首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: To evaluate cellular labeling of immune cells using micron-sized iron oxide particles (MPIOs) and evaluate the MR relaxivity and MRI detection of the labeled cells. MATERIALS AND METHODS: Immune cells isolated from mice and rats were labeled with three different sizes of MPIO particles (0.35, 0.90, or 1.63 microm). These labeled cells were characterized using transmission electron microscopy (TEM), fluorescence microscopy, flow cytometry, MR relaxometry, and MRI. RESULTS: Macrophage uptake of MPIOs was found to be highest for the 1.63-microm size particles. MR relaxivity measurements indicated greater spin-spin relaxation for MPIO-labeled cells relative to cells labeled with nanometer-sized ultra-small superparamagnetic iron oxide (USPIO) particles with similar iron content. TEM and fluorescence microscopy indicated cellular uptake of multiple MPIO particles per cell. Macrophages labeled with 1.63-microm MPIOs had an average cellular iron uptake of 39.1 pg/cell, corresponding to approximately 35 particles per cell. CONCLUSION: Cells labeled with one or more MPIO particles could be readily detected ex vivo at 11.7 Tesla and after infusion of the MPIO-labeled macrophages into the kidney of a rat, hypointense regions of the outer cortex are observed, in vivo, by MRI at 4.7 Tesla.  相似文献   

2.

Purpose:

To evaluate the feasibility of using micron‐sized superparamagnetic iron oxide particles (MPIOs) as an effective labeling agent for monitoring bone marrow‐derived mesenchymal stromal cell (BMSC) migration in the brain using magnetic resonance imaging (MRI) in a rat model of stroke and whether the accumulation of MPIO‐labeled BMSCs can be differentiated from the accumulation of free MPIO particles or hemoglobin breakdown at a site of neuronal damage.

Materials and Methods:

In this study BMSCs were labeled with iron oxide and their pattern of migration following intravenous injection in a rat stroke model was monitored using a clinical MRI system followed by standard histopathology. The migration pattern was compared between intravenous injection of BMSCs alone, BMSCs labeled with MPIOs, and MPIO particles alone.

Results:

The results demonstrated that while MRI was highly sensitive in the detection of iron oxide particle‐containing cells in areas of neuronal ischemia, the true origin of cells containing iron oxide particles remains ambiguous. Therefore, detection of iron particles may not be a suitable strategy for the detection of BMSCs in the brain in a stroke model.

Conclusion:

This study suggests that the use of MPIOs as labeling agents are insufficient to conclusively determine the localization of iron within cells in regions of neuronal ischemia and hemorrhage. J. Magn. Reson. Imaging 2013;37:1409–1418. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Superparamagnetic iron oxide particles can be utilized to label cells for immune cell and stem cell therapy. The labeled cells cause significant field distortions induced in their vicinity, which can be detected with magnetic resonance imaging (MRI). In conventional imaging, the signal voids arising from the field distortions lead to negative contrast, which is not desirable, as detection of the cells can be masked by native low signal tissue. In this work, a new method for visualizing magnetically labeled cells with positive contrast is proposed and described. The technique presented is based on the susceptibility‐weighted imaging (SWI) post‐processing algorithm. Phase images from gradient‐echo sequences are evaluated pixel by pixel, and a mask is created with values ranging from 0 to 1, depending on the phase value of the pixel. The magnitude image is then multiplied by the mask. With an appropriate mask function, positive contrast in the vicinity of the labeled cells is created. The feasibility of this technique is proved using an agar phantom containing superparamagnetic iron oxide particles–labeled cells and an ex vivo bovine liver. The results show high potential for detecting even small labeled cell concentrations in structurally inhomogeneous tissue types. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
How stem cells promote myocardial repair in myocardial infarction (MI) is not well understood. The purpose of this study was to noninvasively monitor and quantify mesenchymal stem cells (MSC) from bone marrow to MI sites using magnetic resonance imaging (MRI). MSC were dual‐labeled with an enhanced green fluorescent protein and micrometer‐sized iron oxide particles prior to intra‐bone marrow transplantation into the tibial medullary space of C57Bl/6 mice. Micrometer‐sized iron oxide particles labeling caused signal attenuation in T2*‐weighted MRI and thus allowed noninvasive cell tracking. Longitudinal MRI demonstrated MSC infiltration into MI sites over time. Fluorescence from both micrometer‐sized iron oxide particles and enhanced green fluorescent protein in histology validated the presence of dual‐labeled cells at MI sites. This study demonstrated that MSC traffic to MI sites can be noninvasively monitored in MRI by labeling cells with micrometer‐sized iron oxide particles. The dual‐labeled MSC at MI sites maintained their capability of proliferation and differentiation. The dual‐labeling, intra‐bone marrow transplantation, and MRI cell tracking provided a unique approach for investigating stem cells' roles in the post‐MI healing process. This technique can potentially be applied to monitor possible effects on stem cell mobilization caused by given treatment strategies. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
The feasibility of in vivo cellular imaging using a 1.5 T clinical magnet was studied in the mouse. Hybridoma cells were labeled with anionic gamma-Fe2O3 superparamagnetic iron oxide nanoparticles. These were internalized by the endocytose pathway. Both electron spin resonance and magnetophoresis as a measure of the labeled cells migration velocity under a magnetic field were used to quantify particle uptake. A fast (< 2 hr) and substantial (up to 5 pg of iron per cell) internalization of nanoparticles by hybridomas was found, with good agreement between the two methods used. Hybridomas labeled with 2.5 pg iron per cell were injected intraperitoneally to male Swiss nude mice. A decrease in the spleen signal, suggesting a "homing" of labeled hybridomas to this organ, was found 24 hr later by MRI performed at 1.5 T. Furthermore, in labeled cells recovered from the spleen by ex vivo magnetic sorting, a mean of 0.5 pg iron per cell was found, i.e., a value five times lower than that of the injected hybridomas. This finding is consistent with in vivo proliferation of these cells. In addition, the amount of labeled hybridomas present in the spleen was found to correlate with MRI signal intensity.  相似文献   

6.
Human mesenchymal stem cells (hMSCs) were labeled with Ferucarbotran by simple incubation and cultured for up to 14 d. Iron content was determined by spectrometry and the intracellular localization of the contrast agent uptake was studied by electron and confocal microscopy. At various time points after labeling, ranging from 1 to 14 d, samples with viable or lysed labeled hMSCs, as well as nonlabeled controls, underwent MRI. Spin‐echo (SE) and gradient‐echo (GE) sequences with multiple TRs and TEs were used at 1.5T and 3T on a clinical scanner. Spectrometry showed an initial iron oxide uptake of 7.08 pg per cell. Microscopy studies revealed lysosomal compartmentalization. Contrast agent effects of hMSCs were persistent for up to 14 d after labeling. A marked difference in the T2 effect of compartmentalized iron oxides compared to free iron oxides was found on T2‐weighted sequences, but not on T‐weighted sequences. The observed differences may be explained by the loss of compartmentalization of iron oxide particles, the uniformity of distribution, and the subsequent increase in dephasing of protons on SE images. These results show that viable cells with compartmentalized iron oxides may—in principle—be distinguished from lysed cells or released iron oxides. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
PURPOSE: To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. MATERIALS AND METHODS: Lymphocytes and 9L rat gliosarcoma cells were labeled with ferumoxides-protamine sulfate complex (FE-PRO). The cells were labeled efficiently (more than 95%) and the iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 pg). Phantom tubes containing different numbers of labeled or unlabeled cells, as well as different concentrations of FE-PRO, were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. RESULTS: Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7T and 3T MRI systems, and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers, but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. CONCLUSION: Our data indicate that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups.  相似文献   

8.
We report the development of superparamagnetic iron oxide (SPIOs) nanoparticles and investigate the migration of SPIO‐labeled dendritic cells (DCs) in a syngeneic mouse model using magnetic resonance (MR) imaging. The size of the dextran‐coated SPIO is roughly 30 nm, and the DCs are capable of independent uptake of these particles, although not at levels comparable to particle uptake in the presence of a transfecting reagent. On average, with the assistance of polylysine, the particles were efficiently delivered inside DCs within one hour of incubation. The SPIO particles occupy approximately 0.35% of cell surface and are equivalent to 34.6 pg of iron per cell. In vivo imaging demonstrated that the labeled cells migrated from the injection site in the footpad to the corresponding popliteal lymph node. The homing of labeled cells in the lymph nodes resulted in a signal drop of up to 79%. Furthermore, labeling DCs with SPIO particles did not compromise cell function, we demonstrated that SPIO‐enhanced MR imaging can be used to track the migration of DCs effectively in vivo. Magn Reson Med 63:1383–1390, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Strategies have been developed for labeling cells with micron sized iron oxide particles (MPIOs) for in vivo visualization of cells by magnetic resonance imaging. Although this approach is well established and has a variety of applications, current protocols employ long labeling times. It has been previously demonstrated that incubation of dextran coated iron oxide nanoparticles with positively charged transfection agents, such as poly‐L ‐lysine increases labeling efficiency. Therefore, we sought to ascertain whether preincubating MPIOs with various quantities of poly‐L ‐lysine would similarly enhance the rate of magnetic cell labeling. This was also tested against an NH2 functionalized, commercially available MPIO. Indeed, we demonstrate significantly increased rate of magnetic cell labeling with MPIOs previously incubated with varying amounts of poly‐L ‐lysine, with robust intracellular labeling at 2 hours. Yet the most robust labeling was achieved with the MPIO‐NH2. Interestingly, even for particle formulations which still had negative zeta potential, enhancement of magnetic cell labeling was achieved. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
Gadofluorine is a novel macrocyclic, amphiphilic gadolinium-based contrast agent. We found that malignant glioma cells could be labeled in vitro using Gadofluorine without the need for transfection agents or any other additional means. Labeling with Gadofluorine enhanced the visualization of glioma cells in T(1)-weighted sequences, even if the cells had been cultured in medium without Gadofluorine over several days. The intracellular uptake of Gadofluorine was measured and the loss of relevant amounts of Gadofluorine into the cell culture medium was ruled out by MRI. Confocal laser fluorescence microscopy revealed Cy-5-labeled Gadofluorine in the perinuclear cytoplasmic region, but neither within the nucleus nor bound to the cell membrane. Adverse effects of cellular Gadofluorine uptake were ruled out by proliferation and migration assays. Finally, in vivo analyses provided good visibility of labeled glioma cells in T(1)-weighted sequences after intracerebral injection in mice for more than 2 weeks. We thus conclude that Gadofluorine can easily be used to label glioma cells in vitro without affecting glioma cell biology. Gadofluorine provides an interesting alternative for cellular labeling if iron oxide particles are incorporated insufficiently by target cells or if the vicinity of susceptibility artifacts prohibits the use of signal-decreasing contrast agents.  相似文献   

11.
Myocardial infarction (MI) is a leading cause of death and disabilities. Inflammatory cells play a vital role in the process of postinfarction remodeling and repair. Inflammatory cell infiltration into the infarct site can be monitored using T‐weighted MRI following an intravenous administration of iron oxide particles. In this study, various doses of micrometer‐sized iron oxide particles (1.1–14.5 μg Fe/g body weight) were injected into the mouse blood stream before a surgical induction of MI. Cardiac MRIs were performed at 3, 7, 14, and 21 days postinfarction to monitor the signal attenuation at the infarct site. A dose‐dependent phenomenon of signal attenuation was observed at the infarct site, with a higher dose leading to a darker signal. The study suggests an optimal temporal window for monitoring iron oxide particles‐labeled inflammatory cell infiltration to the infarct site using MRI. The dose‐dependent signal attenuation also indicates an optimal iron oxide dose of approximately 9.1–14.5 μg Fe/g body weight. A lower dose cannot differentiate the signal attenuation, whereas a higher dose would cause significant artifacts. This iron oxide‐enhanced MRI technique can potentially be used to monitor cell migration and infiltration at the pathological site or to confirm any cellular response following some specific treatment strategies. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
MRI is used for tracking of superparamagnetic iron oxide (SPIO)‐labeled neural stem cells. Studies have shown that long‐term MR tracking of rapidly dividing cells underestimates their migration distance. Time‐lapse microscopy of random cellular motility and cell division was performed to evaluate the effects of SPIO‐labeling on neural stem cell migration. Labeled cells divided symmetrically and exhibited no changes in cell viability, proliferation, or apoptosis. However, SPIO‐labeling resulted in decreased motility of neural stem cells as compared with unlabeled controls. When SPIO‐labeled neural stem cells and human induced pluripotent stem cells were transplanted into mouse brain, rapid exocytosis of SPIO by live cells was observed as early as 48 h postengraftment, with SPIO‐depleted cells showing the farthest migration distance. As label dilution is negligible at this early time point, we conclude that MRI underestimation of cell migration can also occur as a result of reduced cell motility, which appears to be mitigated following SPIO exocytosis. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
目的:采用新型超顺磁性氧化铁对 SD 大鼠来源的脂肪干细胞(ADSCs)进行标记,并与既往商用 SPIO 标记效果进行对比,探讨这种新型超顺磁性氧化铁标记的有效性及安全性。方法:分离、纯化、鉴定 SD 大鼠来源的 ADSCs,然后分不同浓度组(0、6、12、25、50和100μg/mL)和时间组(6、12、24和48 h)进行标记,通过普鲁士蓝染色测定铁标记率;在不影响细胞形态的前提下,对达到95%以上铁染色率的孵育浓度、时间进行标记安全性检测,包括活力、增殖力、细胞表面抗原表达;采用透射电子显微镜观察标记细胞的超微结构,采用 ICP-AES 对标记细胞内的铁含量进行测定,并与商用SPIO 标记效果进行对比。结果:在无细胞毒性的前提下,新型 SPIO 达到95%以上铁染色率的孵育浓度是12和25μg/mL,孵育时间是12 h;ICP-AES 检测显示具有表面正电荷的聚乙二醇(PEG)/聚乙烯亚胺(PEI)修饰的 SPIO 标记后细胞内的铁含量达到35.4 pg/cell(25μg/mL 中孵育12h 后)和20.16 pg/cell(12μg/mL 中孵育12h 后),并随着孵育浓度的增加,细胞内的铁含量增加;而具有表面零电荷的 PEG/聚乙烯吡咯烷酮(PVP)修饰的 SPIO 标记后的铁含量仅为6.96 pg/cell(25μg/mL 中孵育12h 后);透射电子显微镜显示标记后细胞器结构完整,内吸收的 SPIO 主要位于细胞质内的囊泡和溶酶体中。结论:新型 SPIO 在适当孵育浓度和时间下可以安全、快速标记 ADSCs;PEG/PEI 修饰的 SPIO 标记效果要远远比既往商用的 SPIO 快速有效,可作为一种优势的新型磁性标记物用于干细胞标记;而 PEG/PVP 修饰的SPIO 比起既往商用的 SPIO 并无明显优势,说明表面电荷在细胞标记中占有极其重要的角色。  相似文献   

14.
Fetal human neural precursor cells (NPCs) are unique with respect to their capacity to proliferate and to preserve their potential to differentiate into neurons and glia. Human mesencephalic neural precursor cells (hmNPCs) provide a source for dopaminergic neurons. Preclinical and clinical research will benefit from reliable in vivo tracking of transplanted cells. Here, we investigate the potency of very small superparamagnetic iron oxide particles (VSOPs) to label hmNPCs, the effect of VSOPs on survival, proliferation, and differentiation of hmNPCs, and the sensitivity of 1.5T magnetic resonance imaging (MRI) to detect labeled cells in living rats following transplantation. When incubated with VSOPs at 1.5 mM, >95% of hmNPCs incorporated VSOPs without detectable impact on cell viability (>90%) or proliferative capacity, as measured by the expression of proliferating cell nuclear antigen (PCNA) and cell cycle distribution. Labeled hmNPCs differentiate into neurons (>30%) and glia with no detectable difference compared to nonlabeled cells. Following transplantation into rat striata, marked paramagnetic signal changes were detected for as long as three months postsurgery using MRI, corresponding to the histologically‐identified graft. Our data indicate that hmNPCs can be labeled with VSOPs without impairment of viability, proliferation, or multipotency. Labeled, transplanted cells are detectable in vivo using 1.5T MRI. Magn Reson Med 60:1321–1328, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
RATIONALE AND OBJECTIVES: The study was performed to evaluate the effect of magnetic resonance imaging (MRI) contrast agent (super paramagnetic iron oxide [SPIO]) on differentiation and migration of primary murine neural stem cells (NSCs) in comparison to a neural stem cell line (C17.2). Because detection of labeled cells depends on the concentration of SPIO particles per imaging voxel, the study was performed at various concentrations of SPIO particles to determine the concentration that could be used for in vivo detection of small clusters of grafted cells. MATERIALS AND METHODS: Murine primary NSCs or C17.2 cells were labeled with different concentrations of SPIO particles (0, 25, 100, and 250 mug Fe/mL) and in vitro assays were performed to assess cell differentiation. In vivo MRI was performed 7 weeks after neonatal transplantation of labeled cells to evaluate the difference in migration capability of the two cell populations. RESULTS: Both the primary NSCs and the C17.2 cells differentiated to similar number of neurons (Map2ab-positive cells). Similar patterns of engraftment of C17.2 cells were seen in transplanted mice regardless of the SPIO concentration used. In vivo MRI detection of grafted primary and C17.2 cells was only possible when cells were incubated with 100 mug/mL or higher concentration of SPIO. Extensive migration of C17.2 cells throughout the brain was observed, whereas the migration of the primary NSCs was more restricted. CONCLUSIONS: Engraftment of primary NSCs can be detected noninvasively by in vivo MRI, and the presence of SPIO particles do not affect the viability, differentiation, or engraftment pattern of the donor cells.  相似文献   

16.
PURPOSE: To label mammalian and stem cells by combining commercially available transfection agents (TAs) with superparamagnetic iron oxide (SPIO) magnetic resonance (MR) imaging contrast agents. MATERIALS AND METHODS: Three TAs were incubated with ferumoxides and MION-46L in cell culture medium at various concentrations. Human mesenchymal stem cells, mouse lymphocytes, rat oligodendrocyte progenitor CG-4 cells, and human cervical carcinoma cells were incubated 2-48 hours with 25 microg of iron per milliliter of combined TAs and SPIO. Cellular labeling was evaluated with T2 relaxometry, MR imaging of labeled cell suspensions, and Prussian blue staining for iron assessment. Proliferation and viability of mesenchymal stem cells and human cervical carcinoma cells labeled with a combination of TAs and ferumoxides were evaluated. RESULTS: When ferumoxides-TA or MION-46L-TA was used, intracytoplasmic particles stained with Prussian blue stain were detected for all cell lines with a labeling efficiency of nearly 100%. Limited or no uptake was observed for cells incubated with ferumoxides or MION-46L alone. For TA-SPIO-labeled cells, MR images and relaxometry findings showed a 50%-90% decrease in signal intensity and a more than 40-fold increase in T2s. Cell viability varied from 103.7% +/- 9 to 123.0% +/- 9 compared with control cell viability at 9 days, and cell proliferation was not affected by endosomal incorporation of SPIO nanoparticles. Iron concentrations varied with ferumoxides-TA combinations and cells with a maximum of 30.1 pg +/- 3.7 of iron per cell for labeled mesenchymal stem cells. CONCLUSION: Magnetic labeling of mammalian cells with use of ferumoxides and TAs is possible and may enable cellular MR imaging and tracking in experimental and clinical settings.  相似文献   

17.
Recently, debate has arisen about the usefulness of cell tracking using iron oxide–labeled cells. Two important issues in determining the usefulness of cell tracking with MRI are generally overlooked; first, the effect of graft rejection in immunocompetent models, and second, the necessity for careful histological confirmation of the fate of the labeled cells in the presence of iron oxide. Therefore, both iron oxide–labeled living as well as dead epicardium‐derived cells (EPDCs) were investigated in ischemic myocardium of immunodeficient non‐obese diabetic (NOD)/acid: non‐obese diabetic severe combined immunodeficient (NOD/scid) mice with 9.4T MRI until 6 weeks after surgery, at which time immunohistochemical analysis was performed. In both groups, voids on MRI scans were observed that did not change in number, size, or localization over time. Based on MRI, no distinction could be made between living and dead injected cells. Prussian blue staining confirmed that the hypointense spots on MRI corresponded to iron‐loaded cells. However, in the dead‐EPDC recipients, all iron‐positive cells appeared to be macrophages, while the living‐EPDC recipients also contained engrafted iron‐loaded EPDCs. Iron labeling is inadequate for determining the fate of transplanted cells in the immunodeficient host, since dead cells produce an MRI signal indistinguishable from incorporated living cells. Magn Reson Med 63:817–821, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
OBJECTIVES: Cell tracking using ultrasmall iron particles is well established in magnetic resonance imaging (MRI). However, in experimental models, intrinsic iron signals derived from erythrocytes mask the labeled cells. Therefore, we evaluated Gadofluorine M with other gadolinium chelates for a T1-weighted positive enhancement for cell tracking in vitro. In addition, Gadofluorine M was tested in vivo. MATERIAL AND METHODS: Gadofluorine M and other gadolinium chelates were used to label stem cells with and without uptake-mediating agents in vitro and in vivo using a 1.5 T MRI. In addition, histology and molecular modeling was investigated. RESULTS: Gadofluorine M revealed comparable properties to an uptake mediating agent in molecular modeling. Without an uptake-mediating agent Gadofluorine M-labeled cells were detected as a T1-weighted positive contrast in vitro and in vivo. Histology confirmed a 100% success rate for intracellular labeling. CONCLUSION: This study describes a novel contrast agent with the capability of intracellular accumulation without an uptake mediator providing a T1-positive MRI signal at 1.5 T and may be suitable for cell tracking in animal models with intraparenchymal hemorrhages such as stroke or malignant tumors.  相似文献   

19.
Neural stem cell (NSC)‐based therapy is actively being pursued in preclinical and clinical disease models. Magnetic resonance imaging (MRI) cell tracking promises to optimize current cell transplantation paradigms, however, it is limited by dilution of contrast agent during cellular proliferation, transfer of label from dying cells to surrounding endogenous host cells, and/or biodegradation of the label. Here, we evaluated the applicability of magnetic resonance imaging for long‐term tracking of transplanted neural stem cells labeled with superparamagnetic iron oxide and transfected with the bioluminescence reporter gene luciferase. Mouse neural stem cells were transplanted into immunodeficient, graft‐accepting Rag2 mice or immunocompetent, graft‐rejecting Balb/c mice. Hypointense voxel signals and bioluminescence were monitored over a period of 93 days. Unexpectedly, in mice that rejected the cells, the hypointense MR signal persisted throughout the entire time‐course, whereas in the nonrejecting mice, the contrast cleared at a faster rate. In immunocompetent, graft‐rejecting Balb/c mice, infiltrating leukocytes, and microglia were found surrounding dead cells and internalizing superparamagnetic iron oxide clusters. The present results indicate that live cell proliferation and associated label dilution may dominate contrast clearance as compared with cell death and subsequent transfer and retention of superparamagnetic iron oxide within phagocytes and brain interstitium. Thus, interpretation of signal changes during long‐term MR cell tracking is complex and requires caution. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
MRI is emerging as a diagnostic modality to track iron‐oxide‐labeled stem cells. This study investigates whether an off‐resonance (OR) pulse sequence designed to generate positive contrast at 1.5T can assess the location, quantity, and viability of delivered stem cells in vivo. Using mouse embryonic stem cell transfected with luciferase reporter gene (luc‐mESC), multimodality validation of OR signal was conducted to determine whether engraftment parameters of superparamagnetic iron‐oxide labeled luc‐mESC (SPIO‐luc‐mESC) could be determined after cell transplantation into the mouse hindlimb. A significant increase in signal‐ and contrast‐to‐noise of the SPIO‐luc‐mESC was achieved with the OR technique when compared to a gradient recalled echo (GRE) sequence. A significant correlation between the quantity of SPIO‐luc‐mESC and OR signal was observed immediately after transplantation (R2 = 0.74, P < 0.05). The assessment of transplanted cell viability by bioluminescence imaging (BLI) showed a significant increase of luciferase activities by day 16, while the MRI signal showed no difference. No significant correlation between BLI and MRI signals of cell viability was observed. In conclusion, using an OR sequence the precise localization and quantitation of SPIO‐labeled stem cells in both space and time were possible. However, the OR sequence did not allow evaluation of cell viability. Magn Reson Med 60:1269–1275, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号