首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vinclozolin (V) is classified as a potent endocrine disruptor. The aim of the present study was to determine the effects of V on rat liver CYP regulation and on serum levels of testosterone and estradiol during pregnancy. Pregnancy decreased the liver total CYP content by 65%, enzyme activities of MROD, PROD, and PNPH, and testosterone hydroxylation activities, as well as the protein content of CYP2A and 3A. V exposure remarkably induced the protein content and enzyme activities of CYP1A, 2A, 2B and 3A subfamilies. Testosterone and estradiol were affected in an opposite manner, provoking a 3.5-fold increase in the estradiol/testosterone ratio. These results suggest that V could regulate the hepatic CYP expression through interaction with receptors and coactivators involved in its expression and may play an important role in hormonal balance during pregnancy. In addition, the results may also contribute to understanding the toxicity of V by in utero exposure.  相似文献   

2.
1. The metabolism of 7-benzyloxy-4-trifluoromethylcoumarin (BFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomal preparations and in cDNA-expressed human cytochrome P450 (CYP) isoforms. 2. Kinetic analysis of the NADPH-dependent metabolism of BFC to HFC in four preparations of pooled human liver microsomes revealed mean (±SEM) Km and Vmax of 8.3±1.3 μM and 454±98 pmol/min/mg protein respectively. 3. The metabolism of BFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing BFC substrate concentrations of 20 and 50 μM (i.e. about two and six times Km respectively). With 20 μM BFC the highest correlations were observed between BFC metabolism and markers of CYP1A2 (r2 = 0.784-0.797) and then with CYP3A (r2 = 0.434-0.547) isoforms, whereas with 50 μM BFC the highest correlations were observed between BFC metabolism and markers of CYP3A (r2 = 0.679-0.837) and then with CYP1A2 (r2 = 0.421-0.427) isoforms. At both BFC substrate concentrations, lower correlations were observed between BFC metabolism and enzymatic markers for CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP4A9/11. 4. Using human β-lymphoblastoid cell microsomes containing cDNA-expressed CYP isoforms, 20 μM BFC was metabolized by CYP1A2 and CYP3A4, with lower rates of metabolism being observed with CYP2C9 and CYP2C19. Kinetic studies with the CYP1A2 and CYP3A4 preparations demonstrated a lower Km with the CYP1A2 preparation, but a higher Vmax with the CYP3A4 preparation. 5. The metabolism of 20 μM BFC in human liver microsomes was inhibited to 37-48% of control by 5-100 μM of the mechanism-based CYP1A2 inhibitor furafylline and to 64-69% of control by 5-100 μM of the mechanism-based CYP3A4 inhibitor roleandomycin. While some inhibition of BFC metabolism was observed in the presence of 100 and 200 μM diethyldithiocarbamate, the addition of 2-50 μM sulphaphenazole, 50-500 μM Smephenytoin and 2-50 μM quinidine had little effect. 6. The metabolism of 20 μM BFC to HFC in human liver microsomes was also inhibited by an antibody to CYP3A4, whereas antibodies to CYP2C8}9 and CYP2D6 had no effect. 7. In summary, by correlation analysis, use of cDNA-expressed CYP isoforms, chemical inhibition and inhibitory antibodies, BFC appears metabolized by a number of CYP isoforms in human liver. BFC metabolism appears to be primarily catalysed by CYP1A2 and CYP3A4, with possibly some contribution by CYP2C9, CYP2C19 and perhaps other CYP isoforms. 8. The results also demonstrate the importance of the selection of an appropriate substrate concentration when conducting reaction phenotyping studies with human hepatic CYP isoforms.  相似文献   

3.
1. The metabolism of 7-benzyloxy-4-trifluoromethylcoumarin (BFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomal preparations and in cDNA-expressed human cytochrome P450 (CYP) isoforms. 2. Kinetic analysis of the NADPH-dependent metabolism of BFC to HFC in four preparations of pooled human liver microsomes revealed mean (+/- SEM) Km and Vmax of 8.3 +/- 1.3 microM and 454 +/- 98 pmol/min/mg protein respectively. 3. The metabolism of BFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing BFC substrate concentrations of 20 and 50 microM (i.e. about two and six times Km respectively). With 20 microM BFC the highest correlations were observed between BFC metabolism and markers of CYP1A2 (r2 = 0.784-0.797) and then with CYP3A (r2 = 0.434-0.547) isoforms, whereas with 50 microM BFC the highest correlations were observed between BFC metabolism and markers of CYP3A (r2 = 0.679-0.837) and then with CYP1A2 (r2 = 0.421-0.427) isoforms. At both BFC substrate concentrations, lower correlations were observed between BFC metabolism and enzymatic markers for CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP4A9/11. 4. Using human beta-lymphoblastoid cell microsomes containing cDNA-expressed CYP isoforms, 20 microM BFC was metabolized by CYP1A2 and CYP3A4, with lower rates of metabolism being observed with CYP2C9 and CYP2C19. Kinetic studies with the CYP1A2 and CYP3A4 preparations demonstrated a lower Km with the CYP1A2 preparation, but a higher Vmax with the CYP3A4 preparation. 5. The metabolism of 20 microM BFC in human liver microsomes was inhibited to 37-48% of control by 5-100 microM of the mechanism-based CYP1A2 inhibitor furafylline and to 64-69% of control by 5-100 microM of the mechanism-based CYP3A4 inhibitor troleandomycin. While some inhibition of BFC metabolism was observed in the presence of 100 and 200 microM diethyldithiocarbamate, the addition of 2-50 microM sulphaphenazole, 50-500 microm S-mephenytoin and 2-50 microM quinidine had little effect. 6. The metabolism of 20 microM BFC to HFC in human liver microsomes was also inhibited by an antibody to CYP3A4, whereas antibodies to CYP2C8/9 and CYP2D6 had no effect. 7. In summary, by correlation analysis, use of cDNA-expressed CYP isoforms, chemical inhibition and inhibitory antibodies, BFC appears metabolized by a number of CYP isoforms in human liver. BFC metabolism appears to be primarily catalysed by CYP1A2 and CYP3A4, with possibly some contribution by CYP2C9, CYP2C19 and perhaps other CYP isoforms. 8. The results also demonstrate the importance of the selection of an appropriate substrate concentration when conducting reaction phenotyping studies with human hepatic CYP isoforms.  相似文献   

4.
1. The metabolism of Zaleplon (CL-284,846; ZAL) has been studied in human liver microsomal preparations and in cDNA-expressed human cytochrome P450 (CYP) isoforms. 2. Human liver microsomes catalysed the NADPH-dependent N -deethylation of ZAL to DZAL (CL-284,859), but not to two other known in vivo metabolites, namely M1 (CL345,644) and M2 (CL-345,905). Sigmoidal kinetic plots were observed for ZAL deethylation indicating positive cooperativity. 3. The metabolism of ZAL to DZAL was determined in a characterized bank of 24 human liver microsomalpreparations.Good correlations (r2 = 0.734-0.937) were observed with caffeine 8-hydroxylase, diazepam 3-hydroxylase, dextromethorphan N-demethylase and testosterone 2β-, 6β- and 15β-hydroxylase activities, which are allcatalysed by CYP3A isoforms. In contrast, poor correlations (r2 0.152-0.428) were observed for enzymatic markers for CYP1A2, CYP2A6, CYP2C9 10, CYP2D6, CYP2E1 and CYP4A9 11. 4. The metabolism of ZAL to DZAL in human liver microsomes was inhibited to 6-15% of control by 5-50 μM of the mechanism-based CYP3A inhibitor troleandomycin. Whereas some inhibition of DZAL formation was observed in the presence of 200 μM diethyldithiocarbamate, 5-50 μM furafylline, 2-20 μM sulphaphenazole, 50-500 μM S-mephenytoin and 1-10 μM quinidine had little effect. 5. Using human B-lymphoblastoid cell microsomes containing cDNA-expressed CYP isoforms, ZAL was metabolized to DZAL by CYP3A4, but not to any great extent by CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 6. In contrast with ZAL, the NADPH-dependent N-deethylation of M2 to M1 proceeded at only a very low rate with both human liver microsomes and cDNA-expressed CYP3A4. 7. In summary, by correlation analysis, chemical inhibition studies and the use of cDNA-expressed CYPs, ZAL N -deethylation to DZAL in human liver appears to be catalysed by CYP3A isoforms.  相似文献   

5.
Gastrointestinal tissues are directly exposed to dietary xenobiotics. In spite of this, modulation of cytochrome P450 (CYP) enzymes in the gastrointestinal tract is not well established. CYP induction could facilitate transformation of chemical agents to potentially toxic or carcinogenic metabolites. This might also determine drug efficacy, burden of foreign chemicals on tissues or bioavailability of certain therapeutic agents. In order to assess the induction of the CYP subfamilies 1A1/2, 2B1/2, 2E1 and 3A2 in the gastrointestinal tract, male Wistar rats were treated with phenobarbital/β-naphthoflavone (PB/NF), cyclohexanol/albendazole (CH/ABZ) or toluene (TL). Microsomal fractions were prepared from tissue samples of the esophagus, the stomach, the duodenum, the colon and the liver. Western blot and enzymatic activity analyses revealed an increase in the expression and activity of CYP1A1/2 and CYP3A2 isoenzymes in the esophageal, duodenal and colonic microsomes from animals treated with PB/NF. CYP1A1/2 and CYP3A2 were induced in hepatic and duodenum microsomes by treatment with CH/ABZ. Our results demonstrate differential induction of CYP along the gastrointestinal tract by known CYP hepatic inducers, being the treatment with PB/NF the best induction system of the CYPs.  相似文献   

6.
Coimmunoprecipitation was used to investigate protein-protein interactions between several UDP-glucuronosyltransferase (UGT) isoforms and cytochrome P450 3A4. Solubilized human liver microsomes were incubated with specific antibodies to UGT2B7, UGT1A6, UGT1A1, and CYP3A4, and the immunoprecipitates were run on SDS-polyacrylamide gel electrophoresis. Western blots showed that UGT2B7, UGT1A6, UGT1A1, and CYP3A4 were successfully immunoprecipitated with the specific antibodies for each enzyme. Upon immunoprecipitating UGT2B7, the corresponding immunoblot showed that UGT1A6, UGT1A1, and CYP3A4 were immunoprecipitated. Similar studies found that different UGT isoforms or CYP3A4 immunoprecipitated along with the original immunoprecipitating enzyme. These data suggest that UGT isoforms may form complexes (dimers, tetramers, etc.) with each other in the endoplasmic reticulum and nuclear envelope. In addition, the UGT isoforms tested here may have interacted with CYP3A4 in the endoplasmic reticulum, suggesting that these enzymes may cooperate in the excretion of compounds in a multistep metabolic process.  相似文献   

7.
1. Cilostazol (OPC-13013) undergoes extensive hepatic metabolism. The hydroxylation of the quinone moiety of cilostazol to OPC-13326 was the predominant route in all the liver preparations studies. The hydroxylation of the hexane moiety to OPC-13217 was the second most predominant route in vitro. 2. Ketoconazole (1 microM) was the most potent inhibitor of both quinone and hexane hydroxylation. Both the CYP2D6 inhibitor quinidine (0.1 microM) and the CYP2C19 inhibitor omeprazole (10 microM) failed to consistently inhibit metabolism of cilostazol via either of these two predominant routes. 3. Data obtained from a bank of pre-characterized human liver microsomes demonstrated a stronger correlation (r2=0.68, P < 0.01) between metabolism of cilostazol to OPC-13326 and metabolism of felodipine, a CYP3A probe, that with probes for any other isoform. Cimetidine demonstrated concentration-dependent competitive inhibition of the metabolism of cilostazol by both routes. 4. Kinetic data demonstrated a Km value of 101 microM for cilostazol, suggesting a relatively low affinity of cilostazol for CYP3A. While recombinant CYP1A2, CYP2D6 and CYP2C19 were also able to catalyze formation of specific cilostazol metabolites, they did not appear to contribute significantly to cilostazol metabolism in whole human liver microsomes.  相似文献   

8.
Freshly prepared human hepatocytes are considered as the 'gold standard' for in vitro testing of drug candidates. However, several disadvantages are associated with the use of this model system. The availability of hepatocytes is often low and consequently the planning of the experiments rendered difficult. In addition, the quality of the available cells is in some cases poor. As an alternative, cryopreserved human hepatocytes were validated as a model to study cytochrome P450 1A2 (CYP1A2) and cytochrome P450 3A4 (CYP3A4) induction. In a single blinded experiment, hepatocytes from three separate lots were incubated with three concentrations of different compounds, and compared to non-treated cells and cells incubated with omeprazole or rifampicin. CYP1A2 and CYP3A4 induction was determined by measuring 7-ethoxyresorufin-O-deethylation activity and 6beta-hydroxytestosterone formation, respectively. CYP1A2 and CYP3A4 mRNA and protein expression were analyzed by TaqMan QRT-PCR and immunodetection. Cells responded well to the prototypical inducers with a mean 38.8- and 6.2-fold induction of CYP1A2 and CYP3A4 activity, respectively. Similar as with fresh human hepatocytes, high batch-to-batch variation of CYP1A2 and CYP3A4 induction was observed. Except for 1 and 10 microM rosiglitazone, the glitazones did not significantly affect CYP1A2. A similar result was observed for CYP3A4 activity although CYP3A4 mRNA and protein expression were dose-dependently upregulated. In conclusion, cryopreserved human hepatocytes may be a good alternative to fresh hepatocytes to study CYP1A and 3A induction.  相似文献   

9.
The ability of modafinil to affect human hepatic cytochrome P450 (CYP) activities was examined in vitro. The potential for inhibition of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4/5, and CYP4A9/11 by modafinil (5-250 microM) was evaluated with pooled human liver microsomes. Modafinil exhibited minimal capacity to inhibit any CYP enzyme, except CYP2C19. Modafinil inhibited the 4'-hydroxylation of S-mephenytoin, a marker substrate for CYP2C19, reversibly and competitively with a K(i) value of 39 microM, which approximates the steady-state C(max) value of modafinil in human plasma at a dosage of 400 mg/day. No irreversible inhibition of any CYP enzyme was observed, and there was no evidence of metabolism-dependent inhibition. The potential for induction of CYP activity was evaluated by exposing primary cultures of human hepatocytes to modafinil (10-300 microM). Microsomes were then prepared and assayed for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5 activities. The mean activities of microsomal CYP1A2, CYP2B6, and CYP3A4/5 from modafinil-treated hepatocytes were higher (up to 2-fold) than those in the solvent-treated controls but were less than those produced by reference inducers of these enzymes. At high concentrations of modafinil (>/=100 microM), the mean activity of CYP2C9 was decreased (up to 60%) relative to that in the solvent controls. Overall, modafinil was shown to have effects on human hepatic CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A4/5 activities in vitro. Although effects obtained in vitro are not always predictive of effects in vivo, such results provide a rational basis for understanding drug-drug interactions that are observed clinically and for planning subsequent investigations.  相似文献   

10.
In the Crigler–Najjar type I syndrome, the genetic absence of efficient hepatic glucuronidation of unconjugated bilirubin (UCB) by the uridine 5′-diphospho-glucuronosyltransferase1A1 (UGT1A1) enzyme produces the rise of UCB level in blood. Its entry to central nervous system could generate toxicity and neurological damage, and even death. In the past years, a compensatory mechanism to liver glucuronidation has been indicated in the hepatic cytochromes P450 enzymes (Cyps) which are able to oxidize bilirubin. Cyps are expressed also in the central nervous system, the target of bilirubin toxicity, thus making them theoretically important to confer a protective activity toward bilirubin accumulation and neurotoxicity. We therefore investigated the functional induction (mRNA, EROD/MROD) and the ability to oxidize bilirubin of Cyp1A1, 1A2, and 2A3 in primary astrocytes cultures obtained from two rat brain region (cortex: Cx and cerebellum: Cll). We observed that Cyp1A1 was the Cyp isoform more easily induced by beta-naphtoflavone (βNF) in both Cx and Cll astrocytes, but oxidized bilirubin only after uncoupling by 3, 4,3′,4′-tetrachlorobiphenyl (TCB). On the contrary, Cyp1A2 was the most active Cyp in bilirubin clearance without uncoupling, but its induction was confined only in Cx cells. Brain Cyp2A3 was not inducible. In conclusion, the exposure of astrocytes to βNF plus TCB significantly enhanced Cyp1A1 mediating bilirubin clearance, improving cell viability in both regions. These results may be a relevant groundwork for the manipulation of brain Cyps as a therapeutic approach in reducing bilirubin-induced neurological damage.  相似文献   

11.
12.
Cyfluthrin effects on in vivo drug metabolizing enzymes were evaluated using the oxidative substrate antipyrine. Antipyrine pharmacokinetics in plasma and urinary excretion of its major metabolites with and without cyfluthrin oral treatment (20 mg/kg/day for 6 days) were investigated in rats. Cyfluthrin increased the apparent intrinsic clearance and decreased the antipyrine half-life at β phase. Cyfluthrin also increased the clearance of the antipyrine metabolites, norantipyrine, 4-hydroxyantipyrine and 3-hydroxymethylantipyrine and the formation rate constants for each of the three metabolites measured in urine. These results suggest that cyfluthrin affects hepatic cytochrome P450 (CYP) system. In order to confirm, a second experiment was carried out. We evaluated the effects of repeated exposure to cyfluthrin on hepatic and renal CYP2E, CYP1A and CYP4A subfamilies and peroxisomal proliferation in rats following oral administration (10 and 20 mg/kg/day for 6 days). At the highest dose, cyfluthrin increased renal and hepatic O-deethylation of ethoxyresorufin and O-demethylation of methoxyresorufin, metabolism mediated by the CYP1A subfamily. Liver and kidney were susceptible to cyfluthrin-dependent induction of 12- and 11-hydroxylation of lauric acid, suggesting CYP4A subfamily induction. Also cyfluthrin increased the β-oxidation of palmitoyl-coenzyme A and carnitine acetyltransferase activity, supporting cyfluthrin as a peroxisome proliferator. In conclusion, the demonstration that cyfluthrin induced hepatic CYP1A, CYP4A subfamilies and peroxisomal proliferation raises the possibility of cyfluthrin could produce changes in oxidative stress.  相似文献   

13.
Nicardipine hydrochloride (Nic), a calcium channel antagonist, is used for the treatment of hypertension. In the present study, we estimated its effects on the levels and activities of hepatic cytochrome P450 isoforms in spontaneously hypertensive rats given p.o. with Nic at a dose of 0.5, 2.5, 5, or 12.5 mg/kg at 24-hr intervals for 14 days. Therapeutic effects on the development of hypertension were observed at doses of 5 and 12.5 mg/kg/day. Significant increases in the levels of mRNAs and enzyme activities of hepatic P450 isoforms, CYP1A1 and/or CYP1A2, by 14-day repetitive treatment with Nic were observed at lower therapeutic doses, whereas the increase in protein levels for CYP1A2 was observed at a higher therapeutic dose of 12.5 mg/kg/day. Likewise, the activities of hepatic CYP2B and CYP3A subfamily enzymes were increased by the 14-day-treatment of Nic only at a therapeutic dose (12.5 mg/kg/day), whereas their mRNA and protein levels were increased at lower therapeutic doses. To date, the dihydropyridine family, including Nic, has been believed to have inhibitory effects on the activity of various cytochrome P450 enzymes, especially human CYP3A4. However, the present findings demonstrate for the first time that Nic-repetitive treatments at a therapeutic dose result in significant increases in the expressions and activities of hepatic CYP1A, CYP2B, and CYP3A subfamily enzymes. Therefore, the effects of dihydropyridine family on cytochrome P450 enzymes have to be further validated to provide information on its safe and beneficial therapeutic application.  相似文献   

14.
Objective: A series of studies was undertaken to determine the cytochrome P450 isoform(s) involved in naproxen demethylation and whether this included the same isoforms reported to be involved in the metabolism of other NSAIDs. Methods: (S)-Naproxen was incubated with human liver microsomes in the presence of a NADPH-generating system and the formation of desmethylnaproxen was measured by high-performance liquid chromatography (HPLC). To further clarify the specific isoforms involved, experiments were conducted with preparations expressing only a single P450 isoform (vaccinia virus-expressed cells and microsomes derived from a lymphoblastoid cell line, each transfected with specific P450 cDNAs) as well as inhibition studies using human liver microsomes and putative specific P450 inhibitors. Results: In human liver microsomes (n=7), desmethylnaproxen formation was observed with a mean kM of 92 (21) μmol · l−1, Vmax of 538 pmol · min−1 · mg−1 protein and Cint2 (reflective of a second binding site) of 0.36 μl · min−1 · mg−1 protein. This Cint2 term was added since Eadie-Scatchard analysis suggested the involvement of more than one enzyme. Studies using putative specific P450 inhibitors demonstrated inhibition of this␣reaction by sulfaphenazole, (apparent Ki= 1.6 μmol · l−1), warfarin (apparent Ki=27 μmol · l−1), piroxicam (apparent Ki=23 μmol · l−1) and tolbutamide (apparent Ki=128 μmol · l−1). No effect was observed when α-naphthoflavone and troleandomycin were employed as inhibitors, but reaction with furafylline produced, on average, a maximum inhibition of 23%. At a naproxen concentration of 150 μmol · l−1, formation of desmethylnaproxen was observed in cells expressing P450 1A2, 2C8, 2C9 and its allelic variant 2C9R144C. To further characterize these reactions, saturation kinetics experiments were conducted for the P450s 1A2, 2C8 and 2C9. The kM and Vmax for P450 1A2 were 189.5 μmol · l−1 and 7.3 pmol · min−1 · pmol−1 P450, respectively. Likewise, estimates of kM and Vmax for P450 2C9 were 340.5 μmol · l−1 and 41.4 pmol · min−1 · pmol−1 P450, respectively. Reliable estimates of kM and Vmax could not be made for P450 2C8 due to the nonsaturable nature of the process over the concentration range studied. Conclusion: Multiple cytochrome P450 isoforms (P450 1A2, 2C8 and 2C9) appear to be involved in naproxen demethylation, although 2C9 appears to be the predominant form. Received: 16 September 1996 / Accepted in revised form: 20 December 1996  相似文献   

15.
16.
The role of specific human cytochrome P450 (CYP) isoforms in the oxidative metabolism of all-trans-retinoic acid was investigated by studies in human liver microsomes using isoform-specific chemical inhibitors and inhibitory antibodies. Studies using individual isoforms expressed in lymphoblastoid cells and correlation analysis using different microsome preparations were also performed. With expressed isoforms, evidence for a role for CYP2C8, CYP3A4, CYP2C9, and CYP1A1 in 4-hydroxylation was obtained, with the highest catalytic efficiency being observed for CYP2C8. Using inhibition studies and correlation analysis, we also concluded that CYP2C8 was the major all-trans-retinoic acid 4-hydroxylating cytochrome P450 in human liver microsomes, though CYP3A4 and, to a lesser extent CYP2C9, also made a contribution. In addition, we compared the rate of retinoic acid degredation in HepG2 cells when cultured in the absence and presence of 3-methylcholanthrene or all-trans-retinoic acid. Culture in the presence of all-trans-retinoic acid decreased the half-life twofold and resulted in an increased sensitivity of retinoic acid degredation to ketoconazole. Since no induction of either CYP1A1, CYP2C8, CYP2C9, or CYP3A4 was detected using immunoblotting and as mRNA encoding another cytochrome P450 enzyme, CYP26, has been previously demonstrated to be induced by retinoic acid treatment of HepG2 cells and to be highly sensitive to ketoconazole, this enzyme in addition to CYP2C8, CYP2C9 and CYP3A4 likely plays a role in all-trans-retinoic acid oxidation in the liver at high retinoic acid levels.  相似文献   

17.
Zafirlukast is a cysteinyl leukotriene antagonist used to treat allergic and exercise-induced asthma. This in vitro study used human liver microsomes to evaluate the inhibitory activity of zafirlukast versus six human cytochrome P450 (CYP) isoforms. Zafirlukast (0-250 microM) was co-incubated with fixed concentrations of index substrates. Zafirlukast inhibited the hydroxylation of tolbutamide (CYP2C9; mean IC(50)=7.0 microM), triazolam (CYP3A; IC(50)=20.9 microM) and S-mephenytoin (CYP2C19; IC(50)=32.7 microM), and was a less potent inhibitor of phenacetin O-deethylation (CYP1A2; IC(50)=56 microM) and dextromethorphan O-demethylation (CYP2D6; IC(50)=116 microM). Zafirlukast produced negligible inhibition of CYP2E1. In vitro inhibition of CYP2C9 by zafirlukast is consistent with clinical studies showing impaired clearance of S-warfarin and enhanced anti-thrombotic effects, although the in vitro IC(50) value is higher than the usual range of clinically relevant plasma concentrations. Zafirlukast deserves further clinical study as an inhibitor of other CYP2C9 substrates such as nonsteroidal anti-inflammatory agents, tolbutamide, phenytoin and mestranol. Clinically important inhibition by zafirlukast of other CYP isoforms is not established.  相似文献   

18.
Significance of the minor cytochrome P450 3A isoforms   总被引:3,自引:0,他引:3  
Cytochrome P450 (CYP) 3A4 is responsible for most CYP3A-mediated drug metabolism but the minor isoforms CYP3A5, CYP3A7 and CYP3A43 also contribute. CYP3A5 is the best studied of the minor CYP3A isoforms. It is well established that only approximately 20% of livers express CYP3A5. The most common reason for the absence of expression is a splice site mutation. The frequency of variant alleles shows interethnic differences, with the wild-type CYP3A5*1 allele more common in Africans than Caucasians and Asians. In individuals who express CYP3A5, the percentage contributed to total hepatic CYP3A by this isoform is still unclear, with estimates ranging from 17% to 50%. CYP3A5 is also expressed in a range of extrahepatic tissues. Only limited information is available on the regulation of CYP3A5 expression but it appears to be inducible via the glucocorticoid receptor, pregnane X receptor and constitutive androstane receptor-beta, as for CYP3A4. Although information on the substrate specificity of CYP3A5 is limited compared with CYP3A4, there have been a number of recent pharmacokinetic studies on a small range of substrates in individuals of known genotype to investigate the contribution of CYP3A5. In the case of midazolam, ciclosporin, nifedipine and docetaxel, clearance by individuals with a CYP3A5-expressing genotype did not differ from that for nonexpressors, but in the case of tacrolimus, eight independent studies have demonstrated faster clearance by those carrying one or two CYP3A5*1 alleles. This may reflect faster turnover of tacrolimus by CYP3A5 than the other substrates. CYP3A5 genotype may affect cancer susceptibility. Certain combined CYP3A4/CYP3A5 haplotypes show differential susceptibility to prostate cancer and there is a nonsignificant increase in the risk of small-cell lung cancer for a CYP3A5*1/*1 genotype. Females positive for CYP3A5*1 appear to reach puberty earlier, which may affect breast cancer risk. CYP3A5*1 homozygotes may have higher systolic blood pressure.CYP3A7 is predominantly expressed in fetal liver but is also found in some adult livers and extrahepatically. The molecular basis for expression in adult liver relates to upstream polymorphisms, which appear to increase homology to CYP3A4 and make regulation of expression more similar. CYP3A7 has a specific role in hydroxylation of retinoic acid and 16alpha-hydroxylation of steroids, and is therefore of relevance both to normal development and carcinogenesis.CYP3A43 is the most recently discovered CYP3A isoform. In addition to a low level of expression in liver, it is expressed in prostate and testis. Its substrate specificity is currently unclear. Polymorphisms predicting absence of active enzyme have been identified.  相似文献   

19.
The assessment of in vitro inhibition and induction of the cytochrome P450 enzymes of the liver is a critical part of the drug discovery and development process in order to ensure that two or more drugs can be safely coadministered without alterations in exposure. Early assessment of potential candidates using high throughput approaches provides key direction in choosing the most promising chemical series to pursue. In later stage development, the use of in vitro data to assess the potential for clinical interactions is now a practice readily accepted by regulatory authorities. Inhibition of drug metabolizing enzymes can occur via two principal mechanisms, reversible inhibition and time dependent inhibition (mechanism-based inactivation). Clinically, either of these mechanisms can lead to reduced clearance of a coadministered drug and potentially toxic levels may be reached. Inducers of a drug metabolizing enzyme can increase the clearance of other drugs, or itself, resulting in a decreased therapeutic effect; they can also increase the bioactivation of drugs that can produce reactive intermediates, leading to hepatotoxicity. A number of in vitro models composed of human-derived microsomes, recombinantly expressed human drug metabolizing enzymes, human-derived cell lines, as well as fresh and cryopreserved human hepatocytes, are increasingly in use to evaluate inhibition and induction. In this review, the authors' understanding of currently utilized enzyme inhibition and induction methodologies are presented and the authors provide recommendations regarding which assay types offer the greatest advantage during the drug development process.  相似文献   

20.
1. The in vitro metabolism of omeprazole was studied in human liver microsomes in order to define the secondary metabolic pathways and identify the cytochrome P450 (CYP) isoforms responsible for the formation of the secondary metabolites of omeprazole. 2. The major secondary omeprazole metabolite was the hydroxysulphone, which was formed during incubation with both hydroxyomeprazole and omeprazole sulphone. A second metabolite, tentatively identified as pyridine-N-oxide omeprazole sulphone, was also formed during incubation with omeprazole sulphone. The formation kinetics of these two metabolites from omeprazole sulphone were biphasic suggesting the involvement of multiple CYP isoforms in each case. In contrast, the formation kinetics of hydroxysulphone from hydroxyomeprazole were linear. 3. Inhibition studies, performed with omeprazole sulphone as substrate at concentrations at which the high affinity activities predominated, with a series of isoform selective inhibitors as well as with an anti-CYP2C3 antibody suggested a dominant role of S-mephenytoin hydroxylase in the formation of hydroxysulphone from omeprazole sulphone. By contrast, CYP3A activities were predominant in the formation of hydroxysulphone from hydroxyomeprazole as well as in the formation of pyridine-N-oxide omeprazole sulphone from omeprazole sulphone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号