首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetaldehyde is an intermediate of ethanol oxidation. It covalently binds to DNA, and is known as a carcinogen. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme that oxidizes acetaldehyde. Approximately 45% of Chinese and Japanese individuals have the inactive ALDH2 genotypes (ALDH2*2/*2 and ALDH2*1/*2), and Aldh2 knockout mice appear to be a valid animal model for humans with inactive ALDH2. This review gives an overview of published studies on Aldh2 knockout mice, which were treated with ethanol or acetaldehyde. According to these studies, it was found that Aldh2 ?/? mice (Aldh2 knockout mice) are more susceptible to ethanol and acetaldehyde-induced toxicity than Aldh2 +/+ mice (wild type mice). When mice were fed with ethanol, the mortality was increased. When they were exposed to atmospheres containing acetaldehyde, the Aldh2 ?/? mice showed more severe toxic symptoms, like weight loss and higher blood acetaldehyde levels, as compared with the Aldh2 +/+ mice. Thus, ethanol and acetaldehyde treatment affects Aldh2 knockout mice more than wild type mice. Based on these findings, it is suggested that ethanol consumption and acetaldehyde inhalation are inferred to pose a higher risk to ALDH2-inactive humans. These results also support that ALDH2-deficient humans who habitually consume alcohol have a higher rate of cancer than humans with functional ALDH2.  相似文献   

2.
3.
Aldehyde dehydrogenases (Aldhs) are a group of nicotinamide adenine dinucleotide phosphate-dependent enzymes that catalyze the oxidation of a wide spectrum of aldehydes to carboxylic acids. Tissue distribution and developmental changes in the expression of the messenger RNA (mRNA) of 15 Aldh enzymes were quantified in male and female mice tissues using the branched DNA signal amplification assay. Furthermore, the regulation of the mRNA expression of Aldhs by 15 typical microsomal enzyme inducers (MEIs) was studied. Aldh1a1 mRNA expression was highest in ovary; 1a2 in testis; 1a3 in placenta; 1a7 in lung; 1b1 in small intestine; 2 in liver; 3a1 in stomach; 3a2 and 3b1 expression was ubiquitous; 4a1, 6a1, 7a1, and 8a1 in liver and kidney; 9a1 in liver, kidney, and small intestine; and 18a1 in ovary and small intestine. mRNAs of different Aldh enzymes were detected at lower levels in fetuses than adult mice and gradually increased after birth to reach adult levels between 15 and 45 days of age, when the gender difference began to appear. Aromatic hydrocarbon receptor (AhR) ligands induced the liver mRNA expression of Aldh1a7, 1b1, and 3a1, constitutive androstane receptor (CAR) activators induced Aldh1a1 and 1a7, whereas pregnane X receptor (PXR) ligands and NF-E2 related factor 2 (Nrf2) activators induced Aldh1a1, 1a7, and 1b1. Peroxisome proliferator activator receptor alpha (PPAR alpha) ligands induced the mRNA expression in liver of almost all Aldhs. The Aldh organ-specific distribution may be important in elucidating their role in metabolism, elimination, and organ-specific toxicity of xenobiotics. Finally, in contrast to other phase-I metabolic enzymes such as CYP450 enzymes, Aldh mRNA expression seems to be generally insensitive to typical microsomal inducers except PPAR alpha ligands.  相似文献   

4.
Dependence on alcohol, a most widely used drug, has a heritability of 50-60%. Wistar-derived rats selectively bred as low-alcohol consumers for many generations present an allele (Aldh2(2)) of mitochondrial aldehyde dehydrogenase that does not exist in high-alcohol consumers, which mostly carry the Aldh2(1) allele. The enzyme coded by Aldh2(2) has a four- to five-fold lower affinity for NAD than that coded by Aldh2(1). The present study was designed to determine whether these polymorphisms account for differences in voluntary ethanol intake and to investigate the biological mechanisms involved. Low-drinker F0 Aldh2(2)/Aldh2(2) rats were crossed with high-drinker F0 Aldh2(1)/Aldh2(1) rats to obtain an F1 generation, which was intercrossed to obtain an F2 generation that segregates the Aldh2 alleles from other genes that may have been coselected in the breeding for each phenotype. Data show that, with a mixed genetic background, F2 Aldh2(1)/Aldh2(1) rats voluntarily consume 65% more alcohol (P<0.01) than F2 Aldh2(2)/Aldh2(2) rats. A major phenotypic difference was a five-fold higher (P<0.0025) peak blood acetaldehyde level following ethanol administration in the lower drinker F2 Aldh2(2)/Aldh2(2) compared to the higher drinker F2 Aldh2(1)/Aldh2(1) animals, despite the existence of identical steady-state levels of blood acetaldehyde in animals of both genotypes. Polymorphisms in Aldh2 play an important role in: (i) determining peak blood acetaldehyde levels and (ii) modulating voluntary ethanol consumption. We postulate that the markedly higher peak of blood acetaldehyde generated in Aldh2(2)/Aldh2(2)(2) animals is aversive, leading to a reduced alcohol intake in Aldh2(2)/Aldh2(2) versus that in Aldh2(1)/Aldh2(1) animals.  相似文献   

5.
6.
7.
The substrate preference of an aldehyde dehydrogenase induced in rat liver cytosol by 3-methylcholanthrene was examined. This enzyme, T-ALDH, is identical to the aldehyde dehydrogenase inducible in rat liver by 2,3,7,8-tetrachloro-dibenzo-p-dioxin and the tumor-associated aldehyde dehydrogenase found in rat hepatocellular neoplasms. With either NAD or NADP as coenzyme, the preferred substrates were the aliphatic aldehydes n-hexanal, n-nonanal, and isobutyraldehyde and the aromatic aldehydes 2,5-dihydroxybenzaldehyde, benzaldehyde, and 3-hydroxybenzaldehyde. The results indicate that T-ALDH may play a role in oxidizing a variety of aldehydes produced in physiological lipid metabolism. On the contrary, this isozyme does not seem to participate in the oxidation of small aliphatic aldehydes generated during lipid peroxidation. Similarly, no significant activity could be detected when the enzyme was tested with aldehydes produced in carbohydrate, amino acid, polyamine, steroid, and vitamin metabolism.  相似文献   

8.
9.
Increased levels of neuropeptide Y correlate with severity of left ventricular hypertrophy in vivo. At cardiomyocyte level, hypertrophy is characterised by increased mass and altered phenotype. The aims were to determine the contributions of increased synthesis and reduced degradation of protein to neuropeptide Y-mediated increase in mass, assess effects on gene expression, and characterise neuropeptide Y Y receptor subtype involvement. Neuropeptide Y (10 nM) increased protein mass of adult rat ventricular cardiomyocytes maintained in culture (24 h) (16%>basal) and de novo protein synthesis (incorporation of [(14)C]phenylalanine) (18%>basal). Neuropeptide Y (100 nM) prevented degradation of existing protein at 8 h. Actinomycin D (5 microM) attenuated increases in protein mass to neuropeptide Y (< or = 1 nM) but not to neuropeptide Y (10 nM). [Leu(31), Pro(34)]neuropeptide Y (10 nM), an agonist at neuropeptide Y Y(1) receptors, increased protein mass (25%>basal) but did not stimulate protein synthesis. Neuropeptide Y-(3-36) (10 nM), an agonist at neuropeptide Y Y(2) receptors, increased protein mass (29%>basal) and increased protein synthesis (13%>basal), respectively. Actinomycin D (5 microM) abolished the increase in protein mass elicited by neuropeptide Y-(3-36) but not that by [Leu(31), Pro(34)]neuropeptide Y. BIBP3226 [(R)-N2-(diphenylacetyl)-N-(4-hydroxyphenylmethyl)-D-arginine amide] (1 microM), a neuropeptide Y Y(1) receptor subtype-selective antagonist, and T(4) [neuropeptide Y-(33-36)](4), a neuropeptide Y Y(2) receptor subtype-selective antagonist, attenuated the increase in protein mass to 100 nM neuropeptide Y by 68% and 59%, respectively. Neuropeptide Y increased expression of the constitutive gene, myosin light chain-2 (MLC-2), maximally at 12 h (4.7-fold>basal) but did not induce (t< or = 36 h) expression of foetal genes (atrial natriuretic peptide (ANP), skeletal-alpha-actin and myosin heavy chain-beta). This increase was attenuated by 86% and 51%, respectively, by BIBP3226 (1 microM) and T(4) [neuropeptide Y-(33-36)](4) (100 nM). [Leu(31), Pro(34)]neuropeptide Y (100 nM) (2.4-fold>basal) and peptide YY-(3-36) (100 nM) (2.3 fold>basal) increased expression of MLC-2 mRNA at 12 h. In conclusion, initiation of cardiomyocyte hypertrophy by neuropeptide Y requires activation of both neuropeptide Y Y(1) and neuropeptide Y Y(2) receptors and is associated with enhanced synthesis and attenuated degradation of protein together with increased expression of constitutive genes but not reinduction of foetal genes.  相似文献   

10.
This study planned to isolation and characterization of AKR1A1 cDNA from Bap injected nile tilapia (Oreochromis niloticus), comparison of its characteristic structures with those of other species, characterization of AKR1A1 gene and promoter, and investigation of AKR1A1 mRNA expression in various organs of Bap injected tilapia. The cDNA was 1172?bp long which includes an open reading frame of 975?bp encoding a 324 amino acids protein and a stop codon. The sequence showed 3' and 5' non-coding regions of 179 and 18?bp. The amino acid sequence of O. niloticus AKR1A1 shows similarities of 60, 60, 60.6, 61.2 62.2, and 57.8% with mouse AKR1A1, Norway rat AKR1A1, zebrafish AKR1A1, African clawed frog AKR1A1, human, and yellow perch AKR1A1, respectively. Nucleotide sequence investigation of AKR1A1 gene and 5′-flanking region showed that the structural gene and the 5′-flanking region were approximately 2975?bp and 4006?bp in length, respectively. The protein-coding region contained eight exons, and one additional upstream exon. Real-time polymerase chain reaction (PCR) results showed that the highest level of AKR1A1 expression was found in bile (108.7), followed by kidney (77.9), muscles (37.3), and liver (24.7). mRNA levels of AKR1A1 were almost negligible in gills (0.6) while no detectable (ND) constitutive expression was detected in gut. In conclusion, our results concluded that tilapia AKR1A1 is inducible by BaP and have a significant function in the metabolism of xenobiotics and, therefore, may used as biomarker in fish  相似文献   

11.
Metabolism is one of the major determinants for age-related changes in susceptibility to chemicals. Aldehydes are highly reactive molecules present in the environment that also can be produced during biotransformation of xenobiotics and endogenous metabolism. Although the lung is a major target for aldehyde toxicity, early development of aldehyde dehydrogenases (ALDHs) in lung has been poorly studied. The expression of ALDH in liver and lung across ages (postnatal day 1, 8, 22, and 60) was investigated in Wistar-Han rats. In adult, the majority of hepatic ALDH activity was found in mitochondria, while cytosolic ALDH activity was the highest contributor in lung. Total aldehyde oxidation capability in liver increases with age, but stays constant in lung. These overall developmental profiles of ALDH expression in a tissue appear to be determined by the different composition of ALDH isoforms within the tissue and their independent temporal and tissue-specific development. ALDH2 showed the most notable tissue-specific development. Hepatic ALDH2 was increased with age, while the pulmonary form did not. ALDH1 was at its maximum value at postnatal day 1 (PND1) and decreased thereafter both in liver and lung. ALDH3 increased with age in liver and lung, although ALDH3A1 was only detectible in lung. Collectively, the present study indicates that, in the case of aldehyde exposure, the in vivo responses would be tissue and age dependent.  相似文献   

12.
Cyclophosphamides are pro-drugs whose killing agent is produced from an aldehyde that is formed by the action of a P450 oxidation step. The mustard from the aldehyde can destroy bone marrow cells as well as the tumor. Aldehyde dehydrogenase (EC 1.2.1.3) can oxidize the aldehyde and hence inactivate the cytotoxic intermediate but bone marrow has little, if any, of the enzyme. Others have shown that over-expression of the enzyme can afford protection of the marrow. A T186S mutant of the human stomach enzyme (ALDH3) that we developed has increased activity against the aldehyde compared to the native enzyme and HeLa cells transformed with the point mutant are better protected against the killing effect of the drug. It took threefold more drug to kill 90% of the cells transformed with the mutant compared to the native enzyme (15.8 compared to 5.1mM of a precursor of the toxic aldehyde). Analysis of molecular models makes it appear that removing the methyl group of threonine in the T186S mutant allows the bulky aldehyde to bind better. The mutant was found to be a poorer enzyme when small substrates such as benzaldehyde derivatives were investigated. Thus, the enzyme appears to be better only with large substrates such as the one produced by cyclophosphamide.  相似文献   

13.
14.
15.
4-Amino-4-methyl-pent-2-ynthioc acid S-methyl ester (ampal thiolester: ATE) was used as a lead compound to synthesise new amino-substituted derivatives of alpha, beta acetylenic thiolester compounds as inhibitors of aldehyde dehydrogenase 1, (ALDH1). Of these compounds, the dimethyl derivative (DIMATE) was a competitive irreversible inhibitor (K(i) approximately 280 microM) of baker's yeast ALDH1 in vitro showing 80% inhibition at 400 microM when preincubated with the enzyme for 30min, whereas the trimethyl ammonium and the morpholine derivatives showed only 15% inhibition at 600 microM even after 60min preincubation. ATE inhibited ALDH1 activity in ALDH1-transfected L1210 T cells resistant to hydroperoxycyclophosphamide (HCPA) and inhibited growth synergistically in the presence of HCPA. In non-transfected L1210 counterparts ATE did not potentiate growth inhibition by HCPA. DIMATE was a 30-100-fold more effective growth inhibitor than ATE. Endogenous ALDH1 activities of BAF(3) cells over-expressing different levels of bcl(2) (0-100%) were similar (16-20mU/mg protein) and were all inhibited by DIMATE, reaching 20-30% at 4 microM. Up to 4 microM no apoptosis, as measured by DNA-fragmentation was observed, but at 8 and 10 microM DIMATE, DNA-fragmentation increased concomitantly with ALDH1 inhibition. No DNA-fragmentation was observed with ALDH1 irreversible inhibitors devoid of a thiolester group or with thiolesters which were not inhibitors of ALDH1. It was seen only with competitive irreversible inhibitors having the methanethiol and enzyme-inhibitory moieties. The methanethiol putatively released from DIMATE by ALDH1 esterase activity plays a role, albeit undefined, in lowering intramitochondrial glutathione levels which decreased by 47% as DNA-fragmentation increased.  相似文献   

16.
An extensive series of 3-(1-indolinyl)benzylamines and related compounds was synthesized and tested for analgesic activity. After a detailed study of structure-activity relationships, 3-(1-indolinyl)benzylamine (2b) was selected for further investigation as the most interesting member of this novel class of compounds. It was active in both the phenylquinone writhing and tail-flick assays for analgesic activity. No motor deficits were observed in the rotorod test, and 2b was found to be free of any other effects on the central nervous system. The compound did not bind to opiate receptors, since it was inactive in inhibiting the stereospecific binding of [3H]naloxone in rat brain homogenates. Thus, 3-(1-indolinyl)benzylamine represents a novel analgesic with an unusual chemical structure and biological profile.  相似文献   

17.
18.
A major and a minor form of dihydrodiol dehydrogenase were co-purified with 17 beta-hydroxysteroid dehydrogenase and aldehyde reductase, respectively, to apparent homogeneity from liver cytosol of male ddY mice. The activities of dihydrodiol dehydrogenase and testosterone dehydrogenase or aldehyde reductase of the two enzyme forms comigrated electrophoretically. The major form of the enzyme oxidized 17 beta-hydroxysteroids and nonsteroidal alicyclic alcohols and reduced 17-ketosteroids and various synthetic carbonyl compounds, showing higher affinity for steroids than for xenobiotics. The activity of this enzyme form toward benzene dihydrodiol and testosterone exhibited identical thermostability and susceptibility to inhibition by quercitrin, SH-reagents, nonsteroidal estrogens and anti-inflammatory agents. On the other hand, the minor form of the enzyme, which oxidized benzene dihydrodiol but not 17 beta-hydroxysteroids, also reduced various aldehydes well and was specifically inhibited by barbiturates and sorbinil. These results indicate that the major form of dihydrodiol dehydrogenase is identical to 17 beta-hydroxysteroid dehydrogenase and the minor enzyme form to aldehyde reductase.  相似文献   

19.
This review deals with the antisense technology that, together, forms a very powerful tool to inhibit gene expression and may be used for studying gene function (functional genomics) and for therapeutic purpose (antisense gene therapy). Antisense oligonucleotides block translation of target mRNAs in a sequence specific manner, either by steric blocking of translation or by destruction of the bound mRNA via RNase-H enzyme. For proper designing, accessible sites of the target RNA for binding antisense oligonucleotides have to be identified. Whether being used as an experimental reagent or pharmaceuticals, several problems or drawbacks have to be overcome for successful applications. Toward this direction, various modifications of sugar, bases and phosphate backbone of antisense oligonucleotides have been attempted. In recent years valuable progress has been achieved through the development of advanced cellular delivery systems and novel chemically modified nucleotides with improved properties such as enhanced serum stability, higher target affinity and low toxicity. These qualities and the specificity of binding make this technique a potentially powerful therapeutic tool for gene targeting and/ or expression regulation. This review discusses the basis of structural design, mode of action, chemical modification, enhanced cellular uptake, therapeutic application and future possibilities in the field of advanced antisense technology.  相似文献   

20.
The rainbow trout CYP1A1 and CYP1A3 genes share 96% amino acid identity and have similar enzymatic activity. The expression of CYP1A1 and 1A3 genes was investigated in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated rainbow trout tissues, sac fry and cell lines. Both CYP1A1 and CYP1A3 were induced by TCDD in all the tissues examined. While CYP1A3 gene was expressed constitutively at higher levels than CYP1A1 in trout intestine, preferential expression of CYP1A1 occurred in trout liver, heart, kidney and trout sac fry. In rainbow trout gonad (RTG)-2 and rainbow trout hepatoma (RTH)-149 cell lines, CYP1A1 was constitutively expressed and induced by exposure to TCDD, but CYP1A3 message was not detected, even after TCDD treatment. Quantitative analysis of CYP1A genes expression in rainbow trout liver revealed that TCDD induced CYP1A1 expression more than 50-fold and CYP1A3 RNA levels increased at least 100-fold over untreated fish. The cell- and tissue-specific expression indicates that these closely related CYP1A genes are independently regulated and that negative regulation may play a role in CYP1A3 gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号