首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human plasma fibrinogen adsorption and platelet adhesion to polystyrene.   总被引:5,自引:0,他引:5  
The purpose of this study was to further investigate the role of fibrinogen adsorbed from plasma in mediating platelet adhesion to polymeric biomaterials. Polystyrene was used as a model hydrophobic polymer; i.e., we expected that the role of fibrinogen in platelet adhesion to polystyrene would be representative of other hydrophobic polymers. Platelet adhesion was compared to both the amount and conformation of adsorbed fibrinogen. The strategy was to compare platelet adhesion to surfaces preadsorbed with normal, afibrinogenemic, and fibrinogen-replenished afibrinogenemic plasmas. Platelet adhesion was determined by the lactate dehydrogenase (LDH) method, which was found to be closely correlated with adhesion of 111In-labeled platelets. Fibrinogen adsorption from afibrinogenemic plasma to polystyrene (Immulon I(R)) was low and <10 ng/cm2. Platelet adhesion was absent on surfaces preadsorbed with afibrinogenemic plasma when the residual fibrinogen was low enough (<60 microg/mL). Platelet adhesion was restored on polystyrene preadsorbed with fibrinogen-replenished afibrinogenemic plasma. Addition of even small, subnormal concentrations of fibrinogen to afibrinogenemic plasma greatly increased platelet adhesion. In addition, surface-bound fibrinogen's ability to mediate platelet adhesion was different, depending on the plasma concentration from which fibrinogen was adsorbed. These differences correlated with changes in the binding of a monoclonal antibody that binds to the Aalpha chain RGDS (572-575), suggesting alteration in the conformation or orientation of the adsorbed fibrinogen. Platelet adhesion to polystyrene preadsorbed with blood plasma thus appears to be a strongly bivariate function of adsorbed fibrinogen, responsive to both low amounts and altered states of the adsorbed molecule.  相似文献   

2.
Platelet adhesion under static and flow conditions from a washed platelet suspension containing albumin to a polymer deposited by radio-frequency glow discharge of allylamine vapour on a poly(ethylene terephthalate) substrate was measured. Electron spectroscopy for chemical analysis was used to characterize the surface. Fibrinogen adsorption from a series of dilute plasma solutions to radio-frequency glow discharge/allylamine, measured using 125I radiolabelled baboon fibrinogen, increased with decreasing plasma dilution to a level much higher than that previously observed on polyurethanes. Elutability by sodium dodecyl sulphate of fibrinogen adsorbed from dilute plasma also increased with increasing plasma concentration, but fibrinogen preadsorbed from plasma became non-elutable when surfaces were stored in buffer for 5 d before contact with sodium dodecyl sulphate. Platelet adhesion to substrates which had been pre-adsorbed with dilute plasma was measured using baboon platelets radiolabelled with 111In. Adhesion greatly decreased as the plasma concentration used for preadsorption increased, suggesting that non-specific platelet binding to the bare surface occurs when protein coverage is incomplete. Non-specific platelet binding was inhibited to varying degrees by preadsorption of different proteins to the surface. Platelet adhesion to surfaces preadsorbed with dilute (1.0%) baboon and human plasmas lacking fibrinogen (i.e. serum, heat-defibrinogenated plasma and congenitally afibrinogenemic plasma) was diminished compared with normal plasma. Addition of exogenous fibrinogen to the deficient plasma partially restored platelet adhesion to normal levels. Adhesion to surfaces preadsorbed with human plasma deficient in von Willebrand factor was comparable to that observed with normal plasma. The plasma preadsorption studies with fibrinogen deficient media suggested that adsorbed fibrinogen is necessary for platelet adhesion to the radio-frequency glow discharge/allylamine substrate at high protein coverage. However, since adhesion was greatly reduced when the plasma preadsorbed substrate was stored in buffer before platelet contact, the conformation of adsorbed fibrinogen is also important in mediating platelet adhesion to radio-frequency glow discharge.  相似文献   

3.
Fluorocarbon radio-frequency glow-discharge (RFGD) treatment has previously been shown to cause decreased platelet adhesion despite the presence of adsorbed fibrinogen on the surfaces. In this study platelet adhesion to fluorocarbon RFGD-treated surfaces preadsorbed with human plasma was further examined. A series of plasma deposited fluorocarbon thin films were made by varying the C3F6/CH4 ratio in the monomer feed. The surfaces were preadsorbed with plasma, serum, or plasma selectively depleted of fibronectin, vitronectin, or Von Willebrand factor, and platelet adhesion was measured. We also measured fibrinogen adsorption to the surfaces from plasma, monoclonal antibody binding to adsorbed fibrinogen and SDS elutability of the adsorbed fibrinogen. The antibodies used bind to the three putative platelet binding sites on fibrinogen, namely, M1 antibody binds to the dodecapeptide at the C-terminus of the gamma chain, gamma (402-411), R1 antibody binds to a sequence in the Aalpha chain (87-100) which includes RGDF at Aalpha (95-98) and R2 antibody binds a sequence in the Aalpha chain (566-580) which includes RGDS at Aalpha (572-575). Fibrinogen was found to play a decisive role in mediating platelet adhesion to the fluorocarbon surfaces contacting plasma. Few platelets adhered to the fluorocarbon surfaces preadsorbed with serum, while preadsorption with plasma selectively-depleted of either fibronectin, vitronectin, or von Willebrand factor did not decrease platelet adhesion significantly. Replenishment of exogenous fibrinogen to serum restored platelet adhesion, while replenishment of the other proteins had no effect. Platelet adhesion to the fluorocarbon surfaces was lower than to PET or the methane glow-discharge-treated PET. However, there was no apparent correlation between platelet adhesion and the amount of fibrinogen adsorption or monoclonal antibody binding to surface-bound fibrinogen.  相似文献   

4.
Four plasma proteins have been shown to be able to mediate platelet adhesion to synthetic materials when they are adsorbed as purified proteins: fibrinogen (Fg), fibronectin (Fn), vitronectin (Vn), and von Willebrand factor (vWF). Among them, Fg is thought to play a leading role in mediating platelet adhesion to plasma-preadsorbed biomaterials, but this has been established for only three types of materials so far in our laboratory. Furthermore, the role of Fn, Vn, and vWF in mediating platelet adhesion to plasma-preadsorbed surfaces is still unclear. The aim of the current study was to assess the importance of Fg, Fn, Vn, and vWF in mediating platelet adhesion to a series of polystyrene-based surfaces. The strategy applied in the present investigation was to compare platelet adhesion to surfaces preadsorbed with normal plasma, plasma selectively depleted in Fn or Vn or both Fn and Vn, plasma from donors who were genetically deficient in vWF, and serum. Few platelets adhered to the surfaces preadsorbed with serum, whereas depletion of Fn, Vn, or vWF from plasma did not decrease platelet adhesion significantly. Replenishment of exogenous Fg to serum before protein adsorption restored platelet adhesion to the surfaces, suggesting that Fg was the major plasma protein that mediated platelet adhesion. Also, we found that a surface density of adsorbed Fg far below the amount that usually adsorbs to synthetic surfaces was sufficient to support full-scale platelet adhesion.  相似文献   

5.
The nature of the adsorbed protein on a non-biological biomaterial surface is known to influence cell adhesion. This work deals with the contribution of adherent platelets towards the redistribution of preadsorbed proteins. A redistribution was only observed with spread platelets on adsorbed fibrinogen and fibronectin, but not with adsorbed beta-lactoglobulin. The labelled protein images showed a dark outer ring with an inner region having fluorescent areas, with greater intensity than regions not covered by platelets. The fluorescent patterns observed may be a result of the binding of adsorbed fluorescent protein to the glycoprotein IIb/IIIa receptors of platelets, followed by their redistribution within the plasma membrane.  相似文献   

6.
Procoagulant (activated) platelets provide a site for assembly of the prothrombinase complex which can rapidly convert prothrombin into thrombin (a potent inducer of clot formation). Previously, we reported that adhesion of platelets to surfaces preadsorbed with blood plasma caused them to become procoagulant. In the present study we investigated the effect of adsorbed adhesion proteins (fibrinogen (Fg), fibronectin (Fn), von Willebrand factor (vWF) and vitronectin (Vn)) on the procoagulant activity of adherent platelets. Adsorbed Fn, vWF and Fg promoted platelet adhesion in the following order: Fn < vWF = Fg. However, these proteins promoted platelet activation (thrombin generation per adherent platelet) in the following order: Fg < Fn < vWF. Adsorption with a series of dilutions of normal plasma, serum, and plasmas deficient in or depleted of von Willebrand factor (de-vWF), fibronectin (de-Fn), vitronectin (de-Vn), or both vitronectin and fibronectin (de-VnFn) resulted in varied platelet adhesion, but little difference in platelet activation. However, preadsorption with dilute de-vWF plasma induced lower procoagulant activity than normal plasma. Preadsorption with normal plasma resulted in higher levels of platelet activation than preadsorption with Fg, suggesting that adsorption of plasma proteins other than Fg caused the high levels of activation observed for plasma preadsorbed surfaces.  相似文献   

7.
《Fibrinolysis》1993,7(6):379-385
The platelet function defect induced by thrombolytic agents has been referred either to the degradation of platelet surface receptors or to the anti-aggregatory effect of fibrinogen degradation products (FgDPs).In the present study we have evaluated platelet aggregation induced by ADP, collagen and ristocetin after incubation of washed platelets or platelet-rich plasma (PRP) with plasmin (1.1–3.4IU/ml), plasminogen activators (PAs) (streptokinase 250–1000 IU/ml; urokinase, 10–1000 IU/ml; t-PA 0.5–10 μg/ml) or FgDPs (0.062–2 mg/ml). In parallel the surface levels of platelet GP lb and IIb/IIIa complex were determined by fluorescence flow cytometry using specific monoclonal antibody.Washed platelets treated with plasmin (1.1IU/ml) for 10 to 90 min showed a progressive reduction of ristocetin-induced platelet agglutination and a progressive reduction of surface GP Ib. Surface expression of GP IIb/IIIa complex was significantly increased after plasmin exposure.The addition of PAs to PRP resulted in a marked reduction of ADP-induced platelet aggregation. Collagen-induced platelet aggregation was only slightly affected. Similar changes were observed when PRP was preincubated with high concentrations of FgDPs. In PRP treated with PAs platelet surface levels of GP Ib and GP IIb/IIIa complex did not show any significant changes.In conclusion our results show that in plasma no proteolysis of platelet adhesive receptors occurs after plasminogen activation. The platelet inhibition observed after incubation of PRP with PAs is likely to be caused by FgDPs generation.  相似文献   

8.
Platelet exposure to agonists results in rapid morphologic changes paralleled by fibrinogen binding and platelet aggregation. The current study used standardized stereology in conjunction with immunogold electron microscopy to correlate the initial morphologic changes with fibrinogen receptor localization on the surfaces of ADP-activated human platelets. A 45% increase in platelet circumference was observed after 3 seconds of activation (P = 0.001). Virtually all of this increase was due to a 13-fold increase in projection membrane, and the projections observed by stereo microscopy at this time were mostly blunt. Both blunt and long projections also accounted for the increase in platelet-platelet contacts at 10 seconds of activation. Immunogold electron microscopy using the monoclonal antibodies P2 and AP-2 against the fibrinogen receptor, glycoprotein IIb/IIIa (GP IIb/IIIa), showed relatively equivalent immunogold densities on projections compared with cell body during 30 seconds of activation. The activation-dependent anti-GP IIb/IIIa monoclonal antibody, 7E3, showed an immunogold density 37% greater on projections compared with cell body (P = 0.0001). Colocalization studies using 7E3 with a polyclonal antifibrinogen antibody showed bound fibrinogen in close proximity to the GP IIb/IIIa localized by 7E3 on projections. These studies support an important role for platelet projections during the earliest stages of fibrinogen binding and ADP-induced aggregation.  相似文献   

9.
We used flow cytometry to investigate the change of platelet membrane glycoproteins (GPIb and GP IIb/IIIa) and the distributions of fibrinogen (Fbg), thrombospondin (TSP) and fibronectin (Fn) on the surface of thrombin-stimulated platelets. The binding of a monoclonal antibody directed at the von Willebrand factor binding site on GPIb decreased in thrombin-stimulated platelets. This antibody caused a reactive delay in thrombin-induced aggregation, but had little influence on aggregability. Slight thrombin-induced aggregation was observed even after blocking the binding of Fbg to GP II b/IIIa. The new expression of GP II b/IIIa was detected on the surface of thrombin-stimulated platelets, whereas there was little increase of Fbg dependent on this GP II b/IIIa. An increase of TSP after thrombin stimulation was observed on the surface of platelets of healthy controls and patients with Glanzmann's thrombasthenia (Type I). The level of on platelet surface was slightly increased by thrombin stimulation. The mechanism involved in thrombin-induced aggregation appears to differ from that in ADP-induced aggregation.  相似文献   

10.
Platelet aggregation by bacteria is felt to play an important role in the pathogenesis of infective endocarditis. However, the mechanisms involved in bacterium-induced platelet aggregation are not well-defined. In the present study, we examined the mechanisms by which Staphylococcus aureus causes rabbit platelet aggregation in vitro. In normal plasma, the kinetics of S. aureus-induced platelet aggregation were rapid and biphasic. The onset and magnitude of aggregation phase 1 varied with the bacterium-platelet ratio, with maximal aggregation observed at a ratio of 5:1. The onset of aggregation phase 2 was delayed in the presence of apyrase (an ADP hydrolase), suggesting that this later aggregation phase may be triggered by secreted ADP. The onset of aggregation phase 2 was delayed in the presence of prostaglandin I2-treated platelets, and this phase was absent when paraformaldehyde-fixed platelets were used, implicating platelet activation in this process. Platelet aggregation phase 2 was dependent on S. aureus viability and an intact bacterial cell wall, and it was mitigated by antibody directed against staphylococcal clumping factor (a fibrinogen-binding protein) and by the cyclooxygenase inhibitor indomethacin. Similarly, aggregation phase 2 was either delayed or absent in three distinct transposon-induced S. aureus mutants with reduced capacities to bind fibrinogen in vitro. In addition, a synthetic pentadecapeptide, corresponding to the staphylococcal binding domain in the C terminus of the fibrinogen delta-chain, blocked aggregation phase 2. However, phase 2 of aggregation was not inhibited by two synthetic peptides (alone or in combination) analogous to the two principal fibrinogen-binding domains on the platelet glycoprotein (GP) IIb/IIIa integrin receptor: (i) a recognition site on the IIIa molecule for the Arg-Gly-Asp (RGD) sequence of the fibrinogen alpha-chain and (ii) a recognition site on the IIb molecule for a dodecapeptide sequence of the fibrinogen delta-chain. This differs from ADP-induced platelet aggregation, which relies on an intact platelet GP IIb/IIIa receptor with an accessible RGD sequence and dodecapeptide recognition site for fibrinogen. Furthermore, a monoclonal antibody directed against the RGD recognition site on rabbit platelet GP IIb/IIIa receptors failed to inhibit rabbit platelet aggregation by S. aureus. Collectively, these data suggest that S. aureus-induced platelet aggregation requires bacterial binding to fibrinogen but is not principally dependent upon the two major fibrinogen-binding domains on the platelet GP IIb/IIIa integrin receptor, the RGD and dodecapeptide recognition sites.  相似文献   

11.
《Fibrinolysis》1992,6(3):193-197
Recombinant tissue-type plasminogen activator (rt-PA) did not modify densities of nine platelet membrane glycoproteins: collagen receptor subunit GP Ia; fibrinogen receptor GP IIb IIIa; thrombospondin receptor GP IV; von Willebrand factor receptor GP Ib and associated GP IX; thrombospondin; activation glycoprotein GMP 140; vitronectin receptor subunit VNR α and GP Ha. rt-PA induced slight decrease of GP 24 (CD9) density on platelet membrane. Antigen densities were determined after incubation of platelet-rich plasma with therapeutic doses of rt-PA (from 0.5-4 μg/ml) by a quantitative cytofluorometric method. Addition of fibrin did not modify the effect of rt-PA. These results suggest that incubation of platelet-rich plasma with therapeutic doses of rt-PA neither modify glycoproteins involved in platelet adhesion and aggregation nor markedly activate platelets.  相似文献   

12.
Ten specially synthesized polyurethanes (PUs) were used to investigate the effects of surface properties on platelet adhesion. Surface composition and hydrophilicity, fibrinogen (Fg) and von Willebrand's factor (vWf) adsorption, monoclonal anti-Fg binding, and platelet adhesion were measured. PUs preadsorbed with afibrinogenemic plasma or serum exhibited very low platelet adhesion, while adhesion after preadsorption with vWf deficient plasma was not reduced, showing that Fg is the key plasma protein mediating platelet adhesion under static conditions. Platelet adhesion to the ten PUs after plasma preadsorption varied greatly, but was only partially consistent with Fg adsorption. Thus, while very hydrophilic PU copolymers containing PEG that had ultralow Fg adsorption also had very low platelet adhesion, some of the more hydrophobic PUs had relatively high Fg adsorption but still exhibited lower platelet adhesion. To examine why some PUs with high Fg adsorption had lower platelet adhesion, three monoclonal antibodies (mAbs) that bind to sites in Fg thought to mediate platelet adhesion were used. The antibodies were: M1, specific to gamma-chain C-terminal; and R1 and R2, specific to RGD containing regions in the alpha-chain N- and C-terminal, respectively. Platelet adhesion was well correlated with M1 binding, but not with R1 or R2 binding. When these mAbs were incubated with plasma preadsorbed surfaces, they blocked adhesion to variable degrees. The ability of the R1 and R2 mAbs to partially block adhesion to adsorbed Fg suggests that RGD sites in the alpha chain may also be involved in mediating platelet adhesion and act synergistically with the C-terminal of the gamma-chain.  相似文献   

13.
Platelet adhesion to the surfaces of biomaterials preadsorbed with plasma previously has been shown to be mediated exclusively by surface-bound fibrinogen and does not seem to involve the other adhesion proteins in plasma (Tsai et al., J Biomed Mater Res 2002;60:348-359). In this study, the influence of surface-bound fibrinogen on platelet adhesion to five different types of polystyrene-based microtiter plates preadsorbed with plasma was analyzed relative to the amount of adsorbed fibrinogen and monoclonal antibody binding to the adsorbed fibrinogen. There was no significant correlation between platelet adhesion and the absolute amount of adsorbed fibrinogen. However, platelet adhesion was positively correlated to the ability of the adsorbed fibrinogen to bind three types of monoclonal antibodies. The antibodies used bound to the sites on fibrinogen thought to be involved in platelet binding (the two gamma chain C-terminal dodecapeptides and the RGDF and RGDS sequences in each of the Aalpha chains). A partial least-squares calibration model was used to analyze the relative importance of these binding sites in fibrinogen to platelet adhesion. The gamma chain C-terminal dodecapeptide was shown to be the most important site in adsorbed fibrinogen in mediating platelet adhesion.  相似文献   

14.
The roles of adsorbed fibrinogen (Fg) and von Willebrand factor (VWF) in mediating platelet adhesion to synthetic surfaces under flow were investigated using polystyrene (PS) as a model hydrophobic surface. We measured platelet adhesion to PS pre-adsorbed with Fg, VWF, normal plasma, afibrinogenemic plasma, VWF-deficient plasma and deficient plasmas with various concentrations of added Fg or VWF. Platelets in a red blood cell suspension were passed through a flow chamber at either low (50 or 100 s(-1)) or high (500 or 1000 s(-1)) shear. Adhesion to PS pre-adsorbed with afibrinogenemic plasma was very low under both low and high shear conditions, but was restored in a dose-dependent manner with addition of Fg. Less than 20 ng/cm(2)of adsorbed Fg was sufficient to support full-scale platelet adhesion under flow. At high shear rate, platelet adhesion on PS pre-adsorbed with VWF-deficient plasma was much less than on PS pre-adsorbed with normal plasma, but adhesion to PS pre-adsorbed with VWF-deficient plasma with added VWF was very similar to adhesion to PS pre-adsorbed with normal plasma. At low shear, adhesion to PS pre-adsorbed with VWF-deficient plasma was the same as on PS pre-adsorbed with normal plasma. As little as 1 ng/cm(2) of VWF adsorbed from plasma made platelet adhesion higher under high shear than under low shear. The effects of adsorbed Fg and VWF on the morphologies of platelets that adhered from suspensions flowing at high shear rates were also investigated. The lack of either Fg or VWF resulted in marked decreases in the extent of platelet spreading. Real-time observation of platelet adhesion under an epifluorescent microscope showed that platelets adhered to the surface in a linear pattern aligned in the direction of flow under high shear conditions.  相似文献   

15.
Previous studies showed that platelet adhesion to biomaterials from static suspensions was greatly increased by the adsorption of even very small amounts (<5 ng/cm2) of fibrinogen (Fg). In this study, the sensitivity of platelet adhesion to Fg was reexamined by measuring platelet adhesion under flow conditions. The role of adsorbed von Willebrand's factor (vWf) was also studied. Polyethylene (PE) tubing was preadsorbed with Fg, vWf, vWf-deficient plasma, and Fg-deficient plasma or serum with added Fg, and Fg adsorption measured with 125I Fg. Platelets in a red blood cell suspension were passed through the tubes at either low (50 s(-1)) or high (500 or 1000 s(-1)) shear rates and adhesion measured with an improved LDH assay. Adhesion from flowing suspensions measured after preadsorption with afibrinogenemic plasma or serum was very low, but increased greatly with addition of Fg. Less than 10 ng/cm2 of adsorbed Fg was enough to greatly enhance platelet adhesion. Adhesion at high shear was also strongly affected by vWf, as platelet adhesion at 500 s(-1) to PE preadsorbed with vWf-deficient plasma decreased by more than tenfold compared to adhesion at 50 s(-1), but platelet adhesion to PE preadsorbed with normal plasma increased about eightfold when shear rate was increased. The results show that very low amounts of adsorbed Fg are able to support platelet adhesion under shear flow. However, adsorbed vWf also appears to play an important cofactor role in platelet adhesion to biomaterials, as its presence greatly augments platelet adhesion under high shear.  相似文献   

16.
Previously we observed that platelets adherent to surfaces preadsorbed with blood plasma exhibited 1.3 to 2.4 times greater procoagulant activity than platelets on surfaces adsorbed with fibrinogen (Fg) only. These observations suggested that the adhesion proteins adsorbed from plasma may activate platelets in a cooperative, or synergistic manner. In the present study, polystyrene surfaces adsorbed with both Fg and vWF induced up to three times greater procoagulant activity than surfaces adsorbed with Fg or vWF only. The amounts of Fg and vWF adsorbed from binary mixtures that resulted in increased procoagulant activity were found to be similar to the amounts that adsorbed to PS from 100% plasma. The effect of adsorbed adhesion proteins on platelet spreading was also investigated. The proportion of fully spread platelets increased, depending on the adhesion protein preadsorbed to the surface, in the following order: vWF < Fg < Fn < (vWF + Fg) < Vn < plasma.  相似文献   

17.
Sivaraman B  Latour RA 《Biomaterials》2011,32(23):5365-5370
Platelet adhesion to adsorbed plasma proteins, such as fibrinogen (Fg), has been conventionally thought to be mediated by the GPIIb/IIIa receptor binding to Arg-Gly-Asp (RGD)-like motifs in the adsorbed protein. In previous studies, we showed that platelet adhesion response to adsorbed Fg and Alb was strongly influenced by the degree of adsorption-induced protein unfolding and that platelet adhesion was only partially blocked by soluble RGD, with RGD-blocked platelets adhering without activation. Based on these results, we hypothesized that in addition to the RGD-specific GPIIb/IIIa receptor, which mediates both adhesion and activation, a non-RGD-specific receptor set likely also plays a role in platelet adhesion (but not activation) to both Fg and albumin (Alb). To identify and elucidate the role of these receptors, in addition to GPIIb/IIIa, we also examined the GPIb-IX-V receptor complex, which has been shown to mediate platelet adhesion (but not activation) in studies by other groups. The platelet suspension was pretreated with either a GPIIb/IIIa-antagonist drug Aggrastat(?) or monoclonal antibodies 6B4 or 24G10 against GPIb-IX-V prior to adhesion on Fg- and Alb-coated OH- and CH(3)-functionalized alkanethiol self-assembled monolayer surfaces. The results revealed that GPIIb/IIIa is the primary receptor set involved in platelet adhesion to adsorbed Fg and Alb irrespective of their degree of adsorption-induced unfolding, while the GPIb-IX-V receptor complex plays an insignificant role. Overall, these studies provide novel insights into the molecular-level mechanisms mediating platelet interactions with adsorbed plasma proteins, thereby assisting the biomaterials field develop potent strategies for inhibiting platelet-protein interactions in the design of more hemocompatible cardiovascular biomaterials and effective anti-thrombotic therapies.  相似文献   

18.
The adhesive proteins fibrinogen (FG) and fibronectin (FN) were immobilized to glycine-Sephadex G-10. The derivatized Sephadex G-10 gels were used to bind human blood platelets. For comparison, Gly-Arg-Gly-Asp-Ser-Pro(GRGDSP)-derivatized Gly-Sephadex G-10 was used. FG-, FN-, and GRGDSP-Gly-Sephadex G-10 each bound a substantial number of activated blood platelets (5 X 108 ml-1 gel) while non-activated platelets were not bound. Binding of ADP-treated blood platelets to the affinity adsorbents was dependent on the ADP-concentration which was used, reaching a near-maximal value at about 10 pM ADP. Platelet binding to the three types of affinity gels could be completely inhibited by dissolved GRGDSP as well as monoclonal anti-platelet glycoprotein IIb/IIIa (GPIIb/IIIa) antibody CLB-C17, which demonstrates that platelet binding specifically involves the fibrinogen binding site on GPIIb/IIIa. Platelet binding to all three affinity gels required free Ca2+ and Mg2+ ions: platelet binding in the absence of these divalent cations was considerably lower than platelet binding in buffer containing 2 mM Ca2+ and 1 mM Mg2+. Moreover, activated ethylenediamine-tetraacetate (EDTA)-treated platelets did not bind at all to the affinity gels. The finding that non-activated platelets did not bind to the affinity gels is thought to be related to both the high hydrophilicity of the Sephadex basic material and to the native state of the gel-bound fibrinogen and fibronectin.  相似文献   

19.
To investigate the existence of intracellular pools of membrane glycoproteins involved in platelet adhesive reactions, the authors have studied the distribution of glycoprotein (GP) Ib and IIb/IIIa by immunofluorescence and immunoelectron microscopy. Studies on whole cells and frozen thick sections revealed a rim pattern of fluorescence for GPIb and GPIIb/IIIa consistent with a surface distribution. In addition, extensive staining occupying the entire cell interior was observed for anti-GPIIb/IIIa, whereas anti-GPIb revealed staining of large intracellular structures that contained no stainable fibrinogen. On the ultrastructural level, the extracellular face of the plasma membrane and the intraluminal face of vacuolar structures were stained with both anti-GPIb and anti-GPIIb/IIIa. Additionally, GPIIb/IIIa antigen was localized to alpha-granule membranes. To determine whether alpha-granule GPIIb/IIIa could be transported to the cell surface, the authors employed a calcium-dependent monoclonal anti-GPIIb/IIIa antibody. Incubation of platelets with EGTA at 37 C abolished staining of plasma membrane and vacuolar but not alpha-granule GPIIb/IIIa. Recalcification of these cells failed to restore the epitope; however, thrombin treatment of recalcified cells reconstituted surface staining with a concurrent loss of internal staining. These data suggest that GPIIb/IIIa is present in alpha-granule membranes and may be transported to the cell surface in response to thrombin treatment. In addition, both GPIb and GPIIb/IIIa antigens are present in intracellular membrane-bounded vacuolar structures which are closed to antibody probes in fixed cells. Redistribution of these internal pools of adhesive protein "receptors" may participate in the regulation of platelet adhesive properties.  相似文献   

20.
The capillary perfusion model according to Cazenave and co-workers was characterized by investigating the effects of protein precoating, perfusion time and shear rate on platelet deposition using 111Indium labelling of human platelets and scanning electron microscopy (SEM). Compared with uncoated polyethylene, platelet deposition was increased after precoating with purified human von Willebrand factor, fibrinogen or fibronectin, and decreased by preadsorbed immunoglobulin G, albumin or whole plasma. Platelet aggregates were observed on immunoglobulin G-coated polyethylene, whereas all other surfaces showed single adherent platelets. Complete platelet spreading was only observed after precoating with fibronectin. The quantitative data concerning platelet deposition were evaluated by using the convective-diffusion theory. Our results indicate the applicability of this perfusion model for the in vitro testing of biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号