首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During skeletal muscle contraction, regular arrays of actin and myosin filaments slide past each other driven by the cyclic ATP-dependent interaction of the motor protein myosin II (the cross-bridge) with actin. The rate of the cross-bridge cycle and its load-dependence, defining shortening velocity and energy consumption at the molecular level, vary widely among different isoforms of myosin II. However, the underlying mechanisms remain poorly understood. We have addressed this question by applying a single-molecule approach to rapidly ( approximately 300 mus) and precisely ( approximately 0.1 nm) detect acto-myosin interactions of two myosin isoforms having large differences in shortening velocity. We show that skeletal myosin propels actin filaments, performing its conformational change (working stroke) in two steps. The first step ( approximately 3.4-5.2 nm) occurs immediately after myosin binding and is followed by a smaller step ( approximately 1.0-1.3 nm), which occurs much faster in the fast myosin isoform than in the slow one, independently of ATP concentration. On the other hand, the rate of the second phase of the working stroke, from development of the latter step to dissociation of the acto-myosin complex, is very similar in the two isoforms and depends linearly on ATP concentration. The finding of a second mechanical event in the working stroke of skeletal muscle myosin provides the molecular basis for a simple model of actomyosin interaction. This model can account for the variation, in different fiber types, of the rate of the cross-bridge cycle and provides a common scheme for the chemo-mechanical transduction within the myosin family.  相似文献   

2.
It has been suggested that the length dependence of myofilament Ca2+sensitivity and of Ca2+binding to troponin C, observed over the ascending limb of the cardiac force–length curve, is based on variation in the number of interacting cross-bridges. This interaction would be reduced at short sarcomere length as a consequence of double overlap of oppositely polarized actin filaments and increased lateral separation of actin and myosin filaments. Based on current evidence, it is not clear to what extent the actin–myosin interaction is hindered at sarcomere lengths where Ca2+sensitivity is reduced. We have used two biochemical assays to assess cross-bridge attachment in rigor muscle at sarcomere lengths corresponding to the ascending limb of the cardiac force–length curve. These are based on (1) the inhibition of K+-activated myosin ATPase by the complexation of actin with myosin, and (2) the enhancement of Ca2+binding to troponin C by rigor bridge attachment to actin. Measurements were made with skinned fibers from bovine ventricle. As a check on our method, measurements were also made with skinned rabbit psoas muscle fibers. With both muscle types, a reduction in sarcomere length along the ascending limb of the force–length curve was associated with an increase in K+-activated ATPase activity and a reduction in Ca2+binding to the regulatory sites of troponin C. These results indicate that actin–myosin interaction is significantly reduced at short sarcomere length.  相似文献   

3.
The myocardium is an integrated functional unit. The separation of the cardiac cycle into three phases on simultaneous ventricular and arterial pressure curves:contraction, relaxation, diastole, is an artificial distinction of interdependent functions which are superimposed in time in the real mechanical and biochemical phenomena. At the level of the sarcomeres and myofilaments, relaxation is the active process of liberation of the bridges formed between actin and myosin during contraction; diastole is the phase during which there is no cyclic renewal of these bridges, it is the passive phase. Myocardial relaxation in mammals is controlled by the rapid recapture of Ca2+ by the sarcoplasmic reticulum. It plays an important mechanical role during the closure of the aortic semilunar valves, the opening of the mitral valve, the rapid filling of the right ventricle and the diastolic perfusion of the coronary arteries. It is dependent on the load and is influenced by myocardial metabolism (hypoxia, acidosis, ischaemia), temperature and a number of pharmacological agents. Amongst the passive properties of the left ventricle, we need to distinguish between the distensibility of the left ventricle as a filling chamber (parietal rigidity) and the rigidity of each of the myocardial fibres which make up the ventricular wall (myocardial rigidity). The passive properties of the left ventricle can be modified by ventricular geometry, passive mechanical properties of the ventricular wall (thickening, myocardial changes, heart rate and filling rate, cellular oedema, hypoxia, ischaemia, coronary artery filling pressure), the interaction between the pericardium, the right ventricle and the left ventricle and intrathoracic pressure. The large number of factors which are capable of modifying left ventricular relaxation and diastole explains the problems associated with in vivo investigations, which depend on a large number of indices of limited value.  相似文献   

4.
OBJECTIVE: Desmin intermediate filaments are key structures in the cytoskeleton of cardiac muscle. Since they are associated with Z-discs and intercalated discs, they may have a role in sarcomere alignment or force transmission. We have explored the mechanical function of the desmin filaments in the cardiac wall by comparing desmin-deficient (Des-/-) and wild-type (Des+/+) mice. METHODS: The Langendorff technique was used to examine the contractility of the whole heart. Rate of force generation, Ca(2+)-sensitivity and force per cross-sectional area were measured in skinned ventricle muscle preparations. RESULTS: Des-/- mice have a cardiomyopathy with increased heart weight. Diastolic pressure was increased at all filling volumes in the Des-/- group. Since passive wall stress (i.e. force per area) was unchanged, the alteration in diastolic pressure is a consequence of the thicker ventricle wall. Developed pressure, rate of pressure increase and developed wall stress were significantly reduced, suggesting that active force generation of the contractile apparatus is reduced in Des-/-. Concentrations of actin and myosin in the ventricle were unaltered. Measurements in skinned muscle preparations showed a lower active force development with unaltered Ca(2+)-sensitivity and rate of tension development. CONCLUSION: It is suggested that the intermediate filaments have a role in active force generation of cardiac muscle, possibly by supporting sarcomere alignment or force transmission. The desmin filaments do not contribute the passive elasticity of the ventricle wall. Des-/- mice provide a model for genetic cardiomyopathy where the main factor contributing to altered cardiac performance is a decrease in active force generation, possibly in combination with a loss of functional contractile units.  相似文献   

5.
Familial hypertrophic cardiomyopathy (FHC) is associated with mutations in 11 genes encoding sarcomeric proteins. Most families present mutations in MYBPC3 and MYH7 encoding cardiac myosin-binding protein C and beta-myosin heavy chain. The consequences of MYH7 mutations have been extensively studied at the molecular level, but controversial results have been obtained with either reduced or augmented myosin motor function depending on the type or homogeneity of myosin studied. In the present study, we took advantage of the accessibility to an explanted heart to analyze for the first time the properties of human homozygous mutant myosin. The patient exhibited eccentric hypertrophy with severely impaired ejection fraction leading to heart transplantation, and carries a homozygous mutation in MYH7 (R403W) and a heterozygous variant in MYBPC3 (V896M). In situ analysis of the left ventricular tissue showed myocyte disarray and hypertrophy plus interstitial fibrosis. In vitro motility assays showed a small, but significant increase in sliding velocity of fluorescent-labeled actin filaments over human mutant cardiac myosin-coated surface compared to control (+18%; P<0.001). Mutant myosin exhibited a large increase in maximal actin-activated ATPase activity (+114%; P<0.05) and Km for actin (+87%; P<0.05) when compared to control. These data show disproportionate enhancement of mechanical and enzymatic properties of human mutant myosin. This suggests inefficient ATP utilization and reduced mechanical efficiency in the myocardial tissue of the patient, which could play an important role in the development of FHC phenotype.  相似文献   

6.
A ventricular model based on a muscle model relating sarcomere dynamics to Ca(2+)kinetics was used to establish the relative contribution to pressure development of the two components of cross-bridge dynamics: attached cross-bridge concentration and elongation of its elastic structure. The model was tested by reproduction of experiments reflecting myofibrillar behavior at the ventricular level as well as chamber mechanical properties. It was then used to study cross-bridge behavior independently of Ca(2+)activation, by simulation of flow-clamp experiments at constant Ca(2+)concentration. During the volume ramp, both reduced cross-bridge elongation and decreased concentration by cross-bridge detachment caused a fall of pressure; at end-ejection there was a fast partial increase of pressure by recovery of cross-bridge elongation, and during post-ejection there was a slower pressure change towards the value corresponding to end-ejection volume by cross-bridge reattachment according to the rate of constants of Ca(2+)kinetics. Likewise, during a physiological normal ejection, results showed that a maximal decrease in cross-bridge elongation (Deltah) produced a maximal reduction of ejecting pressure with respect to that at constant cross-bridge elongation (DeltaP), both in simulated beats (DeltaP=20%, Deltah=17%), and in experimentally fitted pressure-volume data from open-chest dogs (DeltaP=43.7+/-3.8%, Deltah=30.7+/-8.3%), Deltah being dependent of peak flow (Deltah=0. 1471 peak flow+6.0788, r=0.72). We conclude that normal ejecting pressure depends not only on cross-bridge concentration, but also on the elongation of its elastic structure, which reduces pressure according to flow.  相似文献   

7.
Myosin heads interacting with actin filaments, a process fueled by MgATP and regulated by calcium, powers the pump-like action of the human heart. Hydrolysis of MgATP, the competition between MgATP, its products of hydrolysis, and actin for binding to myosin, and the sequence of shifting affinities in that competition, constitute the central mechanism of muscular contraction. The force, work, and power produced during the cardiac cycle stems from an isomerization of the myosin head that is closely associated with strong binding of myosin to actin and release of phosphate. While fluctuations of intracellular [Ca2+] bound to troponin and related shifts in tropomyosin on the thin filaments regulate the number of crossbridges on a beat-to-beat basis, the oscillatory work produced is augmented by a delayed force response to stretch that develops during diastole. This stretch-activated myogenic response is facilitated by specialized myofilament structures, including actin-binding portions of the myosin essential light chain and myosin binding protein C, which are thought to guide and orient the myosin head or enhance thin filament activation. Phosphorylation of the myosin regulatory light chain, myosin binding protein C, and troponin T also assist in this regard. Animal models show isoform shifts in myosin and other myofibrillar proteins have major effects on power output, but isoform shifts in human myocardium are modest at best and are therefore likely to play only a minor role in modulating crossbridge kinetics compared to disease-related post-translational modifications of the contractile proteins and to changes in their chemical environment.  相似文献   

8.
Protein kinase A-mediated (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and may relieve the tether-like constraint of myosin heads imposed by cMyBP-C. We favor a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and interaction of myosin and actin. To test this idea, we used synchrotron low-angle x-ray diffraction to measure interthick filament lattice spacing and the equatorial intensity ratio, I(11)/I(10), in skinned trabeculae isolated from wild-type and cMyBP-C null (cMyBP-C(-/-)) mice. In wild-type myocardium, PKA treatment appeared to result in radial or azimuthal displacement of cross-bridges away from the thick filaments as indicated by an increase (approximately 50%) in I(11)/I(10) (0.22+/-0.03 versus 0.33+/-0.03). Conversely, PKA treatment did not affect cross-bridge disposition in mice lacking cMyBP-C, because there was no difference in I(11)/I(10) between untreated and PKA-treated cMyBP-C(-/-) myocardium (0.40+/-0.06 versus 0.42+/-0.05). Although lattice spacing did not change after treatment in wild-type (45.68+/-0.84 nm versus 45.64+/-0.64 nm), treatment of cMyBP-C(-/-) myocardium increased lattice spacing (46.80+/-0.92 nm versus 49.61+/-0.59 nm). This result is consistent with the idea that the myofilament lattice expands after PKA phosphorylation of cardiac troponin I, and when present, cMyBP-C, may stabilize the lattice. These data support our hypothesis that tethering of cross-bridges by cMyBP-C is relieved by phosphorylation of PKA sites in cMyBP-C, thereby increasing the proximity of cross-bridges to actin and increasing the probability of interaction with actin on contraction.  相似文献   

9.
Stretch activation is important in the mechanical properties of vertebrate cardiac muscle and essential to the flight muscles of most insects. Despite decades of investigation, the underlying molecular mechanism of stretch activation is unknown. We investigated the role of recently observed connections between myosin and troponin, called "troponin bridges," by analyzing real-time X-ray diffraction "movies" from sinusoidally stretch-activated Lethocerus muscles. Observed changes in X-ray reflections arising from myosin heads, actin filaments, troponin, and tropomyosin were consistent with the hypothesis that troponin bridges are the key agent of mechanical signal transduction. The time-resolved sequence of molecular changes suggests a mechanism for stretch activation, in which troponin bridges mechanically tug tropomyosin aside to relieve tropomyosin's steric blocking of myosin-actin binding. This enables subsequent force production, with cross-bridge targeting further enhanced by stretch-induced lattice compression and thick-filament twisting. Similar linkages may operate in other muscle systems, such as mammalian cardiac muscle, where stretch activation is thought to aid in cardiac ejection.  相似文献   

10.
Tension-pCa relations of saponin-skinned rabbit and human heart muscle   总被引:5,自引:0,他引:5  
We tested if interaction between the thick and thin filaments, as revealed by the rate of cross-bridge cycling or the pattern of calcium activation, influences the relation between tension and free calcium concentration (pCa) of cardiac muscle. Bundles of rabbit ventricular cells which contained either fast-cycling RV1 myosin or slowly-cycling RV3 myosin and bundles of human atrial cells were chemically skinned by exposure to saponin. Skinned bundles were rapidly activated with calcium using the method of Moisescu and Thieleczek (1978). Our results suggest that the relation between pCa and tension is not different for skinned bundles of rabbit ventricular cells that contain either fast or slowly cycling myosin cross-bridges. The pattern of calcium activation, i.e. maximal to submaximal or submaximal to maximal, was also found not to influence the relation between tension and pCa for either rabbit ventricular or human atrial muscle. The tension-pCa relation of cardiac muscle was not altered by conditions that have been shown to alter the tension-pCa relation of skeletal muscle. These results suggest that the mechanisms responsible for regulating force development at the level of the thick and thin filaments that have been reported for skeletal muscle, are absent in cardiac muscle.  相似文献   

11.
Contraction of the heart results from interaction of the myosin and actin filaments. Cardiac myosin filaments consist of the molecular motor myosin II, the sarcomeric template protein, titin, and the cardiac modulatory protein, myosin binding protein C (MyBP-C). Inherited hypertrophic cardiomyopathy (HCM) is a disease caused mainly by mutations in these proteins. The structure of cardiac myosin filaments and the alterations caused by HCM mutations are unknown. We have used electron microscopy and image analysis to determine the three-dimensional structure of myosin filaments from wild-type mouse cardiac muscle and from a MyBP-C knockout model for HCM. Three-dimensional reconstruction of the wild-type filament reveals the conformation of the myosin heads and the organization of titin and MyBP-C at 4 nm resolution. Myosin heads appear to interact with each other intramolecularly, as in off-state smooth muscle myosin [Wendt T, Taylor D, Trybus KM, Taylor K (2001) Proc Natl Acad Sci USA 98:4361-4366], suggesting that all relaxed muscle myosin IIs may adopt this conformation. Titin domains run in an elongated strand along the filament surface, where they appear to interact with part of MyBP-C and with the myosin backbone. In the knockout filament, some of the myosin head interactions are disrupted, suggesting that MyBP-C is important for normal relaxation of the filament. These observations provide key insights into the role of the myosin filament in cardiac contraction, assembly, and disease. The techniques we have developed should be useful in studying the structural basis of other myosin-related HCM diseases.  相似文献   

12.
A ventricular myocyte experiences changes in length and load during every beat of the heart and has the ability to remodel cell shape to maintain cardiac performance. Specifically, myocytes elongate in response to increased diastolic strain by adding sarcomeres in series, and they thicken in response to continued systolic stress by adding filaments in parallel. Myocytes do this while still keeping the resting sarcomere length close to its optimal value at the peak of the length-tension curve. This review focuses on the little understood mechanisms by which direction of growth is matched in a physiologically appropriate direction. We propose that the direction of strain is detected by differential phosphorylation of proteins in the costamere, which then transmit signaling to the Z-disc for parallel or series addition of thin filaments regulated via the actin capping processes. In this review, we link mechanotransduction to the molecular mechanisms for regulation of myocyte length and width.  相似文献   

13.
The electron microscopic structure of heart muscle and the ultrastructural basis of cardiac contraction have been reviewed. The relation between muscle length and developed tension has been explained in terms of the structure of the sarcomere, which is the basic unit of contraction. Using the derived length-tension curve of the sarcomere, developed tension has been attributed to the overlap of thick and thin filaments within the sarcomere, lending support to the "sliding" mechanism in heart muscle. It has been shown that initial sarcomere length is a function of ventricular filling pressure and that this relation explains the normal limits of the heart as a pump, including: (1) the Starling mechanism whereby increased diastolic volume (EDV) engenders an increased stroke volume (SV), (2) the upper limits to ventricular filling pressure and volume, and (3) the normal range to the ventricular ejection fraction (SV/EDV). Further, ultrastructure helps to define the processes which occur with acute and chronic ventricular dilatation. In this regard, the importance of sarcomere dispersion and "fiber slippage," which may lead to disordered ventricular function, have been discussed.  相似文献   

14.
The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.  相似文献   

15.
Inherited restrictive cardiomyopathy (RCM) is a debilitating disease characterized by a stiff heart with impaired ventricular relaxation. Mutations in cardiac troponin I (cTnI) were identified as causal for RCM. Acute genetic engineering of adult cardiac myocytes was used to identify primary structure/function effects of mutant cTnI. Studies focused on R193H cTnI owing to the poor prognosis of this allele. Compared with wild-type cTnI, R193H mutant cTnI more effectively incorporated into the sarcomere, where it exerted dose-dependent effects on basal and dynamic contractile function. Under loaded conditions, permeabilized myocyte Ca(2+) sensitivity of tension was increased, whereas the passive tension-extension relationship was not altered by R193H cTnI. Normal rod-shaped myocyte morphology acutely transitioned to a "short-squat" phenotype in concert with progressive stoichiometric incorporation of R193H in the absence of altered diastolic Ca(2+). The specific myosin inhibitor blebbistatin fully blocked this transition. Heightened Ca(2+) buffering by the R193H myofilaments, and not alterations in Ca(2+) handling by the sarcoplasmic reticulum, slowed the decay rate of the Ca(2+) transient. Incomplete mechanical relaxation conferred by R193H was exacerbated at increasing pacing frequencies independent of elevated diastolic Ca(2+). R193H cTnI-dependent mechanical tone caused acute remodeling to a quasicontracted state not elicited by other Ca(2+)-sensitizing proteins and is a direct correlate of the stiff heart characteristic of RCM in vivo. These results point toward targets downstream of Ca(2+) handling, notably thin filament regulation and actin-myosin interaction, in designing therapeutic strategies to redress the primary cell morphological and mechanical underpinnings of RCM.  相似文献   

16.
The cardiac cycle, as revisited by modern authors, consists of 3 fundamental phases: contraction, which includes isovolumic contraction and first part of ejection; relaxation which begins with left ventricular peak pressure, continues with second part of ejection and isovolumic relaxation, and ends together with ventricular rapid filling (i.e. as filling rate has decreased by 50 p. cent); finally compliance or slow filling which lasts until atrial systole. The LV diastolic dysfunction refers to filling abnormalities which are related to either relaxation abnormalities or compliance troubles or both. The mechanisms of these abnormalities are biochemical (deficiency in cyclic AMP resulting in calcium handling dysregulation) and mechanical: right ventricular filling, pericardial restraint, coronary arteries perfusion, myocardial inertial forces, myocardial visco-elastic properties, ventricular wall elasticity (depending itself on its thickness and its collagen content). The methods of analysis of LV filling are: left ventriculography, gamma angiography, digitized M-Mode echography and, mainly, Doppler echocardiography. This technique allows 2 types of mitral flow abnormalities to be distinguished: 1) the abnormal relaxation which combines an increased isovolumic relaxation time, an increased deceleration time and a diminished E/A ratio, but this pattern may be "normalized" by an increase in filling pressure; 2) the restriction to filling which results in an increased E/A ratio, a diminished deceleration time and, sometimes, a diastolic mitral regurgitation. The effects of drugs on LV diastolic function are difficult to assess: a beneficial result may be due either to a direct effect on the myocardium or to an improvement in load conditions, heart rate or contractility.  相似文献   

17.
Diastolic function after cardiac and heart-lung transplantation.   总被引:1,自引:0,他引:1       下载免费PDF全文
The mechanical efficiency of left ventricular contraction and relaxation, the asynchrony of the onset of left ventricular relaxation, the time constant of left ventricular isovolumic pressure decay, and left ventricular chamber and myocardial stiffness were analysed in 32 patients after cardiac (24) and heart-lung transplantation (8). After cardiac transplantation left ventricular myocardial stiffness was increased and a mild degree of incoordinate contraction and relaxation was seen. In contrast, after heart-lung transplantation diastolic function was almost normal. Impairment of passive diastolic properties was significantly related to the ischaemic time of the donor heart and the donor's age. The index of left ventricular asynchrony was related to the ischaemic time and the recipient's age. The interval between transplantation and study did not influence the number of rejection episodes. This study confirms the presence of diastolic dysfunction after cardiac transplantation. Impairment of diastolic function seems to be related to the ischaemic time of the donor heart and to a mismatch between the size of the donor heart and the recipient's needs.  相似文献   

18.
The mechanical efficiency of left ventricular contraction and relaxation, the asynchrony of the onset of left ventricular relaxation, the time constant of left ventricular isovolumic pressure decay, and left ventricular chamber and myocardial stiffness were analysed in 32 patients after cardiac (24) and heart-lung transplantation (8). After cardiac transplantation left ventricular myocardial stiffness was increased and a mild degree of incoordinate contraction and relaxation was seen. In contrast, after heart-lung transplantation diastolic function was almost normal. Impairment of passive diastolic properties was significantly related to the ischaemic time of the donor heart and the donor's age. The index of left ventricular asynchrony was related to the ischaemic time and the recipient's age. The interval between transplantation and study did not influence the number of rejection episodes. This study confirms the presence of diastolic dysfunction after cardiac transplantation. Impairment of diastolic function seems to be related to the ischaemic time of the donor heart and to a mismatch between the size of the donor heart and the recipient's needs.  相似文献   

19.
The basis of the Frank-Starling mechanism of the heart is the intrinsic ability of cardiac muscle to produce greater active force in response to stretch, a phenomenon known as length-dependent activation. A feedback mechanism transmitted from cross-bridge formation to troponin C to enhance Ca2+ binding has long been proposed to account for length-dependent activation. However, recent advances in muscle physiology research technologies have enabled the identification of other factors involved in length-dependent activation. The striated muscle sarcomere contains a third filament system composed of the giant elastic protein titin, which is responsible for most passive stiffness in the physiological sarcomere length range. Recent studies have revealed a significant coupling of active and passive forces in cardiac muscle, where titin-based passive force promotes cross-bridge recruitment, resulting in greater active force production in response to stretch. More currently, the focus has been placed on the troponin-based “on-off” switching of the thin filament state in the regulation of length-dependent activation. In this review, we discuss how myocardial length-dependent activation is coordinately regulated by sarcomere proteins.  相似文献   

20.
Dilated cardiomyopathy (DCM) leads to heart failure, a leading cause of death in industrialized nations. Approximately 30% of DCM cases are genetic in origin, with some resulting from point mutations in cardiac myosin, the molecular motor of the heart. The effects of these mutations on myosin's molecular mechanics have not been determined. We have engineered two murine models characterizing the physiological, cellular, and molecular effects of DCM-causing missense mutations (S532P and F764L) in the alpha-cardiac myosin heavy chain and compared them with WT mice. Mutant mice developed morphological and functional characteristics of DCM consistent with the human phenotypes. Contractile function of isolated myocytes was depressed and preceded left ventricular dilation and reduced fractional shortening. In an in vitro motility assay, both mutant cardiac myosins exhibited a reduced ability to translocate actin (V(actin)) but had similar force-generating capacities. Actin-activated ATPase activities were also reduced. Single-molecule laser trap experiments revealed that the lower V(actin) in the S532P mutant was due to a reduced ability of the motor to generate a step displacement and an alteration of the kinetics of its chemomechanical cycle. These results suggest that the depressed molecular function in cardiac myosin may initiate the events that cause the heart to remodel and become pathologically dilated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号