首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multimodal reference frame for the planning of vertical arms movements   总被引:3,自引:0,他引:3  
In this study we investigated the reference frames used to plan arm movements. Specifically, we asked whether the body axis, visual cues and graviception can each play a role in defining "up" and "down" in the planning and execution of movements along the vertical axis. Horizontal and vertical pointing movements were tested in two postures (upright and reclined) and two visual conditions (with and without vision) to identify possible effects of each of these cues on kinematics of movement. Movements were recorded using an optical 3D tracking system and analysis was conducted on velocity profiles of the hand. Despite a major effect of gravity, our analysis shows an effect of the movement direction with respect to the body axis when subjects were reclined with eyes closed. These results suggest that our CNS takes into account multimodal information about vertical in order to compute an optimal motor command that anticipates the effects of gravity.  相似文献   

2.
Vertical and horizontal are widely accepted as dominant directions or norms of visual orientation in the frontoparallel plane. They are supposed to cause a normalization effect consisting in the apparent rotation of a tilted straight line towards the nearest dominant direction. The evidence for tilt normalization towards the vertical or horizontal visual meridia is indirect. On the other hand, human observers are very sensitive to departures from the vertical and horizontal, which means that most orientations in the frontoparallel plane are termed tilted rather than vertical or horizontal. By measuring directly the orientation of dot patterns we found that estimated orientation was systematically biased towards the nearest 45 degrees-oblique visual meridian. This finding is interpreted as evidence for the existence of an oblique norm in visual tilt.  相似文献   

3.
Vibration applied to the Achilles tendon is well known to induce in freely standing subjects a backward body displacement and in restrained subjects an illusory forward body tilt. The purpose of the present experiment was to evaluate the effect of Achilles tendon vibration (90Hz) on postural orientation in subjects free of equilibrium constraints. Subjects (n=12) were strapped on a backboard that could be rotated in the antero-posterior direction with the axis of rotation at the level of the ankles. They stood on a rigid horizontal floor with the soles of their feet parallel to the ground. They were initially positioned 7 degrees backward or forward or vertical and were required to adjust their body (the backboard) to the vertical orientation via a joystick. Firstly, results showed that in response to Achilles tendon vibration, subjects adjusted their body backward compared to the condition without vibration. This backward body adjustment likely cancel the appearance of an illusory forward body tilt. It was also observed that the vibratory stimulus applied to the Achilles tendon elicited in restrained standing subjects an increased EMG activity in both the gastrocnemius lateralis and the soleus muscles. Secondly, this vibration effect was more pronounced when passive displacement during the adjustment phase was congruent with the simulated elongation of calf muscles. These results indicated that the perception of body orientation is coherent with the postural response classically observed in freely standing subjects although the relationship between these two responses remains to be elucidated.  相似文献   

4.
Summary Some aspects of the manner in which the central nervous system uses sensory information for the guidance of eye and arm movements were investigated. When subjects experience apparent motion of their restrained forearm, induced by vibration of their biceps muscle in the dark, they are able to pursue with their eyes at least part of this motion and to point with their nonvibrated limb to the apparent location of the vibrated arm. The presence of a small target light on the vibrated hand limits the extent of illusory change in limb position and results in illusory motion of the target light in the same direction as the arm motion. When asked to indicate the spatial position of the light or hand, subjects still point with their nonvibrated arm to the apparent locations. Although visual pursuit of the illusory motion of the forearm can still be elicited in the presence of the target light on the hand, the subjects' eyes remain steadily fixating the stationary target light when they are instructed to track its illusory motion. These findings demonstrate that sensory and motor factors affecting the perception of visual direction and the guidance of arm and eye movements can be differentially employed at several levels of central nervous control.  相似文献   

5.
We tilted recumbent subjects at various angles about their yaw (foot to head) axis and had them indicate the direction of their subjective vertical and apparent head midline about the same axis. One set of tests was conducted during parabolic flight maneuvers where the background gravitoinertial acceleration varied from 0 to 1.8g. The blindfolded subjects (n = 6) were tested supine and at tilts of 60° and 30° left and right about their horizontal long body axis. They used a gravity neutral joystick to indicate their subjective vertical or their head midline continuously from the high force through the 0g portions of parabolas. In 0g, all subjects felt supine and oriented the joystick perpendicular to their body when indicating the subjective vertical. This points to strong influences of the symmetric somatic touch and pressure cues from the apparatus on orientation when the otolith organs are unloaded. In contrast to the settings in 0g, settings of the subjective vertical in 1g and 1.8g varied as a function of body orientation. However, the settings did not differ between 1g and 1.8g test conditions. Subjective vertical judgments were also made by subjects (n = 11) in the Brandeis slow rotation room, with the room stationary and rotating at a speed that produced a 2g resultant of gravitational and centrifugal acceleration. There were no differences between settings of the subjective vertical made in 1g and 2g. The similarity of 1g and hyper-g settings during recumbent yaw tilts, both in parabolic flight and in the rotating room, contrasts with the previously observed, strong influence which force levels above 1g have on settings of the subjective vertical during tilt of the body in pitch or roll. The findings for all three axes are consistent with a recently developed model of static spatial orientation.  相似文献   

6.
During prolonged rotation about a tilted yaw axis, often referred to as off-vertical axis rotation (OVAR), a percept of being translated along a conical path slowly emerges as the sense of rotation subsides. Recently, we found that these perceptual changes are consistent with a canal-otolith interaction model that attributes the illusory translation percept to improper interpretation of the ambiguous otolith signals. The model further predicts that the illusory translation percept must be accompanied by slowly worsening tilt underestimates. Here, we tested this prediction in six subjects by measuring the time course of the subjective visual vertical (SVV) during OVAR stimulation at three different tilt-rotation speed combinations, in complete darkness. Throughout the 2-min run, at each left-ear-down and right-ear-down position, the subject indicated whether a briefly flashed line deviated clockwise or counterclockwise from vertical to determine the SVV with an adaptive staircase procedure. Typically, SVV errors indicating tilt underestimation were already present at rotation onset and then increased exponentially to an asymptotic value, reached at about 60 s after rotation onset. The initial error in the SVV was highly correlated to the response error in a static tilt control experiment. The subsequent increase in error depended on both rotation speed and OVAR tilt angle, in a manner predicted by the canal-otolith interaction model. We conclude that verticality misjudgments during OVAR reflect a dynamic component linked to canal-otolith interaction, superimposed on a tilt-related component that is also expressed under stationary conditions.  相似文献   

7.
The effects of varying gaze direction on perceptions of the upper limb kinesthetic coordinate system axes and of the median plane location were studied in nine subjects with no history of neuromuscular disorders. In two experiments, six subjects aligned the unseen forearm to the trunk-fixed anterior-posterior (a/p) axis and earth-fixed vertical while gazing at different visual targets using either head or eye motion to vary gaze direction in different conditions. Effects of support of the upper limb on perceptual errors were also tested in different conditions. Absolute constant errors and variable errors associated with forearm alignment to the trunk-fixed a/p axis and earth-fixed vertical were similar for different gaze directions whether the head or eyes were moved to control gaze direction. Such errors were decreased by support of the upper limb when aligning to the vertical but not when aligning to the a/p axis. Regression analysis showed that single trial errors in individual subjects were poorly correlated with gaze direction, but showed a dependence on shoulder angles for alignment to both axes. Thus, changes in position of the head and eyes do not influence perceptions of upper limb kinesthetic coordinate system axes. However, dependence of the errors on arm configuration suggests that such perceptions are generated from sensations of shoulder and elbow joint angle information. In a third experiment, perceptions of median plane location were tested by instructing four subjects to place the unseen right index fingertip directly in front of the sternum either by motion of the straight arm at the shoulder or by elbow flexion/extension with shoulder angle varied. Gaze angles were varied to the right and left by 0.5 radians to determine effects of gaze direction on such perceptions. These tasks were also carried out with subjects blind-folded and head orientation varied to test for effects of head orientation on perceptions of median plane location. Constant and variable errors for fingertip placement relative to the sternum were not affected by variations in gaze direction or head orientation. Thus, the perceived position of the trunk-fixed median plane is not altered by varying gaze direction. The implications of these results for mechanisms underlying kinesthetic perceptions and their potential roles in programming of upper limb movements to visual targets are discussed.  相似文献   

8.
Reaching out for objects with an unseen arm involves using both visual and kinesthetic information. Neither visual nor kinesthetic information is perfect. Each is subject to both constant and variable errors. To evaluate how such errors influence performance in natural goal-directed movements, we asked subjects to align a real 5-cm cube, which they held in their hand but could not see, with a three-dimensional visual simulation of such a cube. The simulated cube was presented at one of four target locations at the corners of an imaginary tetraeder. Subjects made successive, self-paced movements between these target locations. They could not see anything except the simulated cube throughout the experiment. Initial analysis of the spatial dispersion of movement endpoints demonstrated that the major source of errors under these conditions was visual. Further analysis of the relationship between variability of the starting positions and endpoints showed that the errors were primarily in judging the endpoint, rather than the direction or amplitude of the required movement vector. The findings support endpoint control of human goal-directed movements.  相似文献   

9.
The aim of the present study was to investigate (1) the relative contribution of the egocentric reference as well as body orientation perception to visual horizon percept during tilt or during increased gravito-inertial acceleration (GiA, hypergravity environment) conditions and (2) the role of vestibular signals in the inter-individual differences observed in these perceptual modalities. Perceptual estimates analysis showed that backward tilt induced (1) an elevation of the visual horizon, (2) an elevation of the egocentric estimation (visual straight ahead) and (3) an overestimation of body tilt. The increase in the magnitude of GiA induced (1) a lowering of the apparent horizon, (2) a lowering of the straight ahead and (3) a perception of backward tilt. Overall, visual horizon percept can be expressed as the combination of body orientation perception and egocentric estimation. When assessing otolith reactivity using off-vertical axis rotation (OVAR), only visual egocentric estimation was significantly correlated with horizontal OVAR performance. On the one hand, we found a correlation between a low modulation amplitude of the otolith responses and straight ahead accuracy when the head axis was tilted relative to gravity. On the other hand, the bias of otolith responses was significantly correlated with straight ahead accuracy when subjects were submitted to an increase in the GiA. Thus, straight ahead sense would be dependent to some extent to otolith function. These results are discussed in terms of the contribution of otolith inputs in the overall multimodal integration subtending spatial constancy.  相似文献   

10.
1. Monkeys received optokinetic stimulation at 60 degrees/s about their yaw (animal vertical) and pitch (animal horizontal) axes, as well as about other head-centered axes in the coronal plane. The animals were upright or tilted in right-side-down positions with regard to gravity. The stimuli induced horizontal, vertical, and oblique optokinetic nystagmus (OKN). OKN was followed by optokinetic after-nystagmus (OKAN), which was recorded in darkness. 2. When monkeys were tilted, stimulation that generated horizontal or yaw axis eye velocity during OKN induced a vertical or pitch component of slow phase velocity during OKAN. This has been designated as "cross-coupling" of OKAN. Eigenvalues and eigenvectors associated with the system generating OKAN were found as a function of tilt. They were determined by use of the Levenberg-Marquardt algorithm to minimize the mean square error between the output of a model of OKAN and the data. 3. The eigenvector associated with yaw OKAN (yaw axis eigenvector) was maintained close to the spatial vertical regardless of the angle of tilt. The eigenvector associated with pitch OKAN (pitch axis eigenvector) was always aligned with the body axis. The data indicate that velocity storage can be modeled by a piecewise linear system, the structure of which is dependent on gravity and the yaw axis eigenvector, which tends to align with gravity. 4. Yaw axis eigenvectors were also determined by giving optokinetic stimulation about head-centered axes in the coronal plane with the animal in various angles of tilt. A technique using a spectral analysis of residuals was developed to estimate whether yaw and pitch OKAN slow phase velocities decayed concurrently at the same relative rate and over the same time course. The eigenvectors determined by this method were in agreement with those obtained by analyzing OKAN elicited by yaw OKN. 5. During yaw OKN with the animal in tilted positions, the mean vector of the ensuing nystagmus was closer to the body axis than to the spatial vertical. This suggests that there is suppression of the cross-coupled pitch component during OKN. The direction of the stimulus may be utilized to suppress components of velocity storage not coincident with the direction of stimulus motion. 6. There were similarities between the monkey eigenvectors and human perception of the spatial vertical, and the mean of eigenvectors for upward and downward eye velocities overlay human 1-g perceptual data.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Subjects who are in an enclosed chamber rotating at constant velocity feel physically stationary but make errors when pointing to targets. Reaching paths and endpoints are deviated in the direction of the transient inertial Coriolis forces generated by their arm movements. By contrast, reaching movements made during natural, voluntary torso rotation seem to be accurate, and subjects are unaware of the Coriolis forces generated by their movements. This pattern suggests that the motor plan for reaching movements uses a representation of body motion to prepare compensations for impending self-generated accelerative loads on the arm. If so, stationary subjects who are experiencing illusory self-rotation should make reaching errors when pointing to a target. These errors should be in the direction opposite the Coriolis accelerations their arm movements would generate if they were actually rotating. To determine whether such compensations exist, we had subjects in four experiments make visually open-loop reaches to targets while they were experiencing compelling illusory self-rotation and displacement induced by rotation of a complex, natural visual scene. The paths and endpoints of their initial reaching movements were significantly displaced leftward during counterclockwise illusory rotary displacement and rightward during clockwise illusory self-displacement. Subjects reached in a curvilinear path to the wrong place. These reaching errors were opposite in direction to the Coriolis forces that would have been generated by their arm movements during actual torso rotation. The magnitude of path curvature and endpoint errors increased as the speed of illusory self-rotation increased. In successive reaches, movement paths became straighter and endpoints more accurate despite the absence of visual error feedback or tactile feedback about target location. When subjects were again presented a stationary scene, their initial reaches were indistinguishable from pre-exposure baseline, indicating a total absence of aftereffects. These experiments demonstrate that the nervous system automatically compensates in a context-specific fashion for the Coriolis forces associated with reaching movements.  相似文献   

12.
Accurate information about gaze direction is required to direct the hand towards visual objects in the environment. In the present experiments, we tested whether retinal inputs affect the accuracy with which healthy subjects indicate their gaze direction with the unseen index finger after voluntary saccadic eye movements. In experiment 1, subjects produced a series of back and forth saccades (about eight) of self-selected magnitudes before positioning the eyes in a self-chosen direction to the right. The saccades were produced while facing one of four possible visual scenes: (1) complete darkness, (2) a scene composed of a single light-emitting diode (LED) located at 18 degrees to the right, (3) a visually enriched scene made up of three LEDs located at 0 degrees, 18 degrees and 36 degrees to the right, or (4) a normally illuminated scene where the lights in the experimental room were turned on. Subjects were then asked to indicate their gaze direction with their unseen index finger. In the conditions where the visual scenes were composed of LEDs, subjects were instructed to foveate or not foveate one of the LEDs with their last saccade. It was therefore possible to compare subjects' accuracy when pointing in the direction of their gaze in conditions with and without foveal stimulation. The results showed that the accuracy of the pointing movements decreased when subjects produced their saccades in a dark environment or in the presence of a single LED compared to when the saccades were generated in richer visual environments. Visual stimulation of the fovea did not increase subjects' accuracy when pointing in the direction of their gaze compared to conditions where there was only stimulation of the peripheral retina. Experiment 2 tested how the retinal signals could contribute to the coding of eye position after saccadic eye movements. More specifically, we tested whether the shift in the retinal image of the environment during the saccades provided information about the reached position of the eyes. Subjects produced their series of saccades while facing a visual environment made up of three LEDs. In some trials, the whole visual scene was displaced either 4.5 degrees to the left or 3 degrees to the right during the primary saccade. These displacements created mismatches between the shift of the retinal image of the environment and the extent of gaze deviation. The displacements of the visual scene were not perceived by the subjects because they occurred near the peak velocity of the saccade (saccadic suppression phenomenon). Pointing accuracy was not affected by the unperceived shifts of the visual scene. The results of these experiments suggest that the arm motor system receives more precise information about gaze direction when there is retinal stimulation than when there is none. They also suggest that the most relevant factor in defining gaze direction is not the retinal locus of the visual stimulation (that is peripheral or foveal) but rather the amount of visual information. Finally, the results suggest an enhanced egocentric encoding of gaze direction by the retinal inputs and do not support a retinotopic model for encoding gaze direction.  相似文献   

13.
We investigated the effects of whole body tilt and lifting the arm against gravity on perceptual estimates of the Gravity-Referenced Eye Level (GREL), which corresponds to the subjective earth-referenced horizon. The results showed that the perceived GREL was influenced by body tilt, that is, lowered with forward tilt and elevated with backward tilt of the body. GREL estimates obtained by arm movements without vision were more biased by whole-body tilt than purely visual estimates. Strikingly, visual GREL estimates became more dependent on whole-body tilt when the indication of level was obtained by arm lifting. These findings indicate that active motor involvement and/or the addition of kinesthetic information increases the body tilt-induced bias when making GREL judgements. The introduction of motor/kinaesthetic cues may induce a switch from a semi-geocentric to a more egocentric frame of reference. This result challenges the assumption that combining non-conflicting multiple sensory inputs and/or using intermodal information provided during action should improve perceptual performance.  相似文献   

14.
The gain of the vertical angular vestibuloocular reflex (aVOR) was adaptively altered by visual-vestibular mismatch during rotation about an interaural axis, using steps of velocity in three head orientations: upright, left-side down, and right-side down. Gains were decreased by rotating the animal and visual surround in the same direction and increased by visual and surround rotation in opposite directions. Gains were adapted in one head position (single-state adaptation) or decreased with one side down and increased with the other side down (dual-state adaptation). Animals were tested in darkness using sinusoidal rotation at 0.5 Hz about an interaural axis that was tilted from horizontal to vertical. They were also sinusoidally oscillated from 0.5 to 4 Hz about a spatial vertical axis in static tilt positions from yaw to pitch. After both single- and dual-state adaptation, gain changes were maximal when the monkeys were in the position in which the gain had been adapted, and the gain changes progressively declined as the head was tilted away from that position. We call this gravity-specific aVOR gain adaptation. The spatial distribution of the specific aVOR gain changes could be represented by a cosine function that was superimposed on a bias level, which we called gravity-independent gain adaptation. Maximal gravity-specific gain changes were produced by 2-4 h of adaptation for both single- and dual-state adaptations, and changes in gain were similar at all test frequencies. When adapted while upright, the magnitude and distribution of the gravity-specific adaptation was comparable to that when animals were adapted in side-down positions. Single-state adaptation also produced gain changes that were independent of head position re gravity particularly in association with gain reduction. There was no bias after dual-state adaptation. With this difference, fits to data obtained by altering the gain in separate sessions predicted the modulations in gain obtained from dual-state adaptations. These data show that the vertical aVOR gain changes dependent on head position with regard to gravity are continuous functions of head tilt, whose spatial phase depends on the position in which the gain was adapted. From their different characteristics, it is likely that gravity-specific and gravity-independent adaptive changes in gain are produced by separate neural processes. These data demonstrate that head orientation to gravity plays an important role in both orienting and tuning the gain of the vertical aVOR.  相似文献   

15.
Relatively little is known about the role of proprioception in eye–hand coordination. In a previous article (Ren et al. J Neurophysiol 96:1464–1477, 2006), we observed anisotropic (direction-dependent) saccade overshoots to hand-held targets during active, but not passive hand movements. We hypothesized that these errors arose from a limb-centered anisotropic efference copy which was transformed (uncompensated) into head coordinates for saccade control. Here, we tested this hypothesis and the role of head orientation signals in this transformation, by dissociating limb coordinates from head coordinates. Twelve human subjects made saccades to hand-held targets actively placed at eight radial locations on a frontally placed table in a dark room with four conditions: (1) right hand (body and head centered), (2) left hand (body and head centered), (3) right hand (head tilted counter-clockwise), (4) right hand (head tilted clockwise). In condition 1, we observed the same anisotropic pattern of overshooting errors—approximately along the axis of the forearm—that we reported previously. Overall, these amplitude errors were much smaller for the left hand. However, the anisotropic pattern was observed for both hands, but reversed symmetrically between the right versus left hand. Head tilt did not cause any systematic errors in saccade direction. Moreover, during head tilt, the anisotropic amplitude errors—while showing some distortions—did not rotate with the head. These findings suggest that transformations of somatosensory information into oculomotor coordinates account for head orientation, and that the anisotropic amplitude errors in hand-guided saccades arise in limb coordinates.  相似文献   

16.
 If horizontal saccades or smooth-pursuit eye movements are made with the line-of-sight at different elevations, the three-dimensional (3D) angular rotation axis of the globe tilts by half the vertical eye eccentricity. This phenomenon is named ”half-angle rule” and is a consequence of Listing’s law. It was recently found that the ocular rotation axis during the horizontal vestibulo-ocular reflex (VOR) on a turntable also tilts in the direction of the line-of-sight by about a quarter of the eye’s vertical eccentricity. This is surprising, since, in a ”perfect” VOR, the angular rotation axis of the eye should be independent from the position of the eye to fully compensate for the 3D angular head rotation. We asked whether this quarter-angle strategy is a general property of the VOR or whether the 3D kinematics of ocular movements evoked by vestibular stimulation would be less eye-position dependent at higher stimulus frequencies. Nine healthy subjects were exposed to horizontal head impulses (peak velocity ∼250°/s). The line-of-sight was systematically changed along the vertical meridian of a tangent screen. Three-dimensional eye and head movements were monitored with dual search coils. The 3D orientation of the angular eye-in-head rotation axis was determined by calculating the average angular velocity vectors of the initial 10° displacements. Then, the difference between the tilt angles of the ocular rotation axis during upward and downward viewing was determined and divided by the difference of vertical eccentricity (”tilt angle coefficient”). Control experiments included horizontal saccades, smooth-pursuit eye movements, and eye movements evoked by slow, passive head rotations at the same vertical eye eccentricities. On average, the ocular rotation axis during horizontal head-impulse testing at different elevations of the line-of-sight was closely aligned with the rotation axis of the head (tilt angle coefficient of pooled abducting and adducting eye movements: 0.11±0.17 SD). Values for slow head impulses, however, exceeded somewhat the quarter angle (0.33±0.12), while smooth-pursuit movements (0.50±0.09) and saccades (0.44±0.11) were closest to the half angle. These results demonstrate that the 3D orientation of the ocular rotation axis during rapid head thrusts is relatively independent of the direction of the line-of-sight and that ocular rotations elicited by head impulses are kinematically different from saccades, despite similar movement dynamics. Received: 17 July 1998 / Accepted: 17 May 1999  相似文献   

17.
The purpose of this research was to determine whether human subjects could align the forearm more accurately to the orientation of an external object than to earth-fixed vertical and trunk-fixed anterior-posterior (a-p) axes. Ten young adults aligned the unseen forearm to earth-fixed vertical and trunk-fixed a-p axes, and to a visually presented rod (external visual axis) held by an experimenter in various oblique vertical and horizontal orientations. The head and trunk orientations were varied by left/right lateral flexion when aligning the forearm to vertical plane axes and by rotation about the vertical axis when aligning the forearm to horizontal plane axes. Perceptual errors for aligning the forearm to vertical plane axes were much lower when aligning the forearm to earth-fixed vertical than to an external visual axis positioned in a vertical plane. Furthermore, the perceptual errors for aligning the forearm to the visually presented rod were correlated with rod orientation while errors for aligning the forearm to vertical while viewing the rod were unaffected by rod orientations. Clearly, human subjects cannot use an oblique external visually presented axis to provide a frame of reference for accurate perception of forearm orientation in vertical planes. Perceptual errors were similar for aligning the forearm to the horizontal trunk-fixed a-p axis and external visual axis when head and trunk orientation were varied. These perceptual errors were not correlated with rod orientation in the horizontal plane, giving no evidence of bias toward the trunk or external visual axis in horizontal plane perception of forearm orientation. Thus, humans can use either the trunk-fixed a-p axis or the visually specified orientation of an external object as a frame of reference for the kinesthetic system to specify forearm orientation in the horizontal plane. Electronic Publication  相似文献   

18.
Visual information regarding limb location can override proprioceptive information when there is conflict between the two-a phenomenon referred to as visual capture. In three experiments, we employed the "mirror illusion," in which the perceived location of one's hand is influenced by the visual information specified by the mirror reflection of the other hand, to test whether visual capture influences body-based indications of the extent of objects. Participants viewed their visible hand and its reflection in a mirror after the unseen hand was positioned at one of four locations on a tabletop. The unseen hand's location appeared to be the same distance from the mirror as the visible hand's location. After viewing the visible hand and its reflection while simultaneously performing simple finger movements with both hands, participants viewed a block and had to move their unseen hand to a position that would allow them to grasp the block between their two hands. Movements of the unseen hand relative to the visible hand were biased by the visual information, reflecting errors in moved hand position given visual-proprioceptive conflict. In Experiment 1, visual capture influenced the indications of object extent for objects within reach and aligned with the viewer's midline. Experiments 2 and 3 extended these findings to indications of extent for objects outside the viewer's reach (Experiment 2) and misaligned with the viewer's midline (Experiment 3). These results suggest that visual body information has a generalizable effect on actions used to indicate space perception that extends beyond egocentric spatial localization tasks.  相似文献   

19.
Visual motion in the roll plane elicits torsional optokinetic nystagmus (tOKN) with intermittent periods of illusory, contradirectional self-motion (circularvection, CV). The CV may also have a component of whole-body tilt if the axis of stimulus rotation is not aligned with the direction of gravity. We report how the characteristics of tOKN are affected by the presence of CV. Subjects had their eye movements recorded by VOG whilst viewing a full-field stimulus rotating at 30-60 degrees/s about their naso-occipital axis. They were tested in upright and supine posture and signalled the presence-absence of CV with a pushbutton. In both postures, during CV, tOKN slow-phase gain was found to be enhanced and average torsional eye position shifted in the direction opposite to stimulus rotation. When supine, slow-phase gain was greater than when upright both during the perception of object-motion and during CV. The effects may be explained in terms of a relegation of restraining vestibular input to the torsional oculomotor system during CV and illusory tilt.  相似文献   

20.
A vertical asymmetry in memory-guided saccadic eye movements has been previously demonstrated in humans and in rhesus monkeys. In the upright orientation, saccades generally land several degrees above the target. The origin of this asymmetry has remained unknown. In this study, we investigated whether the asymmetry in memory saccades is dependent on body orientation in space. Thus animals performed memory saccades in four different body orientations: upright, left-side-down (LSD), right-side-down (RSD), and supine. Data in all three rhesus monkeys confirm previous observations regarding a significant upward vertical asymmetry. Saccade errors made from LSD and RSD postures were partitioned into components made along the axis of gravity and along the vertical body axis. Up/down asymmetry persisted only in body coordinates but not in gravity coordinates. However, this asymmetry was generally reduced in tilted positions. Therefore the upward bias seen in memory saccades is egocentric although orientation in space might play a modulatory role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号