首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The human visual system is considered to have at least two different mechanisms for perceiving motions: one for luminance-based (first-order) motions and another for non-luminance-based (second-order) motions. In this study, we examined the perception of first- and second-order motions using four different types of stimulus cues (luminance, contrast, texture, and flicker) while using whole head magnetoencephalography (MEG) to measure human brain responses to those apparent motions. MEG responses to all stimuli were recorded from the occipito-temporal area (possibly human MT/V5+), and response properties (peak latency and amplitude) varied with stimulus cues. Further, we observed various effects of luminance-addition to the non-luminance cues on the response properties that could not be explained by the magnetic field distribution and/or the visibility of the stationary object. The results indicate that differences in response properties elicited by various stimulus cues represent differences in the neural processes underlying apparent motions with various cues. We suggest that the distinct "preprocessing" of each stimulus cue occurs before the common process for apparent motion, and the response property changes associated with different cues are related to differences in preprocessing that may occur in a distributed cortical network that include the striate and extrastriate visual cortex.  相似文献   

2.
Among various kinds of visual motion, wide field coherent visual motion should have characteristic physiological significance regarding the relationship between the external world and us. To detect veridical visual motion in the surrounding environment, specific mechanisms are necessary to differentiate it from the wide field coherent motion due to one's own movement. To disclose whether and how the neural process of wide field coherent motion is different from that of other motions, we measured cortical responses to visual motions in humans using magnetoencephalography (MEG) manipulating both field size and coherence. Results showed that an increase in field size enhanced the response at sensors around the parieto-occipital area, and that the difference in activity between coherent and incoherent motion tended to be larger for the wide field. These findings suggest that wide field coherent and incoherent motion is detected differently at least in part in the parieto-occipital area, and suggest the neural process of wide field coherent motion could be pronouncedly tapped by a combination of field size and coherence.  相似文献   

3.
Although direction selectivity is a cardinal property of neurons in the visual motion detection system, movement of numerous elements without global direction (incoherent motion) has been shown to activate human and monkey visual systems, as does coherent motion which has global direction. We used magnetoencephalography to investigate the neural process underlying responses to these types of motions in the human extrastriate cortex. Both motions were created using a random dot kinematogram and four speeds (0, 0.6, 9.6 and 25 degrees /s). The visual stimuli were composed of two successive motions at different speeds; a coherent motion at a certain speed that changed to incoherent motion at another speed or vice versa. Magnetic responses to the change in motion consisted of a few components, the first of which was always largest. The peak latency of the first component was inversely related to the speed of the preceding motion, but for both motions it was not affected by the speed of the subsequent motion. For each subject, the estimated origin of the first component was always in the extrastriate cortex, and this changed with the speed of the preceding motion. For both motions, the location for the slower preceding motion was lateral to that for the faster preceding motion. Although the latency changes of the two motions differed, their overall response properties were markedly similar. These findings show that the speed of incoherent motion is represented in the human extrastriate cortex neurons to the same degree as coherent motion. We consider that the human visual system has a distinct neural mechanism to perceive random dots' motion even though they do not move in a specific direction as a whole.  相似文献   

4.
To investigate the detail response properties for the incoherent motion of the human visual system, we measured the magnetoencephalographic neural responses to both coherent and incoherent motions at various speeds (from 0.65 to 20.6 degrees /s). The peak latency of the first component of the response from the extrastriate area was inversely related to the speed of motion (from 228 to 155 ms in mean) and there was no significant difference in the latency change between the two types of motion. There were significant differences in the peak amplitude change with the motion speed and a difference in the distribution of the magnetic fields of the responses was seen in six of the seven subjects. The results show that the speed of the incoherently moving dots is represented in the human visual system in the same manner as that of coherently moving dots. The differences in the magnetic fields between the two responses indicate that the same speed-related response changes can occur with different neural populations responsible for both motions.  相似文献   

5.
Early visual motion signals are local and one-dimensional (1-D). For specification of global two-dimensional (2-D) motion vectors, the visual system should appropriately integrate these signals across orientation and space. Previous neurophysiological studies have suggested that this integration process consists of two computational steps (estimation of local 2-D motion vectors, followed by their spatial pooling), both being identified in the area MT. Psychophysical findings, however, suggest that under certain stimulus conditions, the human visual system can also compute mathematically correct global motion vectors from direct pooling of spatially distributed 1-D motion signals. To study the neural mechanisms responsible for this novel 1-D motion pooling, we conducted human magnetoencephalography (MEG) and functional MRI experiments using a global motion stimulus comprising multiple moving Gabors (global-Gabor motion). In the first experiment, we measured MEG and blood oxygen level-dependent responses while changing motion coherence of global-Gabor motion. In the second experiment, we investigated cortical responses correlated with direction-selective adaptation to the global 2-D motion, not to local 1-D motions. We found that human MT complex (hMT+) responses show both coherence dependency and direction selectivity to global motion based on 1-D pooling. The results provide the first evidence that hMT+ is the locus of 1-D motion pooling, as well as that of conventional 2-D motion pooling.  相似文献   

6.
To examine the neural mechanism underlying illusory-contour perception, we measured the magnetic responses of the human visual cortex to an abutting-line grating inducing illusory contours (test stimulus) and a non-abutting-line grating (control stimulus) using the technique of magnetoencephalography (MEG). In the initial latency period of 60-80 ms, the MEG response to the test stimulus was nearly identical with that to the control stimulus, but in the subsequent period of 80-150 ms, the former was larger than the latter. The origin of the peak MEG response to the test stimulus was estimated to be in the vicinity of striate cortex/extrastriate visual cortex for two of the four subjects. These results suggest that, in accord with those of the previous electrophysiological and functional magnetic resonance imaging studies, illusory-contour signals are generated in the very early stage(s) of processing in the primate visual cortex.  相似文献   

7.
No HeadingSummary: To investigate the cerebral mechanisms of auditory detection of motion velocity in the human brain, neuromagnetic fields elicited by six moving sounds and one stationary sound were investigated with a whole-cortex magnetoencephalography (MEG) system. The stationary sound evoked only one clear response at a latency of 109±6 ms (first response, or M100), but the six moving sounds evoked two clear responses: an earlier response at a latency of 116±7 ms (M100) and a later response at a latency ranging from 180 to 760 ms (magnetic motion response, or MM). The latency and amplitude of the MM were inversely related to the velocity of the moving sounds (p<0.02). The magnetic source of MM was related to the velocity of the moving sounds (p<0.05). A dynamic neuromagnetic response, MM, was elicited by the moving sounds, which likely encoded the neural processing of auditory detection of motion velocity. A specific neural network that processes the motion velocity in the human brain probably includes the bilateral superior temporal cortices and the brainstem. The left posterior and lateral part of the auditory cortex may play a pivotal role in the auditory detection of motion velocity.We thank Dr. Paul Babyn for his help and suggestions in these experiments. This paper was prepared with the assistance of Prof. Sharon Nancekivell, medical editor, Guelph, Ontario, Canada. This study was partially supported by the Savoy Foundation (Research Grant 77227).  相似文献   

8.
Previous studies have reported a visual analogue of the auditory mismatch negativity (MMN) response that is based on sensory memory. The neural generators and attention dependence of the visual MMN (vMMN) still remain unclear. We used magnetoencephalography (MEG) and spatio-temporal source localization to determine the generators of the sensory-memory-based vMMN response to non-attended deviants. Ten participants were asked to discriminate between odd and even digits presented at the center of the visual field while grating patterns with different spatial frequencies were presented outside the focus of attention. vMMN was calculated as the difference between MEG responses to infrequent gratings in oddball blocks and the same gratings in equiprobable blocks. The peak latency of the vMMN response was between 100 and 160 ms. The neuromagnetic sources of the vMMN localized in the occipital cortex differed from the sources evoked by the equiprobable gratings and were stimulus-dependent. Our results suggest the existence of separate neural systems for pre-attentive memory-based detection of visual change and provide new evidence that the vMMN is feature-specific.  相似文献   

9.
We investigated whether direction information is represented in the population-level neural response evoked by the visual motion stimulus, as measured by magnetoencephalography. Coherent motions with varied speed, varied direction, and different coherence level were presented using random dot kinematography. Peak latency of responses to motion onset was inversely related to speed in all directions, as previously reported, but no significant effect of direction on latency changes was identified. Mutual information entropy (IE) calculated using four-direction response data increased significantly (>2.14) after motion onset in 41.3% of response data and maximum IE was distributed at approximately 20 ms after peak response latency. When response waveforms showing significant differences (by multivariate discriminant analysis) in distribution of the three waveform parameters (peak amplitude, peak latency, and 75% waveform width) with stimulus directions were analyzed, 87 waveform stimulus directions (80.6%) were correctly estimated using these parameters. Correct estimation rate was unaffected by stimulus speed, but was affected by coherence level, even though both speed and coherence affected response amplitude similarly. Our results indicate that speed and direction of stimulus motion are represented in the distinct properties of a response waveform, suggesting that the human brain processes speed and direction separately, at least in part.  相似文献   

10.
Humans can estimate the speed of an object's motion independently of other visual information. Although speed-related neural activity is known to exist in the primate brain, there has been no physiological study that investigated where and how the speed of motion is represented in the human brain. Nine different combinations of spatial and temporal frequencies were used to make drifting sinusoidal grating of five different speeds (from 1.5 to 24 deg/s). Using the stimuli, we evaluated whether the magnetoencephalographic response property changes were due to a speed-tuned mechanism or to separable spatial and temporal frequency detection mechanisms. The latency change was caused mainly by an inseparable speed-tuned mechanism. In contrast, the amplitude was inversely related to the spatial frequency and was also affected by the temporal frequency differently depending on the frequency. Our results support the view that the human visual system has three sets of mechanisms tuned to spatial frequency, temporal frequency, and speed.  相似文献   

11.
Humans perceive motion when numerous small dots pattern is followed by one of the same pattern but with all the dots shifted a little in one direction. When the amount of shift exceeds a level humans no more perceive motion even though physical visual information does not change. Using this stimulus, we addressed to elucidate the temporal structure of the neural activity related to this apparent motion perception. The magnetic responses to the random-dot patterns with various amounts of shift were measured while the subjects were performing a direction discrimination task. A significant magnetic response amplitude change occurred with three distinct peaks when the response inducing apparent motion was compared with those inducing no motion without change in the response latencies. The major difference occurred at about 110, 140, 210 ms after the stimulus onset. The response origin was always within the occipitotemporal area. The results indicate that the neural activity for the perception of apparent motion can be measured by MEG that occur at least 110 ms after the stimulus onset possibly in the human MT+. Three distinct peaks in the response difference may represent the sequential multiple neural process proposed theoretically though further study is necessary to prove.  相似文献   

12.
Neurons in area MT, a motion-sensitive area of extrastriate cortex, respond to a step of target velocity with a transient-sustained firing pattern. The transition from a high initial firing rate to a lower sustained rate occurs over a time course of 20-80 ms and is considered a form of short-term adaptation. In the present paper, we compared the tuning of the adaptation to the neuron's tuning to direction and speed. The tuning of adaptation was measured with a condition/test paradigm in which a testing motion of the preferred direction and speed of the neuron under study was preceded by a conditioning motion: the direction and speed of the conditioning motion were varied systematically. The response to the test motion depended strongly on the direction of the conditioning motion. It was suppressed in almost all neurons by conditioning motion in the same direction and could be either suppressed or enhanced by conditioning motion in the opposite direction. Even in neurons that showed suppression for target motion in the nonpreferred direction, the adaptation and response direction tuning were the same. The speed tuning of adaptation was linked much less tightly to the speed tuning of the response of the neuron under study. For just more than 50% of neurons, the preferred speed of adaptation was more than 1 log unit different from the preferred response speed. Many neurons responded best when slow motions were followed by faster motions (acceleration) or vice versa (deceleration), suggesting that MT neurons may encode information about the change of target velocity over time. Finally, adaptation by conditioning motions of different directions, but not different speeds, altered the latency of the response to the test motion. The adaptation of latency recovered with shorter intervals between the conditioning and test motions than did the adaptation of response size, suggesting that latency and amplitude adaptation are mediated by separate mechanisms. Taken together with the companion paper, our data suggest that short-term motion adaptation in MT is a consequence of the neural circuit in MT and is not mediated by either input-specific mechanisms or intrinsic mechanisms related to the spiking of individual neurons. The circuit responsible for adaptation is tuned for both speed and direction and has the same direction tuning as the circuit responsible for the initial response of MT neurons.  相似文献   

13.
A fundamental trait of human beings is the ability to discern information communicated by others. The human body is one of the important sources of such information. To date, several researchers have reported two body-selective regions in the brain—the extrastriate body area (EBA) and fusiform body area. As compared to the number of studies on spatial distribution, studies on the temporal processing of body perception are few. The electroencephalography (EEG) findings of a recent study indicate that observation of the human body induces a remarkable response leading to the generation of event-related-potentials that peak at 190 ms. However, source localization by using EEG has limitations. The advantage of magnetoencephalography (MEG) is that it enables localization of cortical activities and has excellent temporal resolution. In this study, we used MEG to measure the neural responses underlying the perception of the human body. Our results suggest that cortical activation induced by body images was observed in the bilateral EBA region with a latency of 190 ms and right-hemispheric dominance. Our study revealed the regions involved and the latency differences between these regions in body perception. Further, our results show the usefulness of MEG for body perception studies and suggest that like the face, the body plays a unique role in the human recognition process.  相似文献   

14.
Research on the temporal characteristics of visual processing, as measured with critical flicker fusion or the latency of visual evoked potential (VEP), shows controversial results if different eccentricities of visual stimuli are compared. To clarify this question, a direct measure of cortical activity with magnetoencephalography (MEG) was applied to examine the neuronal summation latency and peak latency for both near and far peripheral stimuli. Consistent with cortical magnification, the peak amplitude for less eccentric stimuli was larger than that for more eccentric stimuli. More importantly, the current data also demonstrated longer cortical summation latency and peak latency for more eccentric visual stimuli, but only the summation latency difference between near and far stimuli correlated with the peak amplitude difference between near and far stimuli. These results suggest dissociable mechanisms of summation latency and peak latency with respect to their contributions to the stimulus eccentricity effect, and provide potential explanations for controversial results in previous studies.  相似文献   

15.
A sudden change in the direction of motion is a particularly salient and relevant feature of visual information. Extensive research has identified cortical areas responsive to visual motion and characterized their sensitivity to different features of motion, such as directional specificity. However, relatively little is known about responses to sudden changes in direction. Electrophysiological data from animals and functional imaging data from humans suggest a number of brain areas responsive to motion, presumably working as a network. Temporal patterns of activity allow the same network to process information in different ways. The present study in humans sought to determine which motion-sensitive areas are involved in processing changes in the direction of motion and to characterize the temporal patterns of processing within this network of brain regions. To accomplish this, we used both magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). The fMRI data were used as supplementary information in the localization of MEG sources. The change in the direction of visual motion was found to activate a number of areas, each displaying a different temporal behavior. The fMRI revealed motion-related activity in areas MT+ (the human homologue of monkey middle temporal area and possibly also other motion sensitive areas next to MT), a region near the posterior end of the superior temporal sulcus (pSTS), V3A, and V1/V2. The MEG data suggested additional frontal sources. An equivalent dipole model for the generators of MEG signals indicated activity in MT+, starting at 130 ms and peaking at 170 ms after the reversal of the direction of motion, and then again at approximately 260 ms. Frontal activity began 0-20 ms later than in MT+, and peaked approximately 180 ms. Both pSTS and FEF+ showed long-duration activity continuing over the latency range of 200-400 ms. MEG responses in the region of V3A and V1/V2 were relatively small, and peaked at longer latencies than the initial peak in MT+. These data revealed characteristic patterns of activity in this cortical network for processing sudden changes in the direction of visual motion.  相似文献   

16.
Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed.  相似文献   

17.
Although it has been shown that an alternative dominant percept induced by an ambiguous visual scene has neural correlates in various cortical areas, it is not known how such a dominant percept is maintained until it switches to another. We measured the primary visual response to the two-frame bistable apparent motion stimulus (stroboscopic alternative motion) when observers continuously perceived one motion and compared this with the response for another motion using magnetoencephalography. We observed a response component at around 160 ms after the frame change, the amplitude of which depended on the perceived motion. In contrast, brain responses to less ambiguous and physically unambiguous motions in both the horizontal and vertical directions did not evoke such a component. The differential response evoked by the bistable apparent motion is therefore distinct from directionally-selective visual responses. The results indicate the existence of neural activity related to establish and maintain one dominant percept, the magnitude of which is related to the ambiguity of the stimulus. This is in the line with the currently proposed idea that dominant percept is established in the distributed cortical areas including the early visual areas. Further, the existence of the neural activity induced only by the ambiguous image suggests that the competitive neural activities for the two possible percepts exist even when one dominant image is continuously perceived.  相似文献   

18.
Adaptation is a general property of almost all neural systems and has been a longstanding tool of psychophysics because of its power to isolate and temporarily reduce the contribution of specific neural populations. Recently, adaptation designs have been extensively applied in functional MRI (fMRI) studies to infer neural selectivity in specific cortical areas. However, there has been considerable variability in the duration of adaptation used in these experiments. In particular, although long-term adaptation has been solidly established in psychophysical and neurophysiological studies, it has been incorporated into few fMRI studies. Furthermore, there has been little validation of fMRI adaptation using stimulus dimensions with well-known adaptive properties (e.g., orientation) and in better understood regions of cortex (e.g., primary visual cortex, V1). We used an event-related fMRI experiment to study long-term orientation adaptation in the human visual cortex. After long-term adaptation to an oriented pattern, the fMRI response in V1, V2, V3/VP, V3A, and V4 to a test stimulus was proportional to the angular difference between the adapting and test stimuli. However, only V3A and V4 showed this response pattern with short-term adaptation. In a separate experiment, we measured behavioral contrast detection thresholds after adaptation and found that the fMRI signal in V1 closely matched the psychophysically derived contrast detection thresholds. Similar to the fMRI results, adaptation induced threshold changes strongly depended on the duration of adaptation. In addition to supporting the existence of adaptable orientation-tuned neurons in human visual cortex, our results show the importance of considering timing parameters in fMRI adaptation experiments.  相似文献   

19.
To investigate the cortical mechanisms for motion perception in human V5, we measured visual evoked magnetic fields in response to random dot kinematograms (RDKs) of three different coherence levels (50, 70 and 100%) using a 122-channel whole-head magnetometer. As the coherence level increased, the peak amplitude measured by the root mean square (RMS) of the local response increased significantly (7.4+/-1.0, 9.5+/-1.5 and 15.5+/-3.2 fT/cm on the right, 6.4+/-0.3, 7.8+/-0.7 and 12.5+/-0.9 fT/cm on the left; for the coherence level of 50, 70 and 100%, respectively). There was no significant difference between the hemispheres. As for the peak latency, there was no significant difference in terms of coherence levels or hemispheres. The response was localized posterior to the junction of the ascending limb of the inferior temporal and lateral occipital sulci (human V5). These findings indicate that processing of global motion in terms of the synchronized portion correlates well with the response amplitude but not with its latency. Thus, we could estimate the magnetic responses of human V5 non-invasively by presenting different coherence levels of the visual motion stimuli. Hemispheric laterality was recognized, although the dominant side varied among subjects.  相似文献   

20.
A person's ability to detect a weak visual target stimulus varies from one viewing to the next. We tested whether the trial-to-trial fluctuations of neural population activity in the human brain are related to the fluctuations of behavioral performance in a "yes-no" visual motion-detection task. We recorded neural population activity with whole head magnetoencephalography (MEG) while subjects searched for a weak coherent motion signal embedded in spatiotemporal noise. We found that, during motion viewing, MEG activity in the 12- to 24-Hz ("beta") frequency range is higher, on average, before correct behavioral choices than before errors and that it predicts correct choices on a trial-by-trial basis. This performance-predictive activity is not evident in the prestimulus baseline and builds up slowly after stimulus onset. Source reconstruction revealed that the performance-predictive activity is expressed in the posterior parietal and dorsolateral prefrontal cortices and, less strongly, in the visual motion-sensitive area MT+. The 12- to 24-Hz activity in these key stages of the human dorsal visual pathway is correlated with behavioral choice in both target-present and target-absent conditions. Importantly, in the absence of the target, 12- to 24-Hz activity tends to be higher before "no" choices ("correct rejects") than before "yes" choices ("false alarms"). It thus predicts the accuracy, and not the content, of subjects' upcoming perceptual reports. We conclude that beta band activity in the human dorsal visual pathway indexes, and potentially controls, the efficiency of neural computations underlying simple perceptual decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号