共查询到20条相似文献,搜索用时 15 毫秒
1.
Jianteng Wei Ming Liu Haizhou Liu Hui Wang Fengxia Wang Yuyan Zhang Lijun Han Xiukun Lin 《Journal of applied toxicology : JAT》2013,33(8):756-765
Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits potential anti‐tumor activity against many tumor cell lines. This study aims to examine the anti‐tumor activity of OA on pancreatic cancer cells and its potential molecular mechanism. The results showed that the proliferation of Panc‐28 cells was inhibited by OA in a concentration‐dependent manner, with an IC50 (The half maximal inhibitory concentration) value of 46.35 µg ml?1, as determined by MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay. The cell cycle was arrested in S phase and G2/M phase by OA. The study also showed that OA could induce remarkable apoptosis, evidenced by an increased percentage of early/late apoptotic cells, DNA ladder and nuclear morphology change. Further study revealed that OA could induce Reactive Oxygen Species (ROS) generation, mitochondrial depolarization, release of cytochrome C, lysosomal membrane permeabilization and leakage of cathepin B. The expression of apoptosis‐correlated proteins was also affected in cells treated with OA, including activation of caspases‐3/9 and cleavage of PARP. Further study confirmed that ROS scavenger vitamin C could reverse the apoptosis induced by OA in Panc‐28 cells. Our results provide evidence that OA arrests the cell cycle and induces apoptosis, possibly via ROS‐mediated mitochondrial and a lysosomal pathway in Panc‐28 cells. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
Nadine Knoll Carola Ruhe Selvaraju Veeriah Julia Sauer Michael Glei Evan P Gallagher Beatrice L Pool-Zobel 《Toxicological sciences》2005,86(1):27-35
The cellular production of 4-hydroxy-2-nonenal (HNE), a product of endogenous lipid peroxidation, constitutes a genotoxic risk factor for carcinogenesis. Our previous studies have shown that human HT29 colon cells developed resistance toward HNE injury after treatment with butyrate, a diet-associated gut fermentation product. This resistance was attributed to the induction of certain glutathione S-transferases (hGSTP1-1, hGSTM2-2, and hGSTA1-1) and also for the tripeptide glutathione (GSH) synthesizing enzymes. In the present study, we have investigated in HT29 cells whether hGSTA4-4, which has a high substrate specificity for HNE, was also inducible by butyrate and, thus, could contribute to the previously observed chemoresistance. In addition, we investigated if cellular depletion of GSH by L-buthionine-S,R-sulfoximine (BSO) enhances chemosensitivity to HNE injury in HT29 cells. Incubation of HT29 cells with butyrate (2-4 mM) significantly elicited a 1.8 to 3-fold upregulation of steady state hGSTA4 mRNA over 8-24 h after treatment. Moreover, 4 mM butyrate tended to increase hGSTA4-4 protein concentrations. Incubation with 100 microM BSO decreased cellular GSH levels by 77% without significant changes in cell viability. Associated with this was a 2-fold higher level of HNE-induced DNA damage as measured by the comet assay. Collectively, the results of this study and our previous work indicate that the genotoxicity of HNE is highly dependent on cellular GSH status and those GSTs that contribute toward HNE conjugation, including hGSTA4-4. Since HNE contributes to colon carcinogenesis, the favorable modulation of the GSH/GST system by butyrate may contribute to chemoprevention and reduction of the risks. 相似文献
3.
Xi Sun Xixi Zhou Libo Du Wenlan Liu Yang Liu Laurie G. Hudson Ke Jian Liu 《Toxicology and applied pharmacology》2014
Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. 相似文献
4.
De Haan LH Boerboom AM Rietjens IM van Capelle D De Ruijter AJ Jaiswal AK Aarts JM 《Biochemical pharmacology》2002,64(11):1597-1603
NAD(P)H:quinone oxidoreductase 1 (NQO1) has often been suggested to be involved in cancer prevention by means of detoxification of electrophilic quinones. In the present study, a series of Chinese hamster ovary (CHO) cell lines expressing various elevated levels of human NQO1 were generated by stable transfection. The level of NQO1 over-expression ranged from 14 to 29 times the NQO1 activity in the wild-type CHO cells. This panel of cell lines, allowed investigation of the protective role of NQO1 in quinone cytotoxicity. It could be demonstrated that menadione toxicity was significantly reduced in all NQO1-transfected CHO clones compared to the wild-type cells, but the clones did not show differences in their level of protection against menadione. This observation pointed at a critical threshold concentration of NQO1 above which a further increase does not provide further protection against quinone cytotoxicity. Additional studies in which the NQO1 activity was inhibited by dicoumarol showed that only dicoumarol concentrations of about five times the EC(50) for NQO1 inhibition were able to reduce NQO1 levels below the apparent threshold, making the cells more sensitive. The level of this threshold was estimated to be in the range of base line NQO1 activities observed in several tissues and species. Thus, the results of the present study indicate that beneficial effects of NQO1 induction by, for example, cruciferous vegetables might be absent or present depending on the NQO1 activity threshold for optimal protection and the basal level of NQO1 expression in the tissue and species of interest. 相似文献
5.
Apoptotic injury in cultured human hepatocytes induced by HMG-CoA reductase inhibitors 总被引:8,自引:0,他引:8
Hepatotoxicity is the major complaint during therapy with lipid-lowering agents such as statins, although the cellular mechanisms underlying the statin-induced liver injury are not fully understood. Using cultured human hepatocytes, we investigated the effects of lipophilic as well as hydrophilic statins on the cell viability. Lipophilic statins, including simvastatin, lovastatin, cerivastatin, fluvastatin and atorvastatin, reduced the viability of hepatocytes as assessed by the mitochondrial enzyme activity to reduce WST-8, however, a hydrophilic pravastatin did not cause cell injury. The simvastatin-induced loss of cell viability was attenuated by mevalonate or geranylgeranyl pyrophosphate. Simvastatin-induced DNA fragmentation and increased the number of cells stained with annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling, both of which were reversed by caspase inhibitors such as zDEVD-fmk, zLEHD-fmk and zIETD-fmk. Consistent with these data, the activities of caspase-3, caspase-9 and caspase-8 were elevated by simvastatin. Simvastatin reduced the protein content and mRNA expression for bcl-2 without affecting bax mRNA expression. On the other hand, both lipophilic and hydrophilic statins significantly reduced the content of endogenous cholesterol. These findings suggest that lipophilic statins cause an apoptotic injury in human hepatocytes by stimulating caspase-3 subsequent to the activation of caspase-9 and caspase-8, in which the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase may be involved. 相似文献
6.
Non-enzymatic glycoxydation and lipoxidation of proteins continues to stimulate great interest in gerontology as both markers and promoters of aging. The first aim of the study was to determine the age-related changes in levels of Nepsilon-(carboxymethyl)lysine (CML) and 4-hydroxy-2-nonenal (HNE) present on proteins of the cardiovascular system of Fischer 344 rats and identify the particular polypeptides being modified. The second objective was to evaluate whether pharmacological administration of aminoguanidine (1g/L in the drinking water) could reverse protein glycoxidation and lipoxidation. CML content in serum, aorta, and heart proteins from 28-month-old rats was double of that found in 4-month-old animals. AG administration to old rats for 3 months from the age of 25 months lowered CML content by 15 (P=.2275), 44 (P<.0001), and 28% (P=.0072) in serum, aorta, and heart, respectively. Serum albumin, transferrin and immunoglobulins were most prominently adducted by both CML and HNE. While the extent of albumin and transferrin modification was comparable between age groups, CML and HNE bound to immunoglobulins increased in the sera of old rats as a result of the accumulation of immunoglobulin heavy and light chains. AG treatment prevented immunoglobulin accumulation in serum, suggesting a beneficial action on renal filtration. Lipoxidation of heart mitochondrial proteins was prevalent over glycoxidation, either as CML or pentosidine. Although AG prevented HNE-induced inactivation of the alpha-ketoglutarate dehydrogenase complex in vitro, it had no effect in rat hearts, suggesting AG could not reach the mitochondrial matrix. 相似文献
7.
The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 microM MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 microM MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in a proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca(2+) and non-Ca(2+) divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 microM MeHg, 97.7% of Purkinje cells were viable. At 3 microM MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 microM MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca(2+) divalent cation released by MeHg in Purkinje neurons. 相似文献
8.
Effects of inhibitors of arachidonic acid metabolism on calcium uptake and catecholamine release in cultured adrenal chromaffin cells 总被引:4,自引:0,他引:4
The possibility that arachidonic acid metabolism is involved in the secretory process in cultured adrenal chromaffin cells was investigated by studying the effects of lipoxygenase inhibitors and cyclooxygenase inhibitors on 45Ca2+ uptake and catecholamine release. Lipoxygenase inhibitors, which have different chemical structures, such as nordihydroguaiaretic acid (NDGA), 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline (BW755C) and 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861) all prevented the catecholamine release evoked by carbamylcholine and high K+. In contrast, cyclooxygenase inhibitors, such as aspirin and indomethacin failed to inhibit the carbamylcholine-evoked catecholamine release. Lipoxygenase inhibitors also inhibited 45Ca2+ uptake into the cells stimulated by carbamylcholine and high K+. Lipoxygenase inhibitors inhibited 45Ca2+ uptake and catecholamine release with similar potency. Slightly higher concentrations of lipoxygenase inhibitors were required to inhibit high K+-evoked effects compared to those evoked by carbamylcholine. The inhibitory effects of these inhibitors on carbamylcholine-evoked catecholamine release was different in its nature from the inhibitory effect of verapamil, a blocker of the Ca2+ channel, and was not due to a competitive antagonism at cholinergic receptor site. Moreover, these lipoxygenase inhibitors did not inhibit the binding of [3H]nitrendipine to chromaffin cell homogenate. The data suggest that lipoxygenase inhibitors prevent the catecholamine release from cultured adrenal chromaffin cells by blocking Ca2+ uptake. It might be possible that lipoxygenase product(s) is involved in the Ca2+ translocation system in these cells. 相似文献
9.
Jacqueline F. Sinclair Lucile Smith William J. Bement Peter R. Sinclair Herbert L. Bonkowsky 《Biochemical pharmacology》1982,31(17):2811-2815
The amount of cytochrome P-450 was increased to different extents after treatment of cultured chick embryo hepatocytes with n-propanol, isopropanol, n-butanol, or isobutanol, These increases were associated with increases in benzphetamine demethylase activity, a cytochrome P-450-catalyzed oxidation, and glucuronidation of phenol red, catalyzed by UDP-glucuronyl transferase. The responses were similar to those obtained with ethanol or propylisopropylacetamide, which are phenobarbital-like inducers. Pretreatment of cells with cycloheximide prevented the increases in both cytochrome P-450 and glucuronidation of phenol red, indicating that protein synthesis was required for these responses. 相似文献
10.
Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells 总被引:2,自引:0,他引:2
T-2 toxin is the most toxic trichothecene and both humans and animals suffer from several pathological conditions after consumption of foodstuffs contaminated with trichothecenes. We investigated the molecular mechanism of T-2 toxin induced cytotoxicity and cell death in HeLa cells. T-2 toxin at LC50 of 10 ng/ml caused time dependent increase in cytotoxicity as assessed by dye uptake, lactatedehydrogenase leakage and MTT assay. The toxin caused generation of reactive oxygen species as early as 30 min followed by significant depletion of glutathione levels and increased lipid peroxidation. The results indicate oxidative stress as underlying mechanism of cytotoxicity. Single stranded DNA damage after T-2 treatment was observed as early as 2 and 4 h by DNA diffusion assay. The cells exhibited apoptotic morphology like condensed chromatin and nuclear fragmentation after 4 h of treatment. Downstream of T-2 induced oxidative stress and DNA damage a time dependent increase in expression level of p53 protein was observed. The increase in Bax/Bcl2 ratio indicated shift in response, in favour of apoptotic process in T-2 toxin treated cells. Western blot analysis showed increase in levels of mitochondrial apoptogenic factors Bax, Bcl-2, cytochrome-c followed by activation of caspases-9, -3 and -7 leading to DNA fragmentation and apoptosis. In addition to caspase-dependent pathway, our results showed involvement of caspase-independent AIF pathway in T-2 induced apoptosis. Broad spectrum caspase inhibitor z-VAD-fmk could partially protect the cells from DNA damage but could not inhibit AIF induced oligonucleosomal DNA fragmentation beyond 4 h. Results of the study clearly show that oxidative stress is the underlying mechanism by which T-2 toxin causes DNA damage and apoptosis. 相似文献
11.
Wu Yin Xu-Kun Deng Fang-Zhou Yin Xiao-Chun Zhang Bao-Chang Cai 《Food and chemical toxicology》2007,45(9):1700-1708
To study the cytotoxicity of four alkaloids: brucine, strychnine, brucine N-oxide and isostrychnine from nux vomica on SMMC 7721 cells and their possible mechanisms, MET assay was used to examine the growth inhibitory effects of these alkaloids. Brucine revealed the strongest growth inhibitory effect on SMMC-7721 cells. Furthermore, as directly observed under an inverted microscope, fluorescent microscope and transmission electronic microscope, brucine caused SMMC-7721 cell shrinkage, membrane blobbing, formation of apoptotic body as well as nucleus condensation, all of which are typical characteristics of apoptotic programmed cell death. In addition, brucine dose-dependently caused SMMC-7721 cells apoptosis via formation of subdipolid DNA and phosphatidylserine externalization, as evidenced by flow cytometry analysis. The brucine-induced apoptosis was partially attributed to the activation of caspase 3 as well as cyclooxygenase 2 inhibition, since neither caspase 3 specific inhibitor, z-DEVD-fmk nor was exogenous addition of prostaglandin E(2) able to completely abrogate the brucine-induced SMMC 7721 cell apoptosis. In sum, this paper indicate that the major alkaloids present in the seed of Strychnos nux-vomica are effective against SMMC-7721 cells proliferation, among which brucine proceeds SMMC-7721 cells death via apoptosis, probably through the participation of caspase 3 and cyclooxygenase 2. 相似文献
12.
Lj. Harhaji S. Mijatović D. Maksimović-Ivanić I. Stojanović M. Momčilović V. Maksimović S. Tufegdžić Ž. Marjanović M. Mostarica-Stojković Ž. Vučinić S. Stošić-Grujičić 《Food and chemical toxicology》2008,46(5):1825-1833
Numerous studies have shown immunostimulatory and anti-tumor effects of water and standardized aqueous ethanol extracts derived from the medicinal mushroom, Coriolus versicolor, but the biological activity of methanol extracts has not been examined so far. In the present study we investigated the anti-tumor effect of C. versicolor methanol extract (which contains terpenoids and polyphenols) on B16 mouse melanoma cells both in vitro and in vivo.In vitro treatment of the cells with the methanol extract (25-1600 microg/ml) reduced melanoma cell viability in a dose-dependent manner. Furthermore, in the presence of the methanol extract (200 microg/ml, concentration IC(50)) the proliferation of B16 cells was arrested in the G(0)/G(1) phase of the cell cycle, followed by both apoptotic and secondary necrotic cell death. In vivo methanol extract treatment (i.p. 50 mg/kg, for 14 days) inhibited tumor growth in C57BL/6 mice inoculated with syngeneic B16 tumor cells. Moreover, peritoneal macrophages collected 21 days after tumor implantation from methanol extract-treated animals exerted stronger tumoristatic activity ex vivo than macrophages from control melanoma-bearing mice. Taken together, our results demonstrate that C. versicolor methanol extract exerts pronounced anti-melanoma activity, both directly through antiproliferative and cytotoxic effects on tumor cells and indirectly through promotion of macrophage anti-tumor activity. 相似文献
13.
In the case of alcoholic liver injury, an iron overload is always present. Both alcohol and iron can individually induce oxidative stress in liver. However, the combined effect of physiological concentrations of alcohol and iron on oxidative stress in hepatocytes remains unknown. Baicalin has been demonstrated to be an antioxidant or iron chelator in animal experiments. In this study, we investigated the injury to hepatocytes CYP2E1-independently induced by the combination of alcohol and iron and the protective effect of baicalin. Compared with cells treated with ethanol alone, ferric citrate enhanced the accumulation of reactive oxygen and nitrogen species, increased the occurrence of protein carbonylation/nitration and the levels of 4-hydroxy-2-nonenal, changed the distribution of iNOS, and eventually resulted in apoptosis. However, pretreatment with baicalin inhibited the oxidative stress induced by the combination of alcohol and iron, mainly by chelating iron. Our findings therefore suggest that iron could CPY2E1-independently enhance the oxidative stress induced by alcohol, which probably contributes to the pathogenesis of alcoholic liver disease. Baicalin is a promising phytomedicine for preventing alcoholic liver disease. 相似文献
14.
Inhibition of inflammatory mediators by polyphenolic plant extracts in human intestinal Caco-2 cells
Béatrice Romier-Crouzet Jacqueline Van De Walle Alexandrine During Aurélie Joly Charline Rousseau Olivier Henry Yvan Larondelle Yves-Jacques Schneider 《Food and chemical toxicology》2009
The mitogen-activated protein kinases (MAPK) and nuclear factor κB (NF-κB) are involved in transduction cascades that play a key role in inflammatory response. We tested the ability of preselected natural polyphenolic extracts (grape seed, cocoa, sugar cane, oak, mangosteen and pomegranate) to modulate intestinal inflammation using human intestinal Caco-2 cells treated for 4 h with these extracts and then stimulated by cytokines for 24 or 48 h. The effect of polyphenolic extracts, at 50 μmol of gallic acid equivalent/l, was investigated on inflammation-related cellular events: (i) NF-κB activity (cells transfected with a NF-κB-luciferase construct), (ii) activation of Erk1/2 and JNK (western blotting), (iii) secretion of interleukin 8 (IL-8) (ELISA), (iv) secretion of prostaglandin (PG) E2 (ELISA), (v) production of NO (Griess method). Results show that: (i) sugar cane, oak and pomegranate extracts inhibited NF-κB activity (from 1.6 to 1.9-fold) (P < 0.001); (ii) pomegranate slightly inhibited Erk1/2 activation (1.3-fold) (P = 0.008); (iii) oak and pomegranate decreased NO synthesis by 1.5-fold (P < 0.001) and that of IL-8 by 10.3 and 6.7-fold respectively; (iv) pomegranate and cocoa decreased PGE2 synthesis by 4.6 (P < 0.0001) and 2.2-fold (P = 0.001), respectively. We suggest that pomegranate extract could be particularly promising in dietary prevention of intestinal inflammation. 相似文献
15.
Taurine is an abundant free amino acid in inflammatory cells that protects cells from inflammatory damages. Although the protection mechanism remains unclear, taurine chloramine (Tau-Cl) produced by the reaction between taurine and hypochlorous acid in neutrophils plays an important role. In this study, we investigated the mechanism(s) by which Tau-Cl inhibits LPS-induced NO production in macrophages. Tau-Cl inhibited LPS-induced iNOS expression and NO production in RAW 264.7 cells. LPS treatment elevated the level of active Ras-GTP, and Tau-Cl inhibited LPS-induced Ras activation. Tau-Cl also inhibited ERK1/2 activation in a dose-dependent manner in both RAW 264.7 cells and murine peritoneal macrophages, whereas it did not exert any effect on p38 MAPK activation. Furthermore, Tau-Cl inhibited NF-kappaB activation without affecting AP-1 activity. These results suggest that Tau-Cl suppresses LPS-induced NO production by inhibiting specific signaling pathways. Thus, Tau-Cl protects cells from inflammatory injury resulting from overproduction of NO in a signaling pathway-specific manner. 相似文献
16.
Siu WP Pun PB Latchoumycandane C Boelsterli UA 《Toxicology and applied pharmacology》2008,227(3):451-461
Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (>500 microM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 microM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca2+-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury. 相似文献
17.
Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. In human intestinal Caco-2 cells, DON activates the mitogen-activated protein kinases (MAPKs). We hypothesized a link between DON ingestion and intestinal inflammation, and used Caco-2 cells to assess the effects of DON, at plausible intestinal concentrations (250-10,000 ng/ml), on inflammatory mediators acting downstream the MAPKs cascade i.e. activation of nuclear factor-kappaB (NF-kappaB) and interleukin-8 (IL-8) secretion. In addition, Caco-2 cells were co-exposed to pro-inflammatory stimuli in order to mimic an inflamed intestinal epithelium. Dose-dependent increases in NF-kappaB activity and IL-8 secretion were observed, reaching 1.4- and 7.6-fold, respectively using DON at 10 microg/ml. Phosphorylation of inhibitor-kappaB (IkappaB) increased (1.6-fold) at DON levels <0.5 microg/ml. Exposure of Caco-2 cells to pro-inflammatory agents, i.e. 25 ng/ml interleukin-1beta, 100 ng/ml tumor necrosis factor-alpha or 10 microg/ml lipopolysaccharides, activated NF-kappaB and increased IL-8 secretion. Synergistic interactions between these stimuli and DON were observed. These data show that DON induces NF-kappaB activation and IL-8 secretion dose-dependently in Caco-2 cells, and this effect was accentuated upon pro-inflammatory stimulation, suggesting DON exposure could cause or exacerbate intestinal inflammation. 相似文献
18.
Alachlor is cytotoxic to human hepatoblastoma HepG2s, a cell line that expresses constitutive CYP3A7 and dexamethasone (DEX)-inducible CYP3A4 and CYP3A7. CYP3A4 catalyzes alachlor N-dealkylation to 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA), precursor of 2,6-diethylbenzoquinoneimine, putative reactive metabolite for rat nasal carcinogenicity. We hypothesized that HepG2 alachlor cytotoxicity would be mediated by CYP3A4/7 and increased with DEX. Here, we report time-dependent alachlor cytotoxicity (EC(50) approximately 500 microM and 264+/-17 microM at 6 and 24h, respectively) as assessed by lactate dehydrogenase leakage. DEX pretreatment (25 microM, 48 h) significantly increased CYP3A7-catalyzed luciferin 6' benzylether O-debenzylation, but had no effect on alachlor toxicity. Further, CYP3A4/7 inhibitor triacetyloleandomycin did not prevent, but rather potentiated, alachlor cytotoxicity. In agreement, CDEPA was less toxic than parent alachlor. HepG2 CYP3A4 activity was unaffected by 48 h DEX pretreatment; therefore, studies were done in DPX-2 cells, a HepG2 derivative engineered to overexpress pregnane-X receptor (PXR) that exhibits rifampicin (RIF)-inducible endogenous CYP3A4. Alachlor cytotoxicity in DPX-2 cells occurred over a concentration range equivalent to that in HepG2. CYP3A4 activity of DPX-2 cells treated with RIF (10 microM, 48 h) was twice that of untreated cells, but RIF did not increase alachlor toxicity. These results demonstrate that neither CYP3A4 nor CYP3A7 initiate a pathway leading to a toxic alachlor metabolite. 相似文献
19.
Polychlorinated biphenyls (PCBs) are widespread persistent environmental pollutants. Chronic human and animal exposure to PCBs results in various harmful effects including neurotoxicity. This study investigates the effects of the PCB mixture Aroclor 1254 (A1254) and two PCB congeners (coplanar, non-ortho PCB 126, and non coplanar PCB 99) on the expression of N-methyl-D-aspartate receptors (NMDARs) and the subsequent toxic effects using a human SHS5-SY neuroblastoma cell line. NMDAR was measured using a radiolabeled phencyclidine receptor ligand [3H]-MK801, apoptosis was quantified using fluorogenic substrates specific for caspase-3 (DEVD-AFC) and cell death using lactate dehydrogenase (LDH) release. After treatment, a positive dose–response relationship of increasing NMDARS, increasing caspase-3 activity and cell death was observed in all PCB compounds. The non-coplanar PCB compounds were found to be significantly more toxic than the coplanar congener and the PCB mixture A1254. PCB-mediated cell death was attenuated with 10 μM NMDAR antagonists: 1-amino-3,5-dimethyladamantane hydrochloride (memantine) and (+)-5-methyl-10,11-dihydro-5H-debenzocyclhepten-5,10-imine maleate ((+)-MK-801), thus demonstrating the importance of NMDAR in PCB neurotoxicity. Intracellular calcium [Ca2+]i chelator BAPTA-AM (1 μM) partially attenuated the neurotoxic effect of the PCBs suggesting a role of calcium homeostasis disruption in the neurotoxicity of PCBs. These results suggest that the neurotoxicity of PCBs can be mediated through activation of NMDARs. 相似文献
20.
Jang BC Paik JH Jeong HY Oh HJ Park JW Kwon TK Song DK Park JG Kim SP Bae JH Mun KC Suh MH Yoshida M Suh SI 《Biochemical pharmacology》2004,68(2):263-274
Leptomycin B (LMB), which is originally isolated from Streptomyces, possesses anti-tumor properties in vivo and in vitro. Though it was previously reported that LMB induces cell cycle arrest and p53-mediated apoptosis in certain cancer cells, however, the mechanism by which LMB induces apoptosis remains poorly understood. Here, we investigated the mechanisms of apoptosis induced by LMB in U937 cells. Treatment with LMB concentration-dependently induced cytotoxicity and apoptosis in U937 cells that correlated temporally with activation of caspases and down-regulation of Mcl-1 and XIAP. LMB did not change the expressions of Bcl-2 or Bax. A broad spectrum caspase inhibitor, z-VAD-fmk, blocked caspase-3 activation and elevated the survival in LMB-treated U937 cells, suggesting that caspase-3 activation is critical for LMB-induced apoptosis. Interestingly, Bcl-2 overexpression that blocked cytochrome c release by LMB effectively attenuated the apoptotic response to LMB, suggesting that LMB-induced apoptosis is mediated through the mitochondrial pathway. Antioxidants or antioxidant enzymes had no effects on LMB-induced apoptosis. Data of flow cytometry analysis using 2',7'-dichlorofluorescein-diacetate further revealed no reactive oxygen species (ROS) generation by LMB, indicating that apoptosis induced by LMB is ROS-independent. However, the apoptotic response to LMB was not shown in U937 cells pretreated with the sulfhydryl group-containing antioxidant N-acetylcysteine (NAC). Further analysis suggested that NAC directly binds LMB and abolishes the apoptotic effects of LMB. Collectively, these findings suggest that LMB potently induces apoptosis in U937 cells, and LMB-induced apoptosis in U937 cells is related with cytochrome c release, activation of caspases, and selective down-regulation of Mcl-1 and XIAP. 相似文献