首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Deregulated signaling through the epidermal growth factor receptor (EGFR) is involved in chemoresistance. To identify the molecular determinants of sensitivity to the EGFR inhibitor gefitinib (Iressa, ZD1839) in chemoresistance, we compared the response of matched chemosensitive and chemoresistant glioma and ovarian cancer cell lines. We found that chemoresistant cell lines were 2- to 3-fold more sensitive to gefitinib growth-inhibitory effects, because of decreased proliferation rather than survival. Sensitivity to gefitinib correlated with overexpression and constitutive phosphorylation of HER2 and HER3, but not EGFR, altered HER ligand expression, and enhanced activation of EGF-triggered EGFR pathway. No activating mutations were found in EGFR. Gefitinib fully inhibited EGF-induced and constitutive Akt activation only in chemoresistant cells. In parallel, gefitinib downregulated constitutively phosphorylated HER2 and HER3, and activated GSK3beta with a concomitant degradation of cyclin D1. Ectopically overexpressed HER2 on its own was insufficient to sensitize chemonaive cells to gefitinib. pHER3 coimmunoprecipitated with p85-PI3K in chemoresistant cells and gefitinib dissociated these complexes. siRNA-mediated inhibition of HER3 decreased constitutive activation of Akt and sensitivity to gefitinib in chemoresistant cells. Our study indicates that in chemoresistant cells gefitinib inhibits both an enhanced EGF-triggered pathway and a constitutive HER3-mediated Akt activation, indicating that inhibition of HER3 together with that of EGFR could be relevant in chemorefractory tumors. Furthermore, in combination experiments gefitinib enhanced the effects of coadministered drugs more in chemoresistant than chemosensitive ovarian cancer cells. Combined treatment might be therapeutically beneficial in chemoresistant tumors from ovary and likely from other tissues.  相似文献   

2.
 曲妥珠单抗与化疗药物联用后提高了人类表皮生长因子受体2(HER2)过表达乳腺癌的反应率,但在开始治疗后数月易出现治疗性耐药,限制了患者的总生存期。曲妥珠单抗耐药机制主要与HER家族以外的蛋白酪氨酸激酶受体信号通路活化、PI3K-AKT通路扩增等有关。酪氨酸激酶抑制剂、磷脂酰肌醇3-激酶抑制剂等分子靶向药物作为曲妥珠单抗耐药者的替代治疗手段,单药疗效均不甚满意。多个大型临床试验证实,新型分子靶向药物联合应用能明显限制,甚或最终消除曲妥珠单抗初始治疗耐药性问题。  相似文献   

3.
A high expression level of epidermal growth factor receptor (EGFR)/HER1 has been suggested to lead to a shorter survival time and resistance to endocrine therapy in patients with breast cancer. To test the hypothesis that inhibition of the EGFR signalling pathway affects the antitumour effect of endocrine therapy, an EGFR tyrosine kinase inhibitor (EGFR-TKI), gefitinib, and an oestrogen receptor (ER) antagonist, fulvestrant, were administered to human breast cancer cells. A total of five human breast cancer cell lines were used. The effects of single or combined treatments with gefitinib and/or fulvestrant on cell growth, cell cycle progression and apoptosis were analysed. Changes in the expression levels of cyclin-dependent kinase inhibitors, p21 and p27, an antiapoptotic factor, Bcl-2, and a proapoptotic factor, Bax, were also investigated. All cell lines tested were sensitive to gefitinib (50% growth inhibitory concentration, 10-28.5 microM). Breast cancer cell lines with a high expression level of HER1 or HER2 were more sensitive to gefitinib than the others. Gefitinib induced a significant G1-S blockade in ER-positive KPL-3C cells. Gefitinib induced significant apoptosis in HER1-overexpressing MDA-MB-231 cells. Gefitinib additively increased the antitumour effect of fulvestrant in all three ER-positive cell lines in a medium supplemented with 17beta-oestradiol. The combined treatment promoted cell cycle retardation in KPL-3C cells, which is associated with an upregulation of p21 by fulvestrant and gefitinib, respectively. Apoptosis was associated with downregulation of Bcl-2 by gefitinib in MDA-MB-231 cells. These results suggest an additive interaction between the EGFR-TKI gefitinib and the antioestrogen fulvestrant in ER-positive breast cancer cells.  相似文献   

4.

Background

Trastuzumab (Tmab) resistance is a major clinical problem to be resolved in patients with HER2-positive gastric cancers. However, in contrast to the situation for HER2-positive breast cancer lines, the Tmab-resistant gastric cancer preclinical models that are needed to develop a new therapy to overcome this problem are not yet available.

Methods

We developed three new cell lines from HER2 gene-amplified gastric cancer cell lines (GLM-1, GLM-4, NCI N-87) by a new in vivo selection method consisting of the repeated culture of small residual peritoneal metastasis but not subcutaneous tumor after Tmab treatment. We then evaluated the anti-tumor efficacy of lapatinib for these Tmab-resistant cells.

Results

We successfully isolated two Tmab-resistant cell lines (GLM1-HerR2(3), GLM4-HerR2) among the three tested cell lines. These resistant cells differed from the parental cells in their flat morphology and rapid growth in vitro, but HER2, P95HER2 expression, and Tmab binding were essentially the same for the parental and resistant cells. MUC4 expression was up- or downregulated depending on the cell line. These resistant cells were still sensitive to lapatinib, similar to the parental cells, in vitro. This growth inhibition of the Tmab-resistant cells by lapatinib was due to both G1 cell-cycle arrest and apoptosis induction via effective blockade of the PI3K/Akt and MAPK pathways. A preclinical study confirmed that the Tmab-resistant tumors are significantly susceptible to lapatinib.

Conclusion

These results suggest that lapatinib has antitumor activity against the Tmab-resistant gastric cancer cell lines, and that these cell lines are useful for understanding the mechanism of Tmab resistance and for developing a new molecular therapy for Tmab-resistant HER2-positive gastric cancers.  相似文献   

5.
Trastuzumab is the only HER2/neu-directed therapy to have received Food and Drug Administration approval for the treatment of patients with metastatic breast cancer. The efficacy of trastuzumab depends on the HER2/neu status of the tumour and the patient's prior treatment, but even when patients are selected on the basis of HER2/neu gene amplification, the single-agent response rate ranges from 12 to 30% and few patients respond to trastuzumab monotherapy. Here, we propose PTEN as a predictive biomarker for trastuzumab efficacy. Human breast cancer SKBR3 and drug-resistant SKBR3/R cells were investigated. We also examined clinical samples from patients who had been treated with trastuzumab and analysed the relationship between trastuzumab efficacy and PTEN level. The PI3K/Akt signalling pathway was observed to be highly active in the drug-resistant cells, and their level of PTEN was low. Delivery of antisense PTEN duplex siRNA significantly decreased the trastuzumab chemosensitivity of parental SKBR3 cells, and marked activation of Akt signalling pathway was also recognised. Moreover, immunohistochemical investigation revealed that trastuzumab treatment was remarkably successful in cells with elevated PTEN expression. Along with the immune-system-associated cytotoxic mechanism, several mechanisms have been proposed for the effect of trastuzumab. PTEN activity might play an important and major role in its HER2/PI3K/Akt-mediated antitumour effect, and could be a useful biomarker for predicting the efficacy of trastuzumab in the treatment of breast cancer.  相似文献   

6.
One of the major targets for breast cancer therapy is the epidermal growth factor receptor (EGFR) and related receptors, which signal via different signal transduction pathways including the mitogen-activated protein kinase (MAPK) pathway. This study determined whether there is a correlation between EGFR/HER2 status and MAPK (ERK1/2) phosphorylation in breast cancer cells, and how this affects the response to an inhibitor of the receptors. Expression of EGFR, HER2 and phosphorylated ERK1/2 were measured by immunoblotting in a panel of breast cancer cell lines. Several lines expressed high levels of pERK1/2, with no obvious correlation with the level of EGFR/HER2. The EGFR tyrosine kinase inhibitor PKI166 inhibited growth and induced apoptosis in some cells with high levels of growth factor receptors (MDA-MB-468, SUM149, SKBR3), but was less effective in cells that also had high basal ERK1/2 activity (MDA-MB-231). The combination of an inhibitor of MAPK signalling (U0126) and PKI166 produced significantly more inhibition and apoptosis than either agent alone. This suggests that constitutive activation of the MAPK pathway may bypass inhibition of EGFR/HER2 tyrosine kinases, and lead to insensitivity to agents targeting the receptors. However, inhibiting both EGFR/HER2 and MAPK signalling can result in significant growth inhibition and apoptosis of EGFR-expressing breast cancer cells.  相似文献   

7.
Members of the human epidermal growth factor receptor (HER) family have been of considerable interest in the cancer arena due to their potential to induce tumorigenesis when their signalling functions are deregulated. The constitutive activation of these proteins is seen in a number of different common cancer subtypes, and in particular EGFR and HER2 have become highly pursued targets for anti-cancer drug development. Clinical studies in a number of different cancers known to be driven by EGFR or HER2 show mixed results, and further mechanistic understanding of drug sensitivity and resistance is needed to realise the full potential of this treatment modality. Signalling in trans is a key feature of HER family signalling, and the activation of the PI3K/Akt pathway, so critically important in tumorigenesis, is driven predominantly through phosphorylation in trans of the kinase inactive member HER3. An increasing body of evidence shows that HER3 plays a critical role in EGFR- and HER2-driven tumours. In particular, HER3 lies upstream of a critically important tumorigenic signalling pathway with extensive ability for feedback and cross-talk signalling, and targeting approaches that fail to account for this important trans-target of EGFR and HER2 can be undermined by its resiliency and resourcefulness. Since HER3 is kinase inactive, it is not a direct target of kinase inhibitors and not presently an easily drugable target. This review presents the current evidence highlighting the role of HER3 in tumorigenesis and its role in mediating resistance to inhibitors of EGFR and HER2.  相似文献   

8.
PURPOSE: Tyrosine kinase (TK) inhibitors are emerging as a promising new approach to the treatment of HER overexpressing tumors, however optimal use of these agents awaits further definition of the downstream signaling pathways that mediate their effects. We reported previously that both EGFR- and Her2-overexpressing tumors are sensitive to the new EGFR-selective TK inhibitor gefitinib (ZD1839, "Iressa"), and sensitivity to this agent correlated with its ability to down-regulate Akt. However, EGFR-overexpressing MDA-468 cells, which lack PTEN function, are resistant to ZD1839, and ZD1839 is unable to down-regulate Akt activity in these cells. EXPERIMENTAL DESIGN: To study the role of PTEN function, we generated MDA468 cells with tet-inducible PTEN expression. RESULTS: We show here that the resistance of MDA-468 cells to ZD1839 is attributable to EGFR-independent constitutive Akt activation caused by loss of PTEN function in these cells. Reconstitution of PTEN function through tet-inducible expression restores ZD1839 sensitivity to these cells and reestablishes EGFR-stimulated Akt signaling. Although restoration of PTEN function to tumors is difficult to implement clinically, much of the effects of PTEN loss are attributable to overactive PI3K/Akt pathway signaling, and this overactivity can be modulated by pharmacologic approaches. We show here that pharmacologic down-regulation of constitutive PI3K/Akt pathway signaling using the PI3K inhibitor LY294002 similarly restores EGFR-stimulated Akt signaling and sensitizes MDA-468 cells to ZD1839. CONCLUSIONS: Sensitivity to ZD1839 requires intact growth factor receptor-stimulated Akt signaling activity. PTEN loss leads to uncoupling of this signaling pathway and results in ZD1839 resistance, which can be reversed with reintroduction of PTEN or pharmacologic down-regulation of constitutive PI3K/Akt pathway activity. These data have important predictive and therapeutic clinical implications.  相似文献   

9.
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, including EGFR, HER2/erbB2, and HER3/erbB3, is an attractive target for antitumor strategies. Aberrant EGFR signaling is correlated with progression of various malignancies, and somatic tyrosine kinase domain mutations in the EGFR gene have been discovered in patients with non-small cell lung cancer responding to EGFR-targeting small molecular agents, such as gefitinib and erlotinib. EGFR overexpression is thought to be the principal mechanism of activation in various malignant tumors. Moreover, an increased EGFR copy number is associated with improved survival in non-small cell lung cancer patients, suggesting that increased expression of mutant and/or wild-type EGFR molecules could be molecular determinants of responses to gefitinib. However, as EGFR mutations and/or gene gains are not observed in all patients who respond partially to treatment, alternative mechanisms might confer sensitivity to EGFR-targeting agents. Preclinical studies showed that sensitivity to EGFR tyrosine kinase inhibitors depends on how closely cell survival and growth signalings are coupled with EGFR, and also with HER2 and HER3, in each cancer. This review also describes a possible association between EGFR phosphorylation and drug sensitivity in cancer cells, as well as discussing the antiangiogenic effect of gefitinib in association with EGFR activation and phosphatidylinositol 3-kinase/Akt activation in vascular endothelial cells.  相似文献   

10.
Trastuzumab, a humanized monoclonal antibody targeting HER2, has demonstrated clinical benefits for women with HER2-positive breast cancer; however, trastuzumab resistance remains the biggest clinical challenge. In this study, results showed that tunicamycin, an inhibitor of N-glycosylation, synergistically enhanced the antitumor activity of trastuzumab against HER2-overexpressing breast cancer cells through induction of cell cycle arrest and apoptosis. Combined treatment of tunicamycin with trastuzumab dramatically decreased the expression of EGFR family and its down signaling pathway in SKBR3 and MCF-7/HER2 cells. Tunicamycin dose-dependently inhibited tumor growth in both of SKBR3 xenografts and MCF-7/HER2 xenografts. Optimal tunicamycin without inducing ER stress in liver tissue significantly increased the antitumor effect of trastuzumab in MCF-7/HER2 xenografts. Combinations of trastuzumab with N-glycosylation inhibitors tunicamycin may be a promising approach for improving clinical efficacy of trastuzumab.  相似文献   

11.
12.
New drugs and new combinations of drugs have recently shown promising clinical activity in hormone refractory prostate cancer. We studied the association of gefitinib with trastuzumab on the androgen-refractory prostate cancer cell line DU145 expressing both epidermal growth factor receptor (EGFR) and HER-2. Drug combinations with radiotherapy (RT) were considered along with the analysis of factors linked to cell proliferation and apoptosis. The antitumour effects of gefitinib were more pronounced than those observed with trastuzumab. In mice receiving the gefitinib-trastuzumab combination, reduction in tumour volume was inferior to that predicted by the observed impact of the agents alone. The presence of trastuzumab markedly attenuated the relative increase on p27 expression and the Bax:Bcl2 ratio induced by gefitinib. The combination gefitinib-RT had similar antitumour effects as those predicted by the impact of the individual treatments, whereas the effect of the trastuzumab-RT combination was inferior to that predicted by the individual effects. The present data should be borne in mind when designing new clinical schedules for treatment of hormone-refractory prostate cancer including the use of HER inhibitors.  相似文献   

13.
14.
PURPOSE: Abnormally high levels of epidermal growth factor receptor (EGFR) protein are associated with advanced tumor stage/grade. The objective of this study was to evaluate the effects of the specific EGFR tyrosine kinase inhibitor gefitinib on activation of the Akt and mitogen-activated protein kinase (MAPK) pathways in human urothelial cell carcinoma (UCC) cell lines and to identify potential markers of gefitinib responsiveness in biopsy samples of UCC. EXPERIMENTAL DESIGN: Changes in markers of UCC growth and invasion after exposure to gefitinib were studied in six human UCC cell lines expressing various levels of EGFR. The findings were related to activation of Akt and MAPK. We studied the influence of gefitinib on intraepithelial expansion of the responsive 1207 cell line. EGFR, Akt, and MAPK activation was studied by Western blot analysis of a panel of 57 human UCC. RESULTS: Gefitinib had a growth-inhibitory and anti-invasive effect in two of six UCC cell lines (i.e., 647V and 1207). Gefitinib was also able to block the expansion of 1207 at the expense of normal urothelial cells. These effects did not depend on the level of expression of EGFR but they were associated with the down-regulation of MAPK and Akt activity; in 1207 cells, gefitinib activity was associated with p27 up-regulation and p21 and matrix metalloproteinase-9 down-regulation. Similarly, the Akt and MAPK pathways were found to be strongly phosphorylated in association with EGFR activation in a subset of human UCC specimens. CONCLUSIONS: Activation of EGFR, Akt, and MAPK defines a subset of UCC which might provide information for the identification of gefitinib responders.  相似文献   

15.
Activation of the epidermal growth factor receptor (EGFR) and downstream signaling pathways, such as phosphatidylinositol-3 kinase/Akt and Ras/mitogen-activated protein kinase (MAPK), have been implicated in causing resistance to EGFR-targeted therapy in solid tumors, including the urogenital tumors. To investigate the mechanism of resistance to EGFR inhibition in bladder cancer, we compared EGFR tyrosine kinase inhibitor (Gefitinib, Iressa, ZD1839) with respect to its inhibitory effects on three kinases situated downstream of EGFR: MAPK, Akt, and glycogen synthase kinase-3beta (GSK-3beta). We found that the resistance to the antiproliferative effects of gefitinib, in vitro as well as in vivo in nude mice models, was associated with uncoupling between EGFR and MAPK inhibition, and that GSK-3beta activation and degradation of its target cyclin D1 were indicators of a high cell sensitivity to gefitinib. Further analysis of one phenotypic sensitive (253J B-V) and resistant (UM-UC13) cell lines revealed that platelet-derived growth factor receptor-beta (PDGFRbeta) activation was responsible for short circuiting the EGFR/MAPK pathway for mitogenic stimuli. However, invasion as well as actin dynamics were efficiently reduced by EGFR inhibition in UM-UC13. Chemical disruption of signaling pathways or of PDGFR kinase activity significantly reduced the inactive pool of cellular GSK-3beta in UM-UC13 cells. In conclusion, our data show that the uncoupling of EGFR with mitogenic pathways can cause resistance to EGFR inhibition in bladder cancer. Although this uncoupling may arise through different mechanisms, we suggest that the resistance of bladder cancer cells to EGFR blockade can be predicted early in the course of treatment by measuring the activation of GSK-3beta and of nuclear cyclin D1.  相似文献   

16.

Background:

Src is a non-receptor tyrosine kinase involved in signalling and crosstalk between growth-promoting pathways. We aim to investigate the relationship of active Src in response to trastuzumab of HER2-positive breast carcinomas.

Methods:

We selected 278 HER2-positive breast cancer patients with (n=154) and without (n=124) trastuzumab treatment. We performed immunohistochemistry on paraffin-embedded tissue microarrays of active Src and several proteins involved in the PI3K/Akt/mTOR pathway, PIK3CA mutational analysis and in vitro studies (SKBR3 and BT474 cancer cells). The results were correlated with clinicopathological factors and patients'' outcome.

Results:

Increased pSrc-Y416 was demonstrated in trastuzumab-resistant cells and in 37.8% of tumours that correlated positively with tumour size, necrosis, mitosis, metastasis to the central nervous system, p53 overexpression and MAPK activation but inversely with EGFR and p27. Univariate analyses showed an association of increased active Src with shorter survival in patients at early stage with HER2/hormone receptor-negative tumours treated with trastuzumab.

Conclusions:

Src activation participates in trastuzumab mechanisms of resistance and indicates poor prognosis, mainly in HER2/hormone receptor-negative breast cancer. Therefore, blocking this axis may be beneficial in those patients.  相似文献   

17.
PURPOSE: Two members of the epidermal growth factor receptor family, EGFR and HER2, have been implicated in radioresistance in breast cancer and other malignancies. To gauge the potential clinical utility of targeting both EGFR and HER2 to control growth and radiosensitize human breast cancers, we examined the effect of a dual EGFR/HER2 inhibitor, GW572016, on the proliferation and radiation response of either EGFR- or HER2-overexpressing human breast cancer cell lines. METHODS AND MATERIALS: Primary human breast cancer cell lines that endogenously overexpress EGFR or HER2 and luminal mammary epithelial H16N2 cells stably transfected with HER2 were evaluated for the effect of GW572016 on inhibition of ligand-induced or constitutive receptor phosphorylation, proliferation, radiosensitization, and inhibition of downstream signaling. RESULTS: GW572016 inhibited constitutive and/or ligand-induced EGFR or HER2 tyrosine phosphorylation of all five cell lines, which correlated with the antiproliferative response in all but one cell line. GW572016 radiosensitized EGFR-overexpressing cell lines, but HER2-overexpressing cells were unable to form colonies after brief exposure to GW572016 even in the absence of radiation, and thus could not be evaluated for radiosensitization. One cell line was resistant to the antiproliferative and radiosensitizing effects of GW572016, despite receptor inhibition. Exploration of potential mechanisms of resistance in SUM185 cells revealed failure of GW572016 to inhibit downstream ERK and Akt activation, despite inhibition of HER2 phosphorylation. In contrast, sensitive HER2-overexpressing cell lines demonstrated inhibition of both ERK and Akt phosphorylation. CONCLUSION: GW572016 potently inhibits receptor phosphorylation in either EGFR- or HER2-overexpressing cell lines and has both antiproliferative and radiosensitizing effects. Resistance to GW572016 was not due to a lack of receptor inhibition, but rather with a lack of inhibition of ERK and Akt, suggesting that measurement of inhibition of crucial signaling pathways may better predict response than inhibition of receptor phosphorylation. The SUM185 cell line provides a valuable model for studying mechanisms of resistance of EGFR/HER2 inhibitor therapy.  相似文献   

18.
PURPOSE: The aims of this study were twofold: (1) to examine the effects of dual inhibition of 2 members of the HER family, the epidermoid growth factor receptor (EGFR) and HER2/neu, by gefitinib (ZD1839) and trastuzumab on radiosensitivity; and (2) to explore the molecular mechanism of radiosensitization especially focusing on the survival signal transduction pathways by using A431 human vulvar squamous carcinoma cells expressing EGFR and HER2/neu. METHODS AND MATERIALS: The effects of inhibitors on the radiation-induced activation of EGFR and/or HER2/neu, and the intracellular proteins that are involved in their downstream signaling, were quantified by the Western blot. Radiosensitizing effects by the blockage of EGFR and/or HER2/neu were determined by a clonogenic assay. RESULTS: Radiation-induced activation of the EGFR and HER2/neu was inhibited with ZD1839 and/or trastuzumab. ZD1839 also inhibited the radiation-induced phosphorylation of HER2/neu. Radiation in combination with the HER family inhibitors inhibited the activation of Akt and MEK1/2, the downstream survival signaling of the HER family. ZD1839 enhanced radiosensitivity with a dose-modifying factor (DMF) (SF3) of 1.45 and trastuzumab did so with a DMF (SF3) of 1.11. Simultaneous blockade of EGFR and HER2/neu induced a synergistic radiosensitizing effect with a DMF (SF3) of 2.29. CONCLUSIONS: The present data suggest that a dual EGFR and HER2/neu targeting may have potential for radiosensitization in tumors in which both of these pathways are active.  相似文献   

19.
An important recent advance in anticancer therapy was the development of molecular-targeting drugs, such as the epidermal growth-factor receptor (EGFR)-targeting drug ZD1839 (Iressa) and the HER2-trageting anti-HER2 monoclonal antibody trastuzumab (Herceptin). ZD1839 and trastuzumab are reported to improve the therapeutic efficacy of treatment for non-small-cell lung cancer (NSCLC) and breast cancer, respectively, although the effectiveness of either drug alone is not satisfactory. NSCLC cells often express both EGFR and HER2. We therefore investigated whether a combination of ZD1839 and trastuzumab had an additive or synergistic antitumor effect. In culture ZD1839 inhibited the growth of four NSCLC cell lines (A549, NCI-H23, NCI-H727, and NCI-H661) that expressed various levels of EGFR, HER2, HER3, and HER4. A significant cytotoxic effect was observed when ZD1839 was combined with trastuzumab in A549 cells. However, this combination had no apparent effect in NCI-H23 cells. Significant G(1)-phase arrest, increased p27 expression and decreased cyclin E or D1 levels were detected in A549 cells treated with ZD1839 and trastuzumab. No significant effects were detected in NCI-H23 cells examined. The combination treatment significantly inhibited the phosphorylation of EGFR, HER2, retinoblastoma, extracellular signal-regulated kinase-1/2, and protein kinase B/Akt in A549 cells, but not in NCI-H23 cells. Our results indicated that increased levels of constitutive EGFR/HER2 heterodimers were formed in A549 cells in the presence of ZD1839, whereas no heterodimer formation was detected in NCI-H23 cells. We therefore suggest that combination treatment with ZD1839 and trastuzumab might have improved therapeutic efficacy against NSCLC cells expressing both EGFR and HER2.  相似文献   

20.
PURPOSE: We have investigated mechanisms of acquired resistance to the HER2 antibody trastuzumab in BT-474 human breast cancer cells. EXPERIMENTAL DESIGN: BT-474 xenografts established in athymic nude mice were eliminated by trastuzumab. Continuous cell lines (HR for Herceptin resistant) were generated from tumors that recurred in the presence of continuous antibody therapy. RESULTS: The isolated cells behaved resistant to trastuzumab in culture as well as when reinjected into nude mice. They retained HER2 gene amplification and trastuzumab binding and were exquisitely sensitive to peripheral blood mononuclear cells ex vivo in the presence of the antibody. The HR cells exhibited higher levels of phosphorylated epidermal growth factor receptor (EGFR) and EGFR/HER2 heterodimers. Phosphorylation of HER2 in HR cells was inhibited by the EGFR tyrosine kinase inhibitors erlotinib and gefitinib. Gefitinib also inhibited the basal association of p85 with phosphorylated HER3 in HR cells. Both inhibitors as well as the dual EGFR/HER2 inhibitor, lapatinib, induced apoptosis of the HR cells in culture. Growth of established HR5 xenografts was inhibited by erlotinib in vivo. In addition, the HR cells overexpressed EGFR, transforming growth factor alpha, heparin-binding EGF, and heregulin RNAs compared with the parental trastuzumab-sensitive cells. CONCLUSIONS: These results are consistent with the inability of trastuzumab to block the heterodimerization of HER2 and suggest that amplification of ligand-induced activation of ErbB receptors is a plausible mechanism of acquired resistance to trastuzumab that should be investigated in primary mammary cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号