首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymeric nanospheres fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) have been extensively investigated for applications in gene delivery. In this study, we show that the covalent conjugation of a nuclear localization signal (NLS, SV40 peptide) on PLGA nanospheres enhances the gene transfection efficiency. NLS conjugated PLGA copolymer was prepared by using a coupling reaction between maleimide-terminated PLGA copolymer and NLS in the presence of Imject maleimide conjugation buffer. PLGA nanospheres encapsulating plasmid (pDNA) were prepared by using a double emulsion-solvent evaporation method. The kinetics of in vitro release of pDNA from PLGA nanospheres was determined with UV in phosphate buffered saline (PBS). Gene transfection efficiency in human dermal fibroblasts was tested in vitro using nanospheres encapsulating the luciferase gene. The conjugation of the NLS peptide to the PLGA nanospheres could improve the nuclear localization and/or cellular uptake of PLGA nanosphere/pDNA constructs and thereby improve the transfection efficiency of a PLGA nanosphere gene delivery system. The pDNA was released from PLGA nanospheres over nine days. NLS conjugation enhanced the gene transfection efficiency in vitro by 1.2 ~ 3.2-fold over 13 days. PLGA/pDNA nanospheres appeared to be superior to PEI/pDNA complexes for the long-term expression of pDNA. Furthermore, the level of the sustained gene expression of the PLGA nanospheres was enhanced by the conjugation of NLS to the PLGA nanospheres. This study showed that the NLS conjugation enhanced the gene transfection efficiency of the PLGA nanosphere gene delivery system in vitro and that the enhanced gene expression was sustained for at least 13 days.  相似文献   

2.
Effective delivery of DNA encoding antigen into the dendritic cells (DCs), which are non-dividing cells, is very important for the development of DNA vaccines. In a previous study, we developed the PLGA nanospheres that contained a cationic nanomaterial and showed high transfection efficiency in COS7 cells, which divide. In the present study, to produce an effective vector for the DNA vaccines, the gene expression and intracellular trafficking of pDNA complexed with PLGA/PEI nanospheres, in combination with an NF-κB analog as a nuclear localization signal (NLS) and electroporation were evaluated in human monocyte-derived DCs (hMoDCs). Cellular uptake of pDNA both in COS7 cells and hMoDCs was enhanced using the PLGA/PEI nanospheres. On the other hand, the PLGA/PEI nanospheres significantly promoted the transfection in COS7 cells, but had almost no effect on transfection in hMoDCs. The intranuclear transport of pDNA by PLGA/PEI nanospheres in COS7 cells was significantly higher than that in hMoDCs. These results indicate that pDNA complexed with PLGA/PEI nanospheres cannot enter into the nuclei of non-dividing cells. However, PLGA/PEI nanospheres combinated with NLS and electroporation (experimental permeation enhancer) greatly elevated the transfection efficiency by improvement of not only intracellular uptake but also intranuclear transport of pDNA in the hMoDCs. Thus, this delivery system using nanospheres combined with synthesized NLS might be applicable to DC-based gene vaccines when much non-invasive application such as needle-free injector should be required.  相似文献   

3.
Preparation of nano-sized particles using lyophilization, which is a standard drying technique for high-molecular-weight compounds such as bioactive peptides, proteins, plasmid DNA and siRNA, often results in particle aggregation. In this study, spray-drying was applied for preparation of cationic PLGA nanospheres as gene delivery vectors in order to minimize aggregation and loss of gene transfection efficiency. PLGA nanoparticle emulsions were prepared by dropping an acetone/methanol mixture (2/1) containing PLGA and a cationic material, such as PEI, DOTMA, DC-Chol or CTAB, into distilled water with constant stirring. The PLGA nanosphere emulsion was dried with mannitol by spray-drying, and mannitol microparticles containing PLGA nanospheres were obtained. Mean particle diameter of spray dried PLGA particles was 100-250 nm, which was similar to that of the nano-emulsion before drying, whereas the lyophilized PLGA particles showed increased particle diameter due to particle aggregation. PEI, DOTMA and DC-Chol were useful for maintaining nanoparticle size and conferring positive charge to nanospheres. Transfection of pDNA (pCMV-Luc) using these spray-dried cationic PLGA nanospheres yielded high luciferase activity in COS-7 cells, particularly with PLGA/PEI nanospheres. The present spray-drying technique is able to provide cationic PLGA nanospheres, and may improve redispersal and handling properties.  相似文献   

4.
Previously, we had reported improving transfection efficiency of the chitosan-plasmid DNA (CS/pDNA)complex via enhancing intracellular unpacking of the exogene by the utilization of phosphorylatable short peptide conjugated chitosan (pSP-CS). In this article, we addressed a novel strategy of nucleus localization signal linked nucleic kinase substrate short peptide (NNS) modification for further optimization of the transfection efficiency. NNS, consisting of "PKKRKVREEAIKFSEEQRFRR", contained a SV40 nucleus localization signal and a potentially phosphorylatable serine residue. The short peptide could be selectively phosphorylated in the nucleus in various mammalian cells. This phosphorylatable NNS (pNNS) was conjugated to chitosan and combined with Cy3 fluorescence labeled plasmid DNA to form a pNNS-CS/pDNA complex. In vitro phosphorylation and DNA releasing assays verified that pNNS could be effectively and selectively phosphorylated by nucleic lysate, hence promoting pDNA unpacking from the complex. Thereafter, C2C12 myoblast cells were transfected. Nuclear localization of the pDNA was represented by the fluorescence in the nucleus and transfection efficiency was determined by the expression of the luciferase reporter gene, which is carried by the plasmid DNA. The results revealed that, compared with lipofactamine2000 and the previously reported pSP-CS, pNNS-CS could transport more pDNA into the nucleus and intensively augment luciferase reporter gene expression. In conclusion, nucleus localization and unpacking from the delivery vector are both critical factors in influencing exogene expression, and pNNS modification is valuable in improving transfection efficacy of the chitosan.  相似文献   

5.
The purpose of this paper was to establish the surface modified poly(d,l-lactide-co-glycolide) (PLGA) nanosphere platform with chitosan (CS) for gene delivery by using the emulsion solvent diffusion (ESD) method. The advantages of this method are a simple process under mild conditions without sonication. This method requires essentially dissolving both polymer and drug in the organic solvent. Therefore a hydrophilic drug such as nucleic acid is hardly applied to the ESD method. Nucleic acid can easily form an ion-complex with cationic compound, which can be dissolved in the organic solvent. Thereafter, nucleic acid solubility for organic solution can increase by complexation with cationic compound. We used DOTAP as a cationic compound to increase the loading efficiency of nucleic acid. By coating the PLGA nanospheres with CS, the loading efficiency of nucleic acid in the modified nanospheres increased significantly. The release profile of nucleic acid from PLGA nanospheres exhibited sustained release after initial burst. The PLGA nanospheres coated with chitosan reduced the initial burst of nucleic acid release and prolonged the drugs releasing at later stage. Chitosan coated PLGA nanosphere platform was established to encapsulate satisfactorily wide variety of nucleic acid for an acceptable gene delivery system.  相似文献   

6.
The purpose of this work was to develop a novel mucoadhesive DL-lactide/glycolide copolymer (PLGA) nanosphere system to improve peptide absorption and prolong the physiological activity following oral administration. The desired PLGA nanospheres with elcatonin were prepared by the emulsion solvent diffusion method to coat the surface of the resultant nanospheres with a mucoadhesive polymer such as chitosan, poly(acrylic acid), and sodium alginate. Their mucoadhesive properties were evaluated by measuring the nanospheres adsorbed to a rat everted intestinal sac (in vitro). The chitosan-coated nanospheres showed higher mucoadhesion to the everted intestinal tract in saline than the other polymer-coated nanospheres. There was no mucoadhesion site-specificity of the chitosan-coated nanospheres between duodenal, jejunal, and ileal sacs. The payload of drug in the chitosan-coated nanospheres was successfully increased by using the solvent diffusion method in oil. The pattern of drug release of the resultant nanospheres did not differ markedly from that of uncoated nanospheres. The chitosan-coated nanospheres with elcatonin were administered intragastrically to fasted Wistar rats. The chitosan-coated nanosphere reduced significantly the blood calcium level compared with elcatonin solution and uncoated nanospheres, and the reduced calcium level was sustained for a period of 48 hr. Even under nonfasting conditions, the mucoadhesion of chitosan-coated nanospheres was unaltered and the reduction in blood Ca levels was maintained satisfactorily.  相似文献   

7.
The purpose of this work was to develop a novel mucoadhesive DL-lactide/glycolide copolymer (PLGA) nanosphere system to improve peptide absorption and prolong the physiological activity following oral administration. The desired PLGA nanospheres with elcatonin were prepared by the emulsion solvent diffusion method to coat the surface of the resultant nanospheres with a mucoadhesive polymer such as chitosan, poly(acrylic acid), and sodium alginate. Their mucoadhesive properties were evaluated by measuring the nanospheres adsorbed to a rat everted intestinal sac (in vitro). The chitosan-coated nanospheres showed higher mucoadhesion to the everted intestinal tract in saline than the other polymer-coated nanospheres. There was no mucoadhesion site-specificity of the chitosan-coated nanospheres between duodenal, jejunal, and ileal sacs. The payload of drug in the chitosan-coated nanospheres was successfully increased by using the solvent diffusion method in oil. The pattern of drug release of the resultant nanospheres did not differ markedly from that of uncoated nanospheres. The chitosan-coated nanospheres with elcatonin were administered intragastrically to fasted Wistar rats. The chitosan-coated nanosphere reduced significantly the blood calcium level compared with elcatonin solution and uncoated nanospheres, and the reduced calcium level was sustained for a period of 48 hr. Even under nonfasting conditions, the mucoadhesion of chitosan-coated nanospheres was unaltered and the reduction in blood Ca levels was maintained satisfactorily.  相似文献   

8.
Intracellularly targeted delivery system based on PLGA nanoparticles decorated with endoplasmic reticulum (ER)-targeting or control peptides and encapsulating antigenic peptide and fluorescent marker, was developed and characterized. The cellular uptake by dendritic cells (murine DC2.4 cells), intracellular trafficking, and cross-presentation efficiency of this delivery system were studied in vitro. The prepared nanoparticles (an average diameter of ~350 nm) efficiently encapsulated antigenic peptide and fluorescent marker and gradually released them over several days. Yet, the nanoparticles' size was small enough to allow their efficient endocytosis by the antigen-presenting cells in vitro. Surface conjugation of the targeting or control peptides enhanced the endocytosis of the nanoparticles, affected their intracellular trafficking, and induced prolonged low-magnitude cross-presentation of the antigenic peptide. We demonstrated in vitro that the intracellular fate of nanoparticulate drug delivery systems can be altered by their surface decoration with peptidic targeting residues. More detailed investigation is required to determine the mechanisms and therapeutic potential of intracellular targeting of nanodelivery systems in vivo for the goal of an anticancer vaccine.  相似文献   

9.
An amphiphilic peptide with a 3-arginine stretch and a 6-valine stretch (R3V6) has been previously reported to deliver plasmid DNA (pDNA) into cells with no toxicity. Here, the vascular endothelial growth factor receptor binding peptide (VRBP) was linked to R3V6 to promote endothelial-specific gene delivery. The pDNA/VRBP-linked R3V6 (VRBP-R3V6) complex was physically characterized via various methods. In a gel retardation assay, pDNA was completely retarded by VRBP-R3V6 at a weight ratio of 1:2 (pDNA:peptide). VRBP-R3V6 also protected pDNA from DNase I for longer than 60 min. Heparin competition assay showed that the pDNA/VRBP-R3V6 complex did not release pDNA when heparin was introduced at a two-fold weight excess of pDNA. In vitro transfection showed that VRBP-R3V6 had transfection efficiency into endothelial cells approximately 200 times greater than that of R3V6. In addition, the transfection efficiency was further enhanced into hypoxic endothelial cells. However, in human embryonic kidney 293 and neuroblastoma N2A cells, VRBP-R3V6 only achieved a transfection rate 10 times higher than R3V6, indicating that VRBP-R3V6 has high specificity for endothelial cells. VRBP-R3V6 was also shown to be nontoxic in a cytotoxicity assay. The data presented here suggest that VRBP-R3V6 may prove useful for specific gene delivery to endothelial cells.  相似文献   

10.
Viral vectors, except for their safety concern, have shown high efficiency in both delivery and expression of gene. Here, a series of new gene carriers, comprised of short peptide subunits with special functions to imitate viral vectors, were designed and three vectors, (C(18))(2)KH(4)R(8)GDS, AcKH(4)R(8)GDS and (C(18))(2)KH(4)R(8), designated as ARM1, ARM2, ARM3, respectively, were synthesized and evaluated. The transfection efficiency in vitro was studied in terms of 293T, HepG2 and HeLa cell lines. It was found that the transfection efficiency was enhanced significantly for the vectors (ARM1 and ARM3) with double hydrophobic aliphatic tails. Interestingly, the conjugation of RGDS sequence in vectors displayed no obvious difference in cell adhesion for all of the three cell lines. Moreover, confocal laser scanning microscope results indicated that the peptide/pDNA complexes can enter the cell and nuclei successfully. On the other hand, all the vectors displayed low cytotoxicity. The artificial recombinant multi-block oligopeptides (ARMs) demonstrated here might give a promising potential of the peptide-based vectors in gene therapy.  相似文献   

11.
Encapsulation of plasmid DNA (pDNA) in nanoparticulate gene delivery systems offers the possibility of control in dosing, enhanced pDNA uptake, increased resistance to nuclease degradation and sustained release of functionally active pDNA over time. Extracellular matrix based biomaterial i.e. hyaluronan (HA) was used to encapsulate pDNA (pCMV-GLuc, Gaussia Luciferase reporter plasmid DNA having CMV promoter) in submicron size particulate system. Nano size range (~400-600 nm) pDNA loaded hyaluronan nanoparticles were formulated by ionic gelation followed by the cross-linking method with high encapsulation efficiency (~75-85%). The particle preparation process was further optimized for molecular weight, cross-linking method, cross-linking time and plasmid/polymer ratio. The entrapped plasmid maintained its structural and functional integrity as revealed by agarose gel electrophoresis. The pDNA was released from the hyaluronan nanoparticles in a controlled manner over a period of one month. In vitro transfection by one-week released pDNA from nanoparticles with transfecting agent branched polyethyleneimine (bPEI) resulted in significantly higher expression levels than those in pDNA alone which demonstrated the functional bioactivity of released pDNA. For cellular localization studies, the hyaluronan nanoparticles encapsulated with FITC-dextran were incubated with adipose derived stem cells (ADSCs) and localization in the cellular environment were investigated. The results of this study illustrate that hyaluronan nanoparticles were rapidly internalized by the cells through nonspecific endocytosis and remained intact in the cytosol for up to 24 h.  相似文献   

12.
Polymer nanoparticles have been used as non-viral gene delivery systems and drug delivery systems. In this study, biodegradable poly(L-lactic acid) (PLA)/polyethylenimine (PEI) and poly(D,L-lactide-co-glycolide) (PLGA)/PEI nanoparticles were prepared and characterized as gene delivery systems. The PLA/PEI and PLGA/PEI nanoparticles, which were prepared by a diafiltration method, had spherical shapes and smooth surface characteristics. The size of nanoparticles was controlled by the amount of PEI, which acted as a hydrophilic moiety, which effectively reduced the interfacial energy between the particle surface and the aqueous media. The nanoparticles showed an excellent dispersive stability under storage in a phosphate-buffered saline solution for 12 days. The positive zeta-potentials for the nanoparticles decreased and changed to negative values with increasing plasmid DNA (pDNA) content. Agarose gel electrophoresis showed that the complex formation between the nanoparticles and the pDNA coincided with the zeta-potential results. The results of in vitro transfection and cell viability on HEK 293 cells indicated that the nanoparticles could be used as gene delivery carriers.  相似文献   

13.
14.
Gene silencing using small interfering RNA (siRNA) has several potential therapeutic applications. In the present study, we investigated nanoparticles (NS) formulated using the biodegradable polymer, poly(D,L-lactide-co-glycolide) (PLGA) for plasmid DNA (pDNA) delivery. A cationic polymer, Chitosan (CHS), was incorporated in the PLGA matrix to improve pDNA loading efficiency and cellular uptake ability. PLGA-CHS NS were prepared by a spontaneous emulsion diffusion (SED) method, and various formulation factors were investigated. Spherical nanoparticles with particle size of around 60 nm were obtained under optimum formulation condition. The effectiveness of pDNA-loaded PLGA-CHS nanoparticles in expressing the indicative enhanced Green Fluorescent Protein (eGFP) and in slicing Hepatitis B virus (HBV) gene were examined in HepG2.2.15 cells. CHS-modified PLGA NS exhibited much higher loading efficiency than unmodified PLGA NS. CHS-PLGA NS showed a positive zeta potential, while plain-PLGA NS were negatively charged. EGFP expression studies by observation with confocal leaser scanning microscopy (CLSM) indicated that pDNA-loaded CHS-PLGA NS were more effectively taken up by the cells than plain-PLGA NS. The corresponding results showed that the HBV gene-silencing efficiency of CHS-PLGA NS was higher than those of plain-PLGA NS and naked pDNA. Thus, CHS-PLGA NS containing pDNA could provide an effective pDNA delivery system in vitro, showing that such an approach could be useful in the treatment of viral diseases in vivo.  相似文献   

15.
Controlled release of plasmid DNA (pDNA) from biodegradable poly lactic-co-glycolic acid (PLGA) microparticles has the potential to enhance transgene expression. However, barriers to this approach include limited encapsulation efficiency, pDNA damage during fabrication and confinement of the microparticles inside phagolysosomal compartments. Combining PLGA with poly ethyleneimine (PEI) can improve protection of pDNA during fabrication, increase encapsulation efficiencies and impart the PLGA microparticles with the capacity to escape the phagolysosomal compartments. This study compares three promising formulation methods for preparing PLGA PEI pDNA microparticles and evaluates for buffering capacity, cellular uptake, transfection efficiency and toxicity. In the first method, PLGA PEI pDNA microparticles are prepared by entrapping pDNA in blended PLGA/PEI using the double emulsion water-in-oil-in-water solvent evaporation technique (PA). In a second approach, PEI-pDNA polyplexes are prepared and then entrapped in PLGA microparticles using a double emulsion solvent evaporation method (PB). Microparticles prepared using formulation methods PA and PB are then compared against PLGA microparticles with PEI conjugated to the surface using carbodiimide chemistry (PC); 0.5% PVA is identified as the optimum concentration of surfactant for generating the strongest transfection efficiencies. N:P ratios of 5 and 10 are selected for preparation of each group. Gel electrophoresis demonstrates that all PLGA microparticle formulations have strong pDNA binding capacity. An MTT assay shows that in vitro cytotoxicity of PLGA PEI microparticles is significantly lower than PEI alone. PLGA PEI pDNA microparticles mediate higher cellular uptake efficiency and consequently higher transgene expression than unmodified PLGA microparticles in COS7 and HEK293 cells. Preparing PEI-pDNA polyplexes prior to entrapment in PLGA microparticles (PB) results in the highest pDNA loading. This is 2.5-fold higher than pDNA loading in unmodified PLGA microparticles. PLGA PEI pDNA microparticles prepared using method PB generates the strongest transfection efficiencies, which are 500-fold higher than unmodified PLGA pDNA microparticles in HEK293 cells and 1800-fold higher in COS-7 cells. The highest transfection efficiencies generated from microparticles prepared using method PB is achieved using an N:P ratio of 5.  相似文献   

16.
Safe and efficient systems capable of specifically targeting brain tumour cells represent a promising approach for the treatment glioblastoma multiforme. Neuropilin-1 (NRP-1) is over-expressed in U87 glioma cells. In the current study, the tumour specific peptide RGERPPR, which binds specifically to NRP-1, was used as a targeting ligand in a gene delivery strategy for glioblastoma. The RGERPPR peptide was coupled to branched polyethylenimine (PEI, 25 kDa) using heterobifunctional Mal–PEG–NHS, resulting in a novel gene delivery polymer. Polymer/plasmid DNA (pDNA) complexes were formed and their sizes and zeta potentials were measured. Compared with the unmodified mPEG–PEI/pDNA complexes, the RGERPPR–PEG–PEI/pDNA complex led to a significant enhancement in intracellular gene uptake and tumour spheroid penetration. Furthermore, the RGERPPR–PEG–PEI/pDNA complex facilitated enhanced transfection efficiency levels, as well as a reduction in cytotoxicity when tested in U87 glioma cells in vitro. Most significantly of all, when complexes formed with pDsRED-N1 were injected into the tail vein of intracranial U87 tumour-bearing nude mice, the RGERPPR–PEG–PEI complexes led to improved levels of red fluorescence protein expression in the brain tissue. Taken together, the results show that RGERPPR–PEG–PEI could be used as a safe and efficient gene delivery vehicle with potential applications in glioblastoma gene delivery.  相似文献   

17.
Novel pH-sensitive nanospheres designed for colon-specific delivery were prepared using polymeric mixtures of poly (lactic-co-glycolic) acid (PLGA) and a pH-sensitive methacrylate copolymer. Budesonide (BSD), a topically active corticosteroid, was entrapped as a model drug. The therapeutic efficacy of the prepared nanospheres was assessed using the trinitrobenzenesulfonic acid (TNBS) colitis rat model, in comparison with conventional enteric microparticles. In addition, the colon targeting properties, systemic bioavailability, and specific uptake by the inflamed colon mucosa were evaluated using coumarin-6 (C-6)-loaded nanospheres. The prepared nanospheres showed strongly pH-dependent drug release properties in acidic and neutral pH values followed by a sustained release phase at pH 7.4. Animal experiments revealed the superior therapeutic efficiency of BSD-loaded nanospheres in alleviating the conditions of TNBS-induced colitis model. The in vivo studies using C-6-loaded nanospheres displayed higher colon levels and lower systemic availability of the fluorescent marker when compared with simple enteric coating. Moreover, quantitative analysis of the fluorescent marker and confocal laser scanning studies showed strong and specific adhesion of the nanospheres to the ulcerated and inflamed mucosal tissue of the rat colon. In conclusion, the proposed nanosphere system combined the properties of pH-sensitivity, controlled release, and particulate targeting that could be useful for colon-specific delivery in inflammatory bowel disease.  相似文献   

18.
An amphiphilic peptide with a 3-arginine stretch and a 6-valine stretch (R3V6) has been previously reported to deliver plasmid DNA (pDNA) into cells with no toxicity. Here, the vascular endothelial growth factor receptor binding peptide (VRBP) was linked to R3V6 to promote endothelial-specific gene delivery. The pDNA/VRBP-linked R3V6 (VRBP-R3V6) complex was physically characterized via various methods. In a gel retardation assay, pDNA was completely retarded by VRBP-R3V6 at a weight ratio of 1:2 (pDNA:peptide). VRBP-R3V6 also protected pDNA from DNase I for longer than 60 min. Heparin competition assay showed that the pDNA/VRBP-R3V6 complex did not release pDNA when heparin was introduced at a two-fold weight excess of pDNA. In vitro transfection showed that VRBP-R3V6 had transfection efficiency into endothelial cells approximately 200 times greater than that of R3V6. In addition, the transfection efficiency was further enhanced into hypoxic endothelial cells. However, in human embryonic kidney 293 and neuroblastoma N2A cells, VRBP-R3V6 only achieved a transfection rate 10 times higher than R3V6, indicating that VRBP-R3V6 has high specificity for endothelial cells. VRBP-R3V6 was also shown to be nontoxic in a cytotoxicity assay. The data presented here suggest that VRBP-R3V6 may prove useful for specific gene delivery to endothelial cells.  相似文献   

19.
We have investigated the in vitro uptake, toxicity, phenotypic consequences and transfection efficiency of a stealth NGR/PEG/PDBA-coupled-SHA-PEI/pDNA targeting polyplex loaded with PLGA-PEG-PLGA tri-block copolymer in human monocyte-derived dendritic cells (DCs). Modification with PEG effectively shielded and reduced non-specific phagocytosis by immature DCs to approximately 20%. Coupling the NGR cell-specific peptide to the PEGylated polyplex (NGR/PEG/PDBA-SHA-PEI/pDNA) however resulted in specific and enhanced phagocytosis in DCs without any observable toxicity at the optimum concentration of 0.25% of the copolymer. DNase treatment had no effect on DNA integrity in the encapsulated polyplex. Confocal microscopy confirmed intracellular localization of the targeting NGR/PEG/PDBA-SHA-PEI/pDNA microparticles, resulting in more enhanced uptake of the radiolabeled plasmid DNA and approximately 5- and 10-fold increase over the control tri-block Pluronic F68 copolymer and the non-targeting polyplex, respectively. More importantly, phagocytosis of the targeting microparticles neither altered the functionality of immature DCs nor the phenotypic expression of DC-specific cell surface molecules, CD80, CD86, CD40 and CD54 (ICAM-1), suggesting that uptake of the targeting microparticles by themselves did not induce DC maturation. Taken together, these results suggest that PLGA-PEG-PLGA encapsulation of this stealth targeting polyplex has no negative effects on key properties of immature DCs and should pave the way for targeting DCs for vaccination purposes.  相似文献   

20.
The main objective of this study was to prepare two types of nanoparticles with poly(d,l-lactide-co-glycolide) (PLGA) and polyethylenimine (PEI) polymers. Plasmid DNA (pDNA) was adsorbed either on PLGA/PEI nanoparticles, or as PEI/DNA complex onto the surface of PLGA nanoparticles. Both types of nanoparticles were prepared by the double emulsion method. The nanoparticles were characterized by their size, zeta potential and pDNA or PEI/DNA complex adsorption. The PEI/DNA complex adsorption was confirmed with ethidium bromide assay. pDNA adsorption onto PLGA/PEI nanoparticles (PLGA/PEI-DNA) was studied by electrophoresis on agarose gel. Cytotoxicity and transfection efficiency of both types of nanoparticle and PEI/DNA complexes formulations were studied in head and neck squamous carcinoma cell line (FaDu). To improve endosomal release, photochemical internalization (PCI) was used. The zeta potential increased when the PEI/DNA complex adsorbed onto PLGA nanoparticles (PLGA-PEI/DNA). Optimal pDNA adsorption efficiency was achieved for nitrogen/phosphorous ratio≥20/1. In vitro transfection and cells viability on FaDu cells with or without PCI were found to be variable depending on the type and concentration of nanoparticles. The results showed that transfection efficiency for PLGA/PEI-DNA or PLGA-PEI/DNA nanoparticles ranged between 2 and 80%, respectively. PCI was found to slightly improve the transfection efficiency for all formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号