首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Nerve growth factor (NGF) is a neurotrophic factor that is thought to have a broad role in the nervous system and tumors, and has recently been described as a mediator of inflammation. It is not clear whether or not NGF participates in apoptosis of articular chondrocytes. In this study, we determined if NGF affects ASIC1a expression and NF-κB P65 activation in rat chondrocytes, and measured the effectiveness of NGF on apoptotic protein expression in acid-induced chondrocytes. NGF was shown to up-regulate the level of ASIC1a in a dose- and time-dependent fashion. Simultaneously, NGF activated NF-κB P65 in chondrocytes. Additionally, the elevated ASIC1a expression induced by NGF was eliminated by the NF-κB inhibitor (PDTC) in chondrocytes. Moreover, NGF reduced cell viability and induced LDH release under the premise of acid-induced articular chondrocytes. Furthermore, NGF could enhance cleaved-caspase 9 and cleaved-PARP expression in acid-pretreated chondrocytes, and which could be inhibited by using psalmotoxin 1(PcTX1) or PDTC. Together, these results indicated that NGF may up-regulate ASIC1a expression through the NF-κB signaling pathway, and further promote acid-induced apoptosis of chondrocytes.  相似文献   

2.
Li J  Shen L  Lu FR  Qin Y  Chen R  Li J  Li Y  Zhan HZ  He YQ 《Acta pharmacologica Sinica》2012,33(2):242-249

Aim:

To investigate the effects and underlying mechanisms of plumbagin, a naphthoquinone derived from medicinal plant Plumbago zeylanica, on human gastric cancer (GC) cells.

Methods:

Human gastric cancer cell lines SGC-7901, MKN-28, and AGS were used. The cell viability was examined using CCK-8 viability assay. Cell proliferation rate was determined using both clonogenic assay and EdU incorporation assay. Apoptosis was detected via Annexin V/propidium iodide double-labeled flow cytometry. Western blotting was used to assess the expression of both NF-κB-regulated gene products and TNF-α-induced activation of p65, IκBα, and IKK. The intracellular location of NF-κB p65 was detected using confocal microscopy.

Results:

Plumbagin (2.5–40 μmol/L) concentration-dependently reduced the viability of the GC cells. The IC50 value of plumbagin in SGC-7901, MKN-28, and AGS cells was 19.12, 13.64, and 10.12 μmol/L, respectively. The compound (5–20 μmol/L) concentration-dependently induced apoptosis of SGC-7901 cells, and potentiated the sensitivity of SGC-7901 cells to chemotherapeutic agents TNF-αand cisplatin. The compound (10 μmol/L) downregulated the expression of NF-κB-regulated gene products, including IAP1, XIAP, Bcl-2, Bcl-xL, tumor factor (TF), and VEGF. In addition to inhibition of NF-κB p65 nuclear translocation, the compound also suppressed TNF-α-induced phosphorylation of p65 and IKK, and the degradation of IκBα.

Conclusion:

Plumbagin inhibits cell growth and potentiates apoptosis in human GC cells through the NF-κB pathway.  相似文献   

3.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), belongs to the CC chemokine family that is associated with the disease status and outcomes of cancers. However, the effect of CCL2 on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that CCL2 increased the migration and expression of matrix metalloproteinase (MMP)-9 in human chondrosarcoma cells. CCL2-mediated migration and MMP-9 up-regulation were attenuated by CCR2, Ras, Raf-1, and MEK inhibitor. Activation of the Ras, Raf-1, MEK, ERK, and NF-κB signaling pathway after CCL2 treatment was demonstrated, and CCL2-induced expression of MMP-9 and migration activity were inhibited by the specific inhibitor, and mutant of Ras, Raf-1, MEK, ERK, and NF-κB cascades. Taken together, our results indicated that CCL2 enhances the migration of chondrosarcoma cells by increasing MMP-9 expression through the CCR2 receptor, Ras, Raf-1, MEK, ERK, and NF-κB signal transduction pathway.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号