共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
OBJECTIVE: We investigated the role of the inward rectifier potassium (KIR) channel and the cyclic AMP-dependent pathway in mediating vasorelaxation induced by the prostacyclin analogue cicaprost. METHODS: Small vessel myography was used to assess responses to cicaprost in segments of rat tail artery contracted with phenylephrine. Microelectrode recordings were made from helical strips to assess effects on membrane potential. RESULTS: Cicaprost caused relaxation and hyperpolarisation that were significantly inhibited by Ba2+ (30-100 microM), a known blocker of KIR channels. Raising extracellular K+ from 5 to 15 mM elicited membrane hyperpolarisation and an endothelium-independent relaxation that was blocked by Ba2+ (30-100 microM), suggesting the existence of functional KIR channels on the smooth muscle. In contrast, neither glibenclamide (10 microM), a blocker of ATP-sensitive K+ channels, nor fluoxetine hydrochloride (100 microM), a blocker of G-protein-gated inward rectifier K+ channels, nor pertussis toxin (PTX; 1 microg/ml), which irreversibly inhibits Gi/Go, reduced relaxation to cicaprost. Indeed, PTX significantly potentiated responses. Relaxation to cicaprost was not mediated by NO but was partially endothelium-dependent, consistent with a similar inhibition by a combination of charybdotoxin (0.1 microM) and apamin (0.5 microM), blockers of endothelium-derived hyperpolarising factor (EDHF). However, relaxation was unaffected by adenylyl cyclase (SQ22536, dideoxyadenosine) or protein kinase A (Rp-2-O-monobutyryl-cAMP) inhibitors, consistent also with Ba2+ only weakly inhibiting relaxation to the adenylyl cyclase activator forskolin. CONCLUSION: We conclude that cicaprost relaxes rat tail artery by activating KIR channels with some involvement from EDHF. The mechanism appears to be largely independent of cyclic AMP and Gi/Go, although the latter appears to counteract relaxation through an unknown pathway and/or receptor. 相似文献
4.
5.
Molecular basis for the inhibition of G protein-coupled inward rectifier K(+) channels by protein kinase C 总被引:6,自引:0,他引:6
Mao J Wang X Chen F Wang R Rojas A Shi Y Piao H Jiang C 《Proceedings of the National Academy of Sciences of the United States of America》2004,101(4):1087-1092
G protein-coupled inward rectifier K(+) (GIRK) channels regulate cellular excitability and neurotransmission. The GIRK channels are activated by a number of inhibitory neurotransmitters through the G protein betagamma subunit (G(betagamma)) after activation of G protein-coupled receptors and inhibited by several excitatory neurotransmitters through activation of phospholipase C. If the inhibition is produced by PKC, there should be PKC phosphorylation sites in GIRK channel proteins. To identify the PKC phosphorylation sites, we performed systematic mutagenesis analysis on GIRK4 and GIRK1 subunits expressed in Xenopus oocytes. Our data showed that the heteromeric GIRK1/GIRK4 channels were inhibited by a PKC activator phorbol 12-myristate 13-acetate (PMA) through reduction of single channel open-state probability. Direct application of the catalytic subunit of PKC to excised patches had a similar inhibitory effect. This inhibition was greatly eliminated by mutation of Ser-185 in GIRK1 and Ser-191 in GIRK4 that remained G protein sensitive. The PKC-dependent phosphorylation seems to mediate the channel inhibition by the excitatory neurotransmitter substance P (SP) as specific PKC inhibitors and mutation of these PKC phosphorylation sites abolished the SP-induced inhibition of GIRK1/GIRK4 channels. Thus, these results indicate that the PKC-dependent phosphorylation underscores the inhibition of GIRK channels by SP, and Ser-185 in GIRK1 and Ser-191 in GIRK4 are the PKC phosphorylation sites. 相似文献
6.
Two different inward rectifier K+ channels are effectors for transmitter-induced slow excitation in brain neurons 下载免费PDF全文
Bajic D Koike M Albsoul-Younes AM Nakajima S Nakajima Y 《Proceedings of the National Academy of Sciences of the United States of America》2002,99(22):14494-14499
Substance P (SP) excites large neurons of the nucleus basalis (NB) by inhibiting an inward rectifier K(+) channel (Kir). The properties of the Kir in NB (KirNB) in comparison with the G protein-coupled Kir (GIRK) were investigated. Single-channel recordings with the cell-attached mode showed constitutively active KirNB channels, which were inhibited by SP. When the recording method was changed from the on-cell to the inside-out mode, the channel activity of KirNB remained intact with its constitutive activity unaltered. Application of Gbeta(1gamma2) to inside-out patches induced activity of a second type of Kir (GIRK). Application of Gbeta(1gamma2), however, did not change the KirNB activity. Sequestering Gbeta(1gamma2) with Galpha(i2) abolished the GIRK activity, whereas the KirNB activity was not affected. The mean open time of KirNB channels (1.1 ms) was almost the same as that of GIRKs. The unitary conductance of KirNB was 23 pS (155 mM [K(+)](o)), whereas that of the GIRK was larger (32-39 pS). The results indicate that KirNB is different from GIRKs and from any of the classical Kirs (IRKs). Whole-cell current recordings revealed that application of muscarine to NB neurons induced a GIRK current, and this GIRK current was also inhibited by SP. Thus, SP inhibits both KirNB and GIRKs. We conclude that the excitatory transmitter SP has two types of Kirs as its effectors: the constitutively active, Gbetagamma-independent KirNB channel and the Gbetagamma-dependent GIRK. 相似文献
7.
Gating of inward rectifier K(+) channels by proton-mediated interactions of intracellular protein domains. 总被引:1,自引:0,他引:1
The inward rectifier K(+) channels function in the regulation of myocardial rhythmicity, vascular tones, epithelial transport, and neuronal excitability. Most of these channels are gated by pH. It is now known that the gating process involves a large number of protein domains and amino acid residues in both N- and C-termini of the channel protein. Experimental evidence suggests that at acidic pH, a few titratable residues are protonated in the C-terminus, leading to its interaction with the N-terminus. The N-C-terminal interaction appears to produce vast conformational changes in the channel protein, especially the M2 and M1 sequences, and closes the channels. Thus, gating of these channels requires the N-C-terminal interaction with protons as mediators. 相似文献
8.
Opposing mechanisms of regulation of a G-protein-coupled inward rectifier K+ channel in rat brain neurons. 总被引:5,自引:0,他引:5 下载免费PDF全文
B M Velimirovic K Koyano S Nakajima Y Nakajima 《Proceedings of the National Academy of Sciences of the United States of America》1995,92(5):1590-1594
In locus coeruleus neurons, substance P (SP) suppresses an inwardly rectifying K+ current via a pertussis toxin-insensitive guanine nucleotide binding protein (G protein; GnonPTX), whereas somatostatin (SOM) or [Met]enkephalin (MENK) enhances it via a pertussis toxin-sensitive G protein (GPTX). The interaction of the SP and the SOM (or MENK) effects was studied in cultured locus coeruleus neurons. In neurons loaded with guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]), application of SOM (or MENK) evoked a persistent increase in the inward rectifier K+ conductance. A subsequent application of SP suppressed this conductance to a level less than that before the SOM (or MENK) application; the final conductance level was independent of the magnitude of the SOM (or MENK) response. This suppression by SP was persistent, and a subsequent SOM (or MENK) application did not reverse it. When SP was applied to GTP[gamma S]-loaded cells first, subsequent SOM elicited only a small response. In GTP-loaded neurons, application of SP temporarily suppressed the subsequent SOM- (or MENK)-induced conductance increase. These results suggest that the same inward rectifier molecule that responds to an opening signal from GPTX also responds to a closing signal from GnonPTX. The closing signal is stronger than the opening signal. 相似文献
9.
Chen L Kawano T Bajic S Kaziro Y Itoh H Art JJ Nakajima Y Nakajima S 《Proceedings of the National Academy of Sciences of the United States of America》2002,99(12):8430-8435
G protein-coupled inward rectifiers (GIRKs) are activated directly by G protein betagamma subunits, whereas classical inward rectifiers (IRKs) are constitutively active. We found that a glutamate residue of GIRK2 (E315), located on a hydrophobic domain of the C terminus, is crucial for the channel activation. This glutamate (or aspartate) residue is conserved in all members of the Kir family. Substitution of alanine for the glutamate on GIRK1, GIRK2, and IRK2, expressed in HEK293 cells, greatly reduced the whole-cell currents. The whole-cell current of GIRK channels with a constitutively active gate, GIRK2(V188A), [Yi, B. A., Lin, Y. F., Jan, Y. N. & Jan, L. Y. (2001) Neuron 29, 657-667] was also reduced by the same glutamate mutation. Mean open time and conductance of single channels in GIRK2 and IRK2 were not affected by the mutation, indicating that the reduced whole-cell current resulted from a lowered probability of channel activation. The mutated GIRK and IRK showed normal trafficking to the cell membrane. The mutated GIRK2 retained the ability to interact with G protein betagamma subunits, and it showed almost the same inwardly rectifying property as the wild type. The mutated GIRK1 and GIRK2 retained ion selectivity to K(+) ions. This glutamate residue corresponds to one of the residues causing Andersen's syndrome [Plaster, N. M., Tawil, R., Tristani-Firouzi, M., Canun, S., Bendahhou, S., Tsunoda, A., Donaldson, M. R., Iannaccone, S. T., Brunt, E., Barohn, R., et al. (2001) Cell 105, 511-519]. Our interpretation is that this region of the glutamate residue is crucial in relaying the activating message from the ligand sensor region to the gate. 相似文献
10.
Loussouarn G Phillips LR Masia R Rose T Nichols CG 《Proceedings of the National Academy of Sciences of the United States of America》2001,98(7):4227-4232
Interactions of sulfhydryl reagents with introduced cysteines in the pore-forming (Kir6.2) subunits of the K(ATP) channel were examined. 2-Aminoethyl methanethiosulfonate (MTSEA(+)) failed to modify Cd(2+)-insensitive control-Kir6.2 channels, but rapidly and irreversibly modified Kir6.2[L164C] (L164C) channels. Although a single Cd(2+) ion is coordinated by L164C, four MTSEA(+) "hits" can occur, each sequentially reducing the single-channel current. A dimeric fusion of control-Kir6.2 and L164C subunits generates Cd(2+)-insensitive channels, confirming that at least three cysteines are required for coordination, but MTSEA(+) modification of the dimer occurs in two hits. L164C channels were not modified by bromotrimethyl ammoniumbimane (qBBr(+)), even though qBBr(+) caused voltage-dependent block (as opposed to modification) that was comparable to that of MTSEA(+) or 3-(triethylammonium)propyl methanethiosulfonate (MTSPTrEA(+)), implying that qBBr(+) can also enter the inner cavity but does not modify L164C residues. The Kir channel pore structure was modeled by homology with the KcsA crystal structure. A stable conformation optimally places the four L164C side chains for coordination of a single Cd(2+) ion. Modification of these cysteines by up to four MTSEA(+) (or three MTSPTrEA(+), or two qBBr(+)) does not require widening of the cavity to accommodate the derivatives within it. However, like the KcsA crystal structure, the energy-minimized model shows a narrowing at the inner entrance, and in the Kir6.2 model this narrowing excludes all ions. To allow entry of ions as large as MTSPTrEA(+) or qBBr(+), the entrance must widen to >8 A, but this widening is readily accomplished by minimal M2 helix motion and side-chain rearrangement. 相似文献
11.
12.
13.
Inward rectifier potassium (K(IR)) channels appear to play an important role in the regulation of cerebral blood flow. Our goal was to examine the influence of chronic alcohol exposure on K(IR) channels in cerebral arterioles. Sprague-Dawley rats were fed liquid diets with or without alcohol for 8-12 weeks. Using intravital microscope, we measured diameter of pial arterioles in response to an inhibitor, BaCl(2), and an activator, KCl, of K(IR) channels in the absence and presence of a scavenger of reactive oxygen species, tempol, or an inhibitor of NAD(P)H oxidase, apocynin. Application of BaCl(2) (30 and 100 microM) produced dose-related vasoconstriction in non-alcohol-fed, but not in alcohol-fed rats. In addition, application of KCl (3, 10, and 30 mM) produced dose-related dilation in non-alcohol-fed and alcohol-fed rats, but the magnitude of vasodilatation was less in alcohol-fed rats. In contrast, nitroglycerin-induced vasodilation was similar in non-alcohol-fed and alcohol-fed rats. Superfusion of cranial window with tempol (0.1 mM) or apocynin (1 mM) did not alter baseline diameter and nitroglycerin-induced dilation of pial arterioles in non-alcohol-fed and alcohol-fed rats but significantly improved impaired KCl-induced dilation in alcohol-fed rats. Our findings suggest that chronic alcohol consumption impairs the role of K(IR) channels in basal tone and KCl-induced dilation of cerebral arterioles. In addition, impaired KCl-induced dilation of cerebral arterioles during alcohol consumption may be related to enhanced release of oxygen-derived free radicals via NAD(P)H oxidase. 相似文献
14.
An inward rectifier potassium current, Kir, has been identified in cerebral and coronary resistance vessels, where it is considered to be an important determinant of resting membrane potential (RMP) and to play a role in blood flow regulation. We investigated the functional role of Kir in the renal afferent arteriole using the in vitro-perfused hydronephrotic rat kidney. Increasing external KCl from 5 to 15 mmol/L induced afferent arteriolar vasodilation. This response was inhibited by 10 to 100 micromol/L Ba(2+), concentrations selective for blockade of Kir, and by chloroethylclonidine (100 micromol/L) but was not blocked by glibenclamide (10 micromol/L) or ouabain (3 mmol/L). Reducing external KCl from 5 to 1.5 mmol/L to enhance rectification of Kir caused vasoconstriction at low renal arterial pressure (40 mm Hg) and vasodilation during myogenic vasoconstriction (120 mm Hg), suggesting that this current dominates RMP at low perfusion pressures. When administered to kidneys perfused at 40 mm Hg renal arterial pressure, 30 micromol/L Ba(2+) elicited afferent arteriolar depolarization, reducing RMP from -47+/-2 to -34+/-2 mV (n=10, P:<0.0001), and vasoconstriction, reducing diameters from 14.5+/-1 to 10.9+/-0.8 microm (n=10, P:=0.0016). Although Ba(2+) reduced resting diameter, blockade of Kir did not prevent myogenic signaling in this vessel. Our findings thus demonstrate the presence of Kir in rat renal afferent arterioles and suggest that this current is an important determinant of RMP in situ. 相似文献
15.
Single nisoldipine-sensitive calcium channels in smooth muscle cells isolated from rabbit mesenteric artery. 总被引:3,自引:1,他引:3 下载免费PDF全文
J F Worley rd J W Deitmer M T Nelson 《Proceedings of the National Academy of Sciences of the United States of America》1986,83(15):5746-5750
Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines. 相似文献
16.
Z. Maggie Huang Chaithra Prasad Fiona C. Britton Linda L. Ye William J. Hatton Dayue Duan 《Journal of molecular and cellular cardiology》2009,47(1):121-438
A novel Cl− inward rectifier channel (Cl,ir) encoded by ClC-2, a member of the ClC voltage-gated Cl− channel gene superfamily, has been recently discovered in cardiac myocytes of several species. However, the physiological role of Cl,ir channels in the heart remains unknown. In this study we tested the hypothesis that Cl,ir channels may play an important role in cardiac pacemaker activity. In isolated guinea-pig sinoatrial node (SAN) cells, Cl,ir current was activated by hyperpolarization and hypotonic cell swelling. RT-PCR and immunohistological analyses confirmed the molecular expression of ClC-2 in guinea-pig SAN cells. Hypotonic stress increased the diastolic depolarization slope and decreased the maximum diastolic potential, action potential amplitude, APD50, APD90, and the cycle-length of the SAN cells. These effects were largely reversed by intracellular dialysis of anti-ClC-2 antibody, which significantly inhibited Cl,ir current but not other pacemaker currents, including the hyperpolarization-activated non-selective cationic “funny” current (If), the L-type Ca2+ currents (ICa,L), the slowly-activating delayed rectifier IKs and the volume-regulated outwardly-rectifying Cl− current (ICl,vol). Telemetry electrocardiograph studies in conscious ClC-2 knockout (Clcn2−/−) mice revealed a decreased chronotropic response to acute exercise stress when compared to their age-matched Clcn2+/+ and Clcn2+/− littermates. Targeted inactivation of ClC-2 does not alter intrinsic heart rate but prevented the positive chronotropic effect of acute exercise stress through a sympathetic regulation of ClC-2 channels. These results provide compelling evidence that ClC-2-encoded endogenous Cl,ir channels may play an important role in the regulation of cardiac pacemaker activity, which may become more prominent under stressed or pathological conditions. 相似文献
17.
18.
von Beckerath N Nees S Neumann FJ Krebs B Juchem G Schömig A 《Cardiovascular research》2000,46(3):569-578
OBJECTIVE: The purpose of this study was to describe passive electrical properties and major membrane currents in coronary pericytes. METHODS: 78 single, cultured bovine pericytes were studied with the patch-clamp technique in the whole-cell mode. RESULTS: The membrane potential of the cells was -48.9+/-9.6 mV (mean+/-S.D.) with 5 mM and -23.2+/-2.2 mV with 60 mM extracellular K+. The membrane capacitance was 150.2+/-123.2 pF. The current-voltage relation of the pericytes was dominated by an inward current at hyperpolarized potentials and an outward current at depolarized potentials. Increasing extracellular K+ from 5 to 60 mM led to an increase of the inward current and to a shift of this current to more depolarized potentials. The inward current was very sensitive to extracellular barium (50 microM). The maximum slope conductance of the cells at hyperpolarized potentials was 2.9+/-2.8 nS. Inward rectification of whole-cell currents was steep (slope factor = 6.8 mV). With elevated external K+ the outward current reversed near the potassium equilibrium potential. Onset of the outward current was sigmoid and inactivation of this current was monoexponential, slow (time constant = 12.8 s) and incomplete. Voltage-dependence of outward current steady-state activation was steep (slope factor = 4.6 mV). The outward current was very sensitive to 4-aminopyridine (dissociation constant = 0.1 mM). The maximum slope conductance at depolarized potentials was 16.6+/-15.6 nS. CONCLUSION: We report for the first time, patch-clamp recordings from coronary pericytes. An inward rectifier and a voltage-dependent K+ current were identified and characterized. Regulation of these currents may influence coronary blood flow. 相似文献
19.
Takayama H Takeda S Saitoh SK Hayashi H Takano T Tanaka K 《Internal medicine (Tokyo, Japan)》2002,41(9):713-716
A case of a 63-year-old man with isolated dissection of the superior mesenteric artery (SMA), demonstrated by enhanced computed tomography (CT) and abdominal angiography, was admitted to our hospital. The severity of this disease varies from mild to severe; the severe cases require surgery. But the mild cases, like the one presented here, only need conservative therapy. This case demonstrated the usefulness of anticoagulation therapy and the indications for surgical and radiological intervention. 相似文献
20.
BACKGROUND: The goals of this study were to determine whether chronic alcohol consumption alters potassium channel-mediated reactivity in the basilar artery and to determine a potential mechanism that might account for the effects of alcohol on the basilar artery. METHODS: Sprague-Dawley rats were fed liquid diets with or without alcohol for 2 to 3 months. We measured diameter of the basilar artery in response to potassium channel inhibitors and activators. Protein level of inward rectifier potassium channel subunit Kir2.1 in the basilar artery was determined by Western blot. RESULTS: Topical application of glibenclamide (1 and 10 microM) significantly constricted the basilar artery at high dose; iberiotoxin (10 and 100 nM), 4-AP (0.1 and 1 mM), and BaCl2 (1 and 10 microM) produced dose-related constriction in both non-alcohol-fed and alcohol-fed rats. However, the magnitude of constriction in response to BaCl2 was significantly less in alcohol-fed rats compared with non-alcohol-fed rats. Topical application of KCl (1 and 3 mM), cromakalim (0.1 and 0.3 microM), and NS1619 (10 and 30 microM) induced dose-related dilation in non-alcohol-fed and alcohol-fed rats. However, the magnitude of vasodilation in response to KCl was significantly less in alcohol-fed rats compared with non-alcohol-fed rats. In addition, Kir2.1 protein level in the basilar artery was significantly reduced in alcohol-fed compared with non-alcohol-fed rats. CONCLUSIONS: These findings suggest that chronic alcohol consumption reduces expression of inward rectifier potassium channels and inhibits KIR channel-mediated dilation in the basilar artery. 相似文献