor (D2R) binding in adolescents with ADHD and to search for its relationship with cognitive functions as well as locomotor hyperactivity. METHODS: Twelve adolescents with ADHD and 10 young adults were examined with PET using the selective radioligands [11C]PE2I and [11C]raclopride, indexing DAT and D2R density. The simplified reference tissue model was used to calculate binding potential (BP) values. Attention and motor behavior were investigated with a continuous performance task (CPT) and motion measurements. RESULTS: The BP value for [11C]PE2I and [11C]raclopride in the striatum of children with ADHD did not differ from that of the young adult control subjects. In the midbrain, however, the BP values for DAT were significantly lower (16%; p = .03) in children with ADHD. Dopamine D2 receptor binding in the right caudate nucleus correlated significantly with increased motor activity (r = .70, p = .01). CONCLUSIONS: The lower BP values for DAT in the midbrain suggest that dopamine signaling in subjects with ADHD is altered. Altered dopamine signaling might have a causal relationship to motor hyperactivity and might be considered as a potential endophenotype of ADHD.  相似文献   

19.
Lower dopamine transporter binding potential in striatum during depression.   总被引:4,自引:0,他引:4  
Previous studies suggest that there is a dopamine lowering process during major depressive episodes (MDE). To investigate this, we measured the dopamine transporter binding potential (DAT BP) in the striatum of depressed and healthy subjects using [(11)C]RTI-32 PET. The DAT, a predominantly presynaptic receptor, decreases in density after chronic dopamine depletion and the BP is proportional to receptor density. In all striatal regions, subjects with MDE had significantly lower DAT BP. Low striatal DAT BP in MDE is consistent with a downregulation of DAT in response to a dopamine lowering process. There was also a strong, highly significant, inverse correlation between striatal DAT BP and neuropsychological tests of dopamine-implicated symptoms in patients (i.e. patients with lower DAT BP performed better). Lower DAT BP itself reduces extracellular clearance of dopamine. Patients who did not decrease their striatal DAT BP failed to compensate for low dopamine and showed greater impairment on dopamine related tests.  相似文献   

20.
Differentiation of impaired gait seen in idiopathic normal pressure hydrocephalus (iNPH) from parkinsonian gait is sometimes a great challenge and important for future medication in the clinical setting. To investigate dopaminergic contribution to its pathophysiology, two aspects of the trans-synaptic dopamine functions in the striatal region in eight iNPH patients na?ve to dopaminergic drugs were examined using positron emission tomography with a presynaptic marker [11C]CFT ([11C]2-beta-carbomethoxy-3beta-(4-fluorophenyl) tropane) that binds to dopamine transporter and a postsynaptic marker [11C]raclopride that binds to D2 receptor. Quantitative values of binding potentials (BPs) for [11C]CFT and [11C]raclopride were compared between patients and eight age-matched healthy subjects. The BPs and magnetic resonance imaging-based morphometric measures in iNPH were used for correlation analyses between the magnitude of binding of these in vivo markers and clinical severity of the patients. Analysis of variance showed significant reduction in [11C]raclopride binding in the putamen and nucleus accumbens (P<0.05, corrected for multiple comparison) and unchanged striatal [11C]CFT binding in iNPH. The dorsal putamen [11C]raclopride binding correlated negatively with gait severity (r=0.720, P<0.05), and the nucleus accumbens [11C]raclopride binding correlated positively with emotional recognition score (r=0.727, P<0.05) in the disease group. No significant relationship was observed between BPs and morphometric measures. The current result of the postsynaptic D2 receptor reduction along with preserved presynaptic activity in the nigrostriatal dopaminergic system reflects a pathophysiology of iNPH. Postsynaptic D2 receptor hypoactivity in the dorsal putamen may predict the severity of gait impairment in iNPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号