首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nerve growth factor binds independently to two transmembrane receptors, the p75 neurotrophin receptor and the p140trk (trkA) tyrosine kinase receptor, which are both co-expressed in the majority of neuronal cells that respond to NGF. Previous findings have suggested that appropriate co-expression of the two receptors gives rise to high affinity NGF binding sites and increased neurotrophin responsiveness; however, evidence demonstrating a direct interaction between the two receptors in cell lines has been lacking. Here we have utilized affinity crosslinking agents with 125I-NGF to detect an association of trkA and p75 receptors in embryonic spinal cord and brain tissues enriched in the two receptors. Although multimeric complexes of trkA and p75 were not detected by affinity crosslinking, immunoprecipitation of cross-linked NGF-receptor complexes with trk-specific antibodies resulted in selective immunoprecipitation of crosslinked p75. Our results indicate that the trkA and p75 receptors can potentially interact, and that such an association may be responsible for the generation of high affinity NGF binding sites. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Nerve growth factor (NGF) is a homodimer that binds to two distinct receptor types, TrkA and p75, to support survival and differentiation of neurons. The high‐affinity binding on the cell surface is believed to involve a heteroreceptor complex, but its exact nature is unclear. We developed a heterodimer (heteromutein) of two NGF muteins that can bind p75 and TrkA on opposite sides of the heterodimer, but not two TrkA receptors. Previously described muteins are Δ9/13 that is TrkA negative and 7‐84‐103 that is signal selective through TrkA. The heteromutein (Htm1) was used to study the heteroreceptor complex formation and function, in the putative absence of NGF‐induced TrkA dimerization. Cellular binding assays indicated that Htm1 does not bind TrkA as efficiently as wild‐type (wt) NGF but has better affinity than either homodimeric mutein. Htm1, 7‐84‐103, and Δ9/13 were each able to compete for cold‐temperature, cold‐chase stable binding on PC12 cells, indicating that binding to p75 was required for a portion of this high‐affinity binding. Survival, neurite outgrowth, and MAPK signaling in PC12 cells also showed a reduced response for Htm1, compared with wtNGF, but was better than the parent muteins in the order wtNGF > Htm1 > 7‐84‐103 >> Δ9/13. Htm1 and 7‐84‐103 demonstrated similar levels of survival on cells expressing only TrkA. In the longstanding debate on the NGF receptor binding mechanism, our data support the ligand passing of NGF from p75 to TrkA involving a transient heteroreceptor complex of p75‐NGF‐TrkA. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Little is known about the molecular mechanisms that limit the ability of retinal neurons to respond to neurotrophic factor stimulation following axonal injury. In the adult retina, nerve growth factor (NGF) binds to TrkA (expressed by neurons) and p75NTR (expressed by Müller glia), but fails to promote the survival of axotomized retinal ganglion cells (RGCs). We addressed the functional role of TrkA and p75NTR in this lack of survival by using peptidomimetic agonistic or antagonistic ligands specific for each receptor. While administration of exogenous NGF failed to rescue axotomized RGCs, administration of selective TrkA agonists led to robust neuroprotection. Surprisingly, we found a remarkable survival of axotomized RGCs following pharmacological inhibition of p75NTR or in p75NTR knockout mice. Combination of NGF or TrkA agonists with p75NTR antagonists further potentiated RGC neuroprotection in vivo, an effect that was greater than each treatment alone. NGF can therefore be neuroprotective when acting on neuronal TrkA receptors but engagement of p75NTR on glial cells antagonizes this effect. Our data reveal a novel mechanism by which p75NTR expressed on retinal glia can profoundly influence neuronal survival.  相似文献   

4.
A number of experiments have shown that neurotrophins are involved in the development and plasticity of the visual cortex (Bonhoeffer, T., Curr. Op. Neurobiol., 6, 119 1996). A possible mechanism underlying these effects is the neurotrophin modulation of synaptic transmission. We investigated whether nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) can modulate the release of neurotransmitter in the rat visual cortex at the peak of the critical period for plasticity (P23). The release of glutamate, acetylcholine and gamma-aminobutyric acid (GABA) from visual cortical synaptosomes was analysed in continuous perfusion conditions. We found that NGF enhances the depolarization-evoked release of glutamate (≈ 90%) and acetylcholine (≈ 35%) but not that of GABA. By contrast, BDNF enhances the depolarization-evoked release of all three neurotransmitters investigated (≈ 30%). BDNF and NGF were ineffective on basal release of neurotransmitters. The effect of NGF was not blocked by cholinergic antagonists atropine and mecamylamine. NGF and BDNF potentiation of transmitter release was strongly but not completely blocked by K252a, a tyrosine kinase inhibitor. The role of TrkA and p75NTR receptors was investigated in NGF-induced potentiation of glutamate release. Block of NGF binding to p75NTR using specific blocking antibodies (REX-IgG) slightly but significantly reduced the effect of NGF. Activation of TrkA in isolation by RTA-IgG, an antibody that specifically activates TrkA, was less effective than activation of both receptors by NGF. These results show that neurotrophin action on neurotransmitter release was mostly mediated by Trk receptors with p75NTR having a little but significant positive role. Antigen blot analysis showed the presence of TrkA, TrkB and p75NTR receptors in the visual cortex.  相似文献   

5.
Cholinergic neurons of the basal forebrain provide the major cholinergic innervation to the cortex and hippocampus, and play a key role in memory and attentional processes. Dysfunction of basal forebrain cholinergic neurons (BFCN) is a cardinal feature of Alzheimer's disease (AD) and correlates with cognitive decline. Survival of BFCN neurons depends upon binding of nerve growth factor (NGF), which is synthesized and secreted by cells in the cortex and hippocampus, with high-affinity (TrkA) and low-affinity (p75NTR) neurotrophin receptors produced within BFCN neurons. NGF released from target cells activates TrkA on axon terminals and triggers activation of PI3K/Akt, MEK/ERK, and PLCγ (phospholipase C) signaling pathways. The signal then travels retrogradely along axon to cell body to promote neuronal survival. However, the nature of the retrograde signal remains mysterious. p75NTR receptors could mediate a fundamentally different signaling pathway leading to apoptic cell death. Dysfunction of NGF and its receptors has been suggested to underlie the selective degeneration of the BFCN in end stage Alzheimer disease. In this regard, NGF, the founding member of the neurotrophin family, has generated great interest as a potential target for the treatment of AD. This review focuses on NGF-cholinergic dependency, NGF/receptor binding, signal transduction, retrograde transport, regulation of specific cellular endpoints, and the potential involvement of cytoskeleton dysfunction in defected NGF signaling.  相似文献   

6.
Nerve growth factor (NGF) binds to two neurotrophin receptors: p75(NTR) and p140(Trk) (TrkA). Both receptors dimerize in response to NGF binding. TrkA homodimers and heteromers of TrkA and p75(NTR) promote cell survival whereas homodimers of p75(NTR) mediate apoptosis upon binding of NGF. The interaction between receptor and NGF can be inhibited either on the level of the ligand by altering NGF conformation so that NGF is no longer recognized by the receptor or on the level of the receptor by blocking the binding site of p75(NTR) or TrkA. The effect of altering NGF conformation on NGF signaling was investigated in two neuron-like cell lines: in human SK-N-MC cells that express only p75(NTR) and in rat PC12 cells that express both p75(NTR) and TrkA. In the present study we demonstrate that Ro 08-2750 binds to the NGF dimer thereby probably inducing a change in its conformation such that NGF cannot bind to p75(NTR) anymore. In SK-N-MC cells this leads to inhibition of NGF-induced programmed cell death. In PC12 cells enhanced signaling through TrkA was observed.  相似文献   

7.
8.
The role of the low affinity neurotrophin receptor p75LNTR in neurotrophin signal transduction remains open. Recent reports show that this receptor generates intracellular signals independent of Trk activity, and others imply that it collaborates with Trk(s) to enhance cellular responses to low neurotrophin concentrations. We have used the Cytosensor microphysiometer as a direct marker of intracellular metabolic activity to address the physiologic role of p75LNTR in nerve growth factor (NGF) signal transduction. NGF treatment of PC12 or TrkA-transfected Chinese hamster ovary (CHO) cells results in a rapid, transient increase in the extracellular acidification rate as measured by the Cytosensor; in both cell types, p75LNTR enhances this response. p75LNTR affects both the magnitude of and the duration of the extracellular acidification response to NGF. Moreover, it is not merely the presence of p75LNTR, but also the ratio of p75LNTR:TrkA which determines cellular responsiveness to NGF. In transiently transfected CHO cells, a 5:1 ratio of p75LNTR:trkA cDNAs produced the greatest change in NGF-induced acid secretion. Pretreatment of PC12 cells with anti-p75LNTR antibodies decreased the responsiveness to NGF. However, long-term NGF exposure to PC12 cells in which p75LNTR expression was decreased to approximately 10% of wild-type levels showed a longer duration of acid secretion compared to wild-type PC12 cells. Together, these data suggest that p75LNTR may play a dual role in modulating NGF signal transduction by enhancing and extending cellular responses to short-term ligand exposures while attenuating the metabolic response to long-term ligand exposures. With regard to potential Trk-independent p75LNTR signal transduction mechanisms, we detected no change in extracellular acidification response in 75LNTR-transfected CHO cells, PCNA-15 fibroblasts, or Schwann cells, all of which express large amounts of p75LNTR and no Trk. Thus, p75LNTR cannot produce any signal detected by microphysiometry in the absence of TrkA. J. Neurosci. Res. 51:442–453, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
It has been recently shown that intraventricular injections of nerve growth factor (NGF) prevent the effects of monocular deprivation in the rat. We have tested the localization and the molecular nature of the NGF receptor(s) responsible for this effect by activating cortical trkA receptors in monocularly deprived rats by cortical infusion of a specific agonist of NGF on trkA, the bivalent antirat trkA IgG (RTA-IgG). TrkA protein was detected by immunoblot in the rat visual cortex during the critical period. Rats were monocularly deprived for 1 week (P21–28) and RTA-IgG or control rabbit IgG were delivered by osmotic minipumps. The effects of monocular deprivation on the ocular dominance of visual cortical neurons were assessed by extracellular single cell recordings. We found that the shift towards the ipsilateral, non-deprived eye was largely prevented by RTA-IgG. Infusion of RTA-IgG combined with antibody that blocks p75NTR (REX), slightly reduced RTA-IgG effectiveness in preventing monocular deprivation effects. These results suggest that NGF action in visual cortical plasticity is mediated by cortical TrkA receptors with p75NTR exerting a facilitatory role.  相似文献   

10.
While the central role played by TrkA in nerve growth factor (NGF) signalling has been established by dissecting its signal transduction pathways, insight into the mechanism of action of p75LNR, the low-affinity neurotrophin receptor, has only recently been achieved. The relative contribution of p75LNR and TrkA to the constitution of high-affinity receptors for NGF and, similarly, with TrkB an TrkC to the formation of those for other neurotrophins, is presently under debate. Some form of collaboration in mediating neurotrophin activities has been observed between the Trk and p75LNR receptors, but only recent indirect evidence indicates a molecular interaction. In the present work, we have ectopically coexpressed p75LNR and TrkA in Sf9 insect cells by using baculovirus vectors, and show a direct association between the two NGF receptors. In addition, we show that the intracellular and extracellular domains of both receptors contribute to this interaction. Finally, we demonstrate that NGF becomes endocytosed in TrkA-expressing cells but not in p75LNR-expressing cells, and that such function can be modulated by the presence of the intracellular domain of p75LNR receptor. J. Neurosci. Res. 50:1–12, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
In this study, it was aimed to investigate whether 4-methylcatechol (4-MC) could serve as an autocrine antiapoptotic agent by increasing nerve growth factor (NGF) in β cells of hyperglycemic rats. Rats were divided into four groups: the first group was given citrate buffer and saline, the second group was administered 4-MC, the third group received streptozotocin (STZ), and the fourth group was given both 4-MC and STZ. 4-MC (10 μg/kg) was administered by daily intraperitoneal injection for 10 days before the animals were rendered hyperglycemic by administration of STZ (75 mg/kg). With 4-MC pretreatment on hyperglycemic rats the following results were noted: (i) Increase in plasma glucose, β cell apoptosis and caspase-8 activation was prevented. (ii) Reduction of NGF+ and tyrosine receptor kinase A (TrkA)+ β cell number was blocked. (iii) p75 neurotrophin receptor (p75NTR)+ β cell number was increased. These data suggest that 4-MC might exert its antiapoptotic actions through NGF/TrkA system which may block NGF/p75NTR activation in pancreatic β cells of hyperglycemic rats.  相似文献   

12.
Neurotrophin signaling through Trk receptors is important for differentiation and survival in the developing nervous system. The present study examined the effects of CH(3)Hg on (125)I-nerve growth factor (NGF) binding to the TrkA receptor, NGF-induced activation of the TrkA receptor, and neurite outgrowth in an in vitro model of differentiation using PC12 cells. Whole-cell binding assays using (125)I-NGF revealed a single binding site with a K(d) of approximately 1 nM. Methylmercury (CH(3)Hg) at 30 nM (EC(50) for neurite outgrowth inhibition) did not affect NGF binding to TrkA. TrkA autophosphorylation was measured by immunoblotting with a phospho-specific antibody. TrkA autophosphorylation peaked between 2.5 and 5 min of exposure and then decreased but was still detectable at 60 min. Concurrent exposure to CH(3)Hg and NGF for 2.5 min resulted in a concentration-dependent decrease in TrkA autophosphorylation, which was significant at 100 nM CH(3)Hg. To determine whether the observed inhibition of TrkA was sufficient to alter cell differentiation, NGF-stimulated neurite outgrowth was examined in PC12 cells after exposure to 30 nM CH(3)Hg, a concentration that inhibited TrkA autophosphorylation by approximately 50%. For comparison, a separate group of PC12 cells were exposed to a concentration of the selective Trk inhibitor K252a (30 nM), which had been shown to produce significant inhibition of TrkA autophosphorylation. Twenty-four hour exposure to either CH(3)Hg or K252a reduced neurite outgrowth to a similar degree. Our results suggest that CH(3)Hg may inhibit differentiation of PC12 cells by interfering with NGF-stimulated TrkA autophosphorylation.  相似文献   

13.
NGF binds to two receptors, p75NTR and TrkA. The endosomal trafficking of receptors is of emerging importance for the understanding of their signaling. We compared the endocytic trafficking of the two NGF receptors in PC12 cells. Both p75NTR and TrkA were internalized in response to NGF and colocalized with early endosomes. However, surprisingly, the subsequent endosomal trafficking paths of both NGF receptors diverged: whereas p75NTR recycled back to the surface, TrkA moved to late endosomes and underwent lysosomal degradation. By performing subcellular fractionations of NGF stimulated PC12 cells, tyrosine-phosphorylated TrkA was recovered in fractions corresponding to late endosomes. This implicates these organelles as novel endosomal NGF signaling platforms. Furthermore, the trafficking of NGF receptors could be manipulated by pharmacological means. Disrupting p75NTR recycling diminished TrkA activation in response to low concentrations of NGF, demonstrating a functional role for the recycling of p75NTR.  相似文献   

14.
15.
Three clones of PC12 cells that differ with respect to their nerve growth factor (NGF) receptors were examined: wild-type PC12 cells that have both trkA and p75LNTR receptors; the MR-1 clone that possesses a normal trkA receptor and a truncated form of p75LNTR without the extracellular NGF-binding part; and a new PC12 variant, called v-clone, that is partly characterized here. The v-clone had no demonstrable binding to trkA, but displayed binding to p75LNTR as assessed by chemical crosslinking. NGF did not induce any change in the tyrosine phosphorylation of phosphatidy-3′-kinase in the v-clone. NGF induced neurite extension in wild-type cells, induced it more rapidly in mR-1, but not at all in v-clone cells. The v-clone lacked the b-form of protein kinase C, but transfection with this enzyme did not restore responsiveness to NGF. Neurite extension in response to staurosporine and basic fibroblast growth factor was equal in wild-type and v-clone cells. All three clones responded to forskolin, with the mR-1 clone the most responsive. NGF stimulated AP 1 binding activity in all clones. The response was transient in the MR-1 clone but prolonged in the wild-type and v-clone cells. In the wild-type and MR-1 clone cells, AP 1 binding activity was reduced by a tyrphostin analog, whereas in the v-clone cells it was inhibited by staurosporine. NGF increased inositol (1,4,5)-trisphosphate (InsP3) formation in all clones. In the wild-type and v-clone cells the InsP3 responses were followed by [Ca2+]i increases. It is concluded that although trkA is required for differentiation in response to NGF in PC12 cells, the concomitant stimulation, by NGF, of p75LNTR may affect phospholipase C and AP 1. This may be important for the reported ability of p75LNTR to modify the phenotypic changes induced in PC12 cells by NGF.  相似文献   

16.
17.
Neurotrophic factors regulate the developmental survival and differentiation of specific neuronal populations. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the nerve growth factor (NGF) protein family, also known as the neurotrophins. Insights into the different roles of neurotrophins can be gained by studying the expression of their functional receptors. Here we report the development of procedures for their radiolabeling and efficient crosslinking to specific cell-surface receptors. BDNF and NT-3 receptors in cell lines and tissue preparations expressing receptors for the 2 neurotrophins have been identified using this affinity crosslinking procedure. Like NGF, BDNF and NT-3 crosslinking to the low affinity NGF receptor (p75NGFR) on PC12 cells. BDNF and NT-3 also crosslinked to cells expressing p145trkB protein, producing an approximately 160 kD neurotrophin-receptor complex. Crosslinking of the 2 neurotrophins in vivo to specific trk family members in many areas of the central nervous system also produced a 160 kD receptor complex. However, in all brain regions a complex of approx. 100 kD could also be identified, all or most of which represents crosslinking to a truncated from of trkB. The broad distribution of BDNF and NT-3 receptors throughout the CNS suggests that neurotrophins may have yet unrecognized functions on specific neuronal populations. BDNF and NT-3 receptors were also found in brain areas in which the neurotrophins themselves are also synthesized, suggesting that beyond long-range trophic effects, these proteins may also act as autocrine or short-range paracrine regulators. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Mutant PC12 cell clones (PC84 cells) were obtained by transfection with nerve growth factor (NGF) cDNA. These cells secreted active NGF, extended short processes, and proliferated faster than the parental PC12 cells. These features are of great interest because the parental PC12 cells cease proliferation and extend long processes when transfected with NGF cDNA. PC84 cells expressed a high level of acetylcholinesterase activity and neurofilament M, which indicates that PC84 cells were differentiated. The inhibition of TrkA by K252a diminished the short processes of PC84 cells but had no effect on their fast proliferation. The expression level of TrkA in PC84 cells was comparable to that in PC12 cells; whereas that of another NGF receptor, p75, was significantly lower. These data suggest that the decrease of p75 contributed to the continuous growth of PC84 cells, which was confirmed by suppressing p75 activity of PC12 cells with the antisense oligonucleotide of p75 or with anti-p75 neutralizing antibody. The treated cells did not cease proliferation in the presence of NGF and extended short processes. Our results suggest that NGF signaling via TrkA affects the differentiation characteristics of PC12 cells but that an additional signaling via p75 is necessary for the growth arrest of the cells.  相似文献   

19.
There is a paucity of quantitative methods for evaluating the morphological differentiation of neuronal cells in a three-dimensional (3-D) system to assist in quality control of neural tissue engineering constructs for use in reparative medicine. Neuronal cells tend to aggregate in the 3-D scaffolds, hindering the application of two-dimensional (2-D) morphological methods to quantitate neuronal differentiation. To address this problem, we developed a stable transfectant green fluorescence protein (GFP)-PC12 neuronal cell model, in which the differentiation process in 3-D can be monitored with high sensitivity by fluorescence microscopy. Under 2-D conditions, the green cells showed collagen adherence, round morphology, proliferation properties, expression of the nerve growth factor (NGF) receptors TrkA and p75NTR, stimulation of extracellular signal-regulated kinase phosphorylation by NGF and were able to differentiate in a dose-dependent manner upon NGF treatment, like wild-type (wt)-PC12 cells. When grown within 3-D collagen gels, upon NGF treatment, the GFP-PC12 cells differentiated, expressing long neurite outgrowths. We describe here a new validated method to measure NGF-induced differentiation in 3-D. Having properties similar to those of wt-PC12 and an ability to grow and differentiate in 3-D structures, these highly visualized GFP-expressing PC12 cells may serve as an ideal model for investigating various aspects of differentiation to serve in neural engineering.  相似文献   

20.
Nerve growth factor receptors on cultured rat Schwann cells   总被引:7,自引:0,他引:7  
Neonatal rat Schwann cells were grown in tissue culture and assayed for NGF receptors with time in culture. NGF receptor levels on freshly prepared Schwann cells (day 0) were low but increased dramatically during the first week in culture. Characterization of 125I-NGF binding to resuspended cells grown for 4 d in culture revealed that binding was not saturable at high ligand concentrations (50-70 nM) and that a high-capacity, low-affinity NGF binding component existed on these cells as compared to PC12 cells. The monoclonal antibody, 192-IgG, which recognizes the rat NGF receptor, was used as an immunohistochemical tool to verify the presence of NGF receptors on the cultured rat Schwann cells. In contrast to radiolabeled NGF, 125I-192-IgG demonstrated saturable binding to Schwann cells in suspension, with Kd and Bmax values of 4 nM and 115 fmol/10(6) cells, respectively. Schwann cells showed no evidence of slow dissociation or internalization of NGF binding at any of several NGF concentrations. 192-IgG was used to immunoprecipitate 125I-NGF chemically crosslinked to cell membranes. SDS-PAGE and subsequent autoradiography of the immunoprecipitated NGF receptors revealed that 2 species of NGF receptors were precipitated from Schwann cells and PC12 cells. In PC12 cells, 2 bands with molecular weights of 90 and 210 kDa were identified. The Schwann cell NGF receptor species migrated slower on the gels, with apparent molecular weights of 95 and 220 kDa. Further analysis of glial cell NGF receptors showed that Schwann cells isolated from the vagus nerve of neonatal rats also expressed NGF receptors in culture; however, astrocytes cultured from neonatal rat cerebral cortex, cultured under conditions reported here, were devoid of detectable NGF receptors. These results show that NGF receptor levels on Schwann cells increase with time in culture, and this resembles what is observed in Schwann cells in vivo when adult peripheral nerve is injured. The data are discussed in terms of a supportive role for the Schwann cell in facilitating peripheral nerve development and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号