首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Parvalbumin是细胞内一种钙结合蛋白。同时又可作为中枢神经系统内与GABA共存的神经元亚群的特异标记物,主要标记篮状及苔烛细胞。用PAP方法染色可见大鼠Parvalbumin免疫阳性神经终末在运动皮层锥体神经元胞体周围形成包篮现象,但因该方法的局限性,较难明确二者的关系。为进一步了解Parvalbumin阳性终末在锥体神经元胞体、树突与轴突整体上的分布状况以及运动皮层内不同传出神经元是否均  相似文献   

2.
大鼠纹状体parvalbumin阳性中间神经元的超微结构   总被引:1,自引:0,他引:1  
目的:研究纹状体parvalbumin (Parv)阳性中间神经元在神经通路上的突触连接.方法:利用免疫组织化学和神经示踪方法标记SD大鼠纹状体Parv及其相关神经元,光镜和电镜观察阳性神经元的结构和位置关系.结果:Parv阳性中间神经元中等大小,散在分布于纹状体,以背外侧居多.光镜免疫双标记显示Parv阳性中间神经元与皮质、丘脑和中脑黑质的传入轴突终末形成明显的形态位置上的邻近关系,其轴突终末则与纹状体不同类型投射神经元在光镜下也形成邻近关系.Parv阳性中间神经元的免疫电镜观察显示阳性产物主要游离于胞体、树突和轴突的胞质内.Parv阳性中间神经元的胞体和树突均接受大量的非对称型突触传入.Parv阳性轴突终末平均大小为(0.62±0.28)μm,可见其与纹状体神经元的树突、胞体和树突棘形成对称型突触,其中与树突形成的突触占69.64%,与胞体和树突棘形成的突触分别为26.78%和3.58%.结论:纹状体Parv阳性中间神经元形态学上与皮质、丘脑、黑质以及纹状体投射神经元形成突触连接,提示其可能在调节纹状体信息传入和输出过程中具有重要作用.  相似文献   

3.
董玉琳  李金莲 《神经解剖学杂志》2001,17(3):248-252,T044
本教研室以往的研究证实 Parvalbum in样免疫阳性细胞广泛分布于三叉神经本体感觉中枢四级通路的各级中继核团 ,其中有 30 %~ 5 0 %为投射神经元。本研究应用电镜免疫组织化学技术进一步对此通路第二、三级神经元所在地的 Parvalbumin样阳性神经元及其纤维和终末的突触联系进行了观察。结果显示 Parvalbum in样阳性结构主要形成以下几种突触联系 :( 1) Par-valbumin样阳性轴突与 Parvalbumin样阳性胞体或树突形成轴 -体或轴 -树突触 ,其中以非对称性突触为主 ,对称性突触较少 ;( 2 )Parvalbumin样阳性轴突分别与 Parvalbumin样阴性神经元的胞体或树突形成轴 -体或轴 -树突触 ,这些突触联系以对称性为主 ,非对称性大约占 30 %左右 ;( 3) Parvalbumin样阴性终末与 Parvalbumin样阳性树突形成以对称性为主的轴 -树突触 ,这种突触大约占所有突触联系的 5 0 %。以上结果表明 :面口部本体感觉信息由三叉神经中脑核神经元向丘脑腹后内侧核传递的过程中 ,Par-valbumin样阳性轴突终末可通过突触传导机制而兴奋或抑制二、三级核团内的投射或中间神经元而发挥其重要作用  相似文献   

4.
用CB-HRP逆行追踪与顺行溃变相结合的方法,对描丘脑腹后外侧核内的来自大脑皮质体感Ⅰ区的皮质—丘脑纤维终末与丘脑—皮质投射神经元之间的突触连接进行了电镜观察。向猫大脑皮质体感Ⅰ区内注射CB-HRP5h后,电解损毁原注射部位,术后动物存活4d。电镜下发现丘脑瓜后外侧核内存在5种突触连接方式;(1)溃变的轴突终未与HRP标记神经元胞体形成轴-体突触;(2)溃变的轴突终末与HRP标记的树突形成轴—树突触;(3)溃变的轴突终末和其它突触前成分共同与中央树突形成汇聚型的突触复合体;(4)溃变的轴突终末与未标记树突形成的轴—树突触;(5)正常的轴突终末与HRP标记神经元形成对称型的轴—体突触。  相似文献   

5.
马晓凯  王滨  范凯  付元山 《解剖学报》2007,38(2):139-143
目的 探讨大鼠丘脑前核-海马下托复合体神经元环路的突触结构及谷氨酸分布特征.方法 应用HRP束路追踪结合包埋后胶体金免疫电镜技术.结果 在丘脑前核内,可见HRP顺行标记的海马下托复合体传入轴突终末,终末多为卵圆形,内含圆形透亮突触小泡和数个线粒体.其做为突触前成分与HRP标记的树突或非HRP标记的树突形成非对称性突触.在谷氨酸胶体金免疫反应切片上,胶体金颗粒标记胞体、树突、轴突终末等.HRP标记的轴突终末和一些非HRP标记的与突触后成分形成非对称性突触的轴突终末(Gray Ⅰ型)内,胶体金颗粒密度明显大于背景(胞体、树突、Gray Ⅱ型轴突终末等)的胶体金颗粒密度.其平均胶体金颗粒密度为突触后树突的3倍多,为对称性轴突终末(Gray Ⅱ型)的6倍多.在两张邻近的连续切片,γ-氨基丁酸(GABA)胶体金免疫反应切片上,GABA胶体金颗粒浓重标记Gray Ⅱ型轴突终末,背景标记极少;而非对称性轴突终末(Gray Ⅰ型)胶体金颗粒标记极弱.谷氨酸胶体金免疫反应切片上,Gray Ⅱ型轴突终末胶体金颗粒标记极弱.GABA阳性轴突终末与HRP标记的树突形成对称性突触,在同一树突上可见GABA能轴突终末形成的对称性突触和其他轴突终末形成的非对称性突触.结论 丘脑前核内来自海马下托复合体投射神经元的轴突终末是谷氨酸能的;来自海马下托复合体皮质投射神经元轴突终末,在丘脑前核与投射至海马下托皮质的神经元树突形成非对称性轴-树突触.  相似文献   

6.
王滨  张书琴 《解剖学报》1994,25(3):269-272,T009
用HRP逆行追踪与顺行溃变相结合的方法,研究了猫后索核内初级传入终末与丘脑投射神经元之间的突触联系形式。在电镜下可见后索核内有5种突触联系式:1.溃变轴突终末与HRP标记树突形成的轴-树突触;2.溃变轴突终末与HRP标记胞体形成的轴-体突触;3.溃变轴突终末与非标记树突形成的轴-树突触;4.轴-轴-树连续性突触;5.非溃变的含扁平小泡或多形小泡轴突终末与HRP标记的神经元胞体形成的轴-体突触。本文  相似文献   

7.
目的 观察大鼠三叉神经本体觉中枢通路上第三级核团内Paralbumin样阳性轴突终末与丘脑投射神经元之间是否存在突触联系。方法 用HRP逆行追踪和包埋前免疫电镜相结合的双重标记法。将WGA-HRP注入丘脑腹后内侧核逆行标记投射神经元。结果 WGA-HRP注入丘脑腹后内侧核(VPM)后,WGA-HRP标记神经元主要分布在感觉主核背内侧部(Vpdm)、三叉上核尾外侧部(Vsup-CL)以及三叉神经运动核腹侧区(AVM)和上橄榄核背侧区(ADO)。电镜下可见PV样阳性神经元的轴突终末与WGA-HRP标记的胞体或者树突形成突触联系。另外PV阴性神经元的轴突终末也与WGA-HRP标记的胞体或树突形成突触联系,这些胞体或树突偶尔为PV阳性。结论 在三叉神经本体感觉信息从第三级神经元向丘脑腹后内侧核(VPM)传递的过程中,PV样阳性神经元可能通过突触传递机制而发挥作用。  相似文献   

8.
本实验应用顺行溃变和HRP逆行追踪相结合的方法,首次在电镜水平对猫丘脑中央外侧核内脊丘系终末与丘脑-皮质投射神经元之间的突触联系进行了研究.在脊髓第4颈段刀切损毁一侧侧索和前索后,将HRP注射于同侧大脑前上薛氏回和中上薛氏回前端。在电镜下于损毁同侧中央外侧核内可见下列突触连结:(1)溃变的脊丘系轴突终末与标记树突形成的轴-树突触;(2)溃变的脊丘系轴突终末与非标记树突形成的轴-树突触,个别非标记树突含有突触小泡;(3)正常的轴突终末与HRP标记树突和胞体形成的轴-树突触和轮一体突触;(4)正常的两个轴突终末与HRP标记树突形成的轴-轴-树连续性突触;(5)非标记的含突触小泡的突触前树突与HRP标记树突形成的树-树突触。同时可见大量汇聚型突触复合体。本文首次报道在丘脑中央外侧核内,脊丘系终末与丘脑-皮质投射神经元之间存在着直接的突触联系。  相似文献   

9.
本文用切断一侧结状神经节近侧端的迷走神经和HRP注入伏核逆行追踪相结合的方法,在电镜水平对孤束核向伏核投射的神经元是否接受迷走神经初级传入纤维终末进行了研究。在孤束核内可见下列突触关系:(1)溃变轴突终末与HRP逆标树突形成轴-树突触;(2)无标记正常轴突终末与HRP逆标胞体或树突分别形成轴-体或轴-树突触;(3)HRP顺标轴突终末与无标记树突形成轴-树突触;(4)溃变轴突终末与无标记树突形成轴-树突触。由上述结果可知:孤束核向伏核投射的神经元接受迷走神经的初级传入终末;伏核神经元的下行终末与孤束核内的神经元之间有突触联系。  相似文献   

10.
采用HRP逆行追踪技术与电镜相结合的方法,对猫大脑皮质体感Ⅰ区内皮质丘脑投射神经元超微结构及突触联系进行了研究。结果证明,皮质丘脑投射神经元超微结构的特点为锥体形的胞体,胞浆丰富,含有多量的粗面内质网,游离核糖体及线粒体。HRP标记的皮质丘脑投射神经元作为突触后成份与轴突和树突分别形成轴-树突触,轴-体突触和树-体实触。这些结果提示:皮质丘脑投射神经元接受广泛的传入联系和皮质间的联系。  相似文献   

11.
Immunocytochemical and electron microscopic methods were used to examine neurons in regio superior of rat hippocampus displaying cholecystokinin octapeptide-like immunoreactivity. Cholecystokinin-immunoreactive synaptic terminals and somata are found in all layers of regio superior but are most numerous in stratum pyramidale. The vast majority of terminals form symmetric synaptic contacts onto the somata and proximal dendrites of hippocampal pyramidal cells and onto smaller dendrites which may also arise from pyramidal cells. A very small number of Cholecystokinin-immunoreactive terminals form synapses that appear asymmetric and contact dendritic shafts or spines. The somata of some pyramidal cells receive symmetric synapses from Cholecystokinin-immunoreactive terminals that are joined by cytoplasmic bridges to form parts of pericellular baskets. These and adjacent pyramidal cell somata are also contacted by terminals that are not immunoreactive for cholecystokinin. No cholecystokinin-positive terminals contacted the initial segments of pyramidal cell axons. Cholecystokinin-immunoreactive cells are found in all layers of regio superior. Their somata receive a few symmetric synapses, most of which are formed by terminals not immunoreactive for cholecystokinin. Their dendrites receive a greater number of both symmetric and asymmetric contacts, some of which are immunoreactive for cholecystokinin.We conclude the following: (1) The localization of cholecystokinin immunoreactivity in synaptic terminals contacting the somata and dendrites of hippocampal pyramidal cells is consistent with the suggestion that cholecystokinin acts as a neurotransmitter at these sites and at sites in other parts of the cerebral cortex. (2) Results from the present and previous studies suggest that cholecystokinin-like immunoreactivity may co-exist with γ-aminobutyrate in some non-pyramidal neurons of regio superior. (3) Cholecystokinin-immunoreactive terminals arise mainly from non-pyramidal cells intrinsic to the hippocampus, one class of which appears to be a type of basket cell.  相似文献   

12.
The ultrastructural characteristics of non-degenerating GABAergic neurons in rostrolateral medial vestibular nucleus were identified in monkeys following midline transection of vestibular commissural fibers. In the previous papers, we reported that most degenerated cells and terminals in this tissue were located in rostrolateral medial vestibular nucleus, and that many of these neurons were GABA-immunoreactive. In the present study, we examined the ultrastructural features of the remaining neuronal elements in this medial vestibular nucleus region, in order to identify and characterize the GABAergic cells that are not directly involved in the vestibular commissural pathway related to the velocity storage mechanism. Such cells are primarily small, with centrally-placed nuclei. Axosomatic synapses are concentrated on polar regions of the somata. The proximal dendrites of GABAergic cells are surrounded by boutons, although distal dendrites receive only occasional synaptic contacts. Two types of non-degenerated GABAergic boutons are distinguished. Type A terminals are large, with very densely-packed spherical synaptic vesicles and clusters of large, irregularly-shaped mitochondria with wide matrix spaces. Such boutons form symmetric synapses, primarily with small GABAergic and non-GABAergic dendrites. Type B terminals are smaller and contain a moderate density of round/pleomorphic vesicles, numerous small round or tubular mitochondria, cisterns and vacuoles. These boutons serve both pre- and postsynaptic roles in symmetric contacts with non-GABAergic axon terminals. On the basis of ultrastructural observations of immunostained tissue, we conclude that at least two types of GABAergic neurons are present in the rostrolateral portion of the monkey medial vestibular nucleus: neurons related to the velocity storage pathway, and a class of vestibular interneurons. A multiplicity of GABAergic bouton types are also observed, and categorized on the basis of subcellular morphology. We hypothesize that "Type A" boutons correspond to Purkinje cell afferents in rostrolateral medial vestibular nucleus, "Type B" terminals represent the axons of GABAergic medial vestibular nucleus interneurons, and "Type C" boutons take origin from vestibular commissural neurons of the velocity storage pathway.  相似文献   

13.
Neurons in the monkey somatic sensory and motor cortex were labelled immunocytochemically for the GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), and examined with the electron microscope. The somata and dendrites of many large GAD-positive neurons of layers III-VI receive numerous asymmetric synapses from unlabelled terminals and symmetric synapses from GAD-positive terminals. Comparisons with light and electron microscopic studies of Golgi-impregnated neurons suggest that the large labelled neurons are basket cells. Small GAD-positive neurons generally receive few synapses on their somata and dendrites, and probably conform to several morphological types. GAD-positive axons from symmetric synapses on many neuronal elements including the somata, dendrites and initial segments of pyramidal cells, and the somata and dendrites of non-pyramidal cells. Synapses between GAD-positive terminals and GAD-positive cell bodies and dendrites are common in all layers. Many GAD-positive terminals in layers III-VI arise from myelinated axons. Some of the axons form pericellular terminal nests on pyramidal cell somata and are interpreted as originating from basket cells while other GAD-positive myelinated axons synapse with the somata and dendrites of non-pyramidal cells. These findings suggest either that the sites of basket cell terminations are more heterogeneous than previously believed or that there are other classes of GAD-positive neurons with myelinated axons. Unmyelinated GAD-positive axons synapse with the initial segments of pyramidal cell axons or form en passant synapses with dendritic spines and small dendritic shafts and are interpreted as arising from the population of small GAD-positive neurons which appears to include several morphological types.  相似文献   

14.
Sections of the cat's visual cortex were stained by an antiserum to glutamate decarboxylase using the peroxidase-antiperoxidase method; they were then impregnated by the section Golgi procedure and finally the Golgi deposit was replaced by gold. Neurons containing glutamate decarboxylase immunoreactivity were found in all layers of the visual cortex, without any obvious pattern of distribution. Fifteen immunoreactive neurons were also Golgi-impregnated and gold-toned, which enabled us to study the morphology and synaptic input of identified GABAergic neurons. These neurons were found to be heterogeneous both with respect to the sizes and shapes of their perikarya and the branching patterns of their dendrites. All the immunoreactive, Golgi-impregnated neurons had smooth dendrites, with only occasional protrusions. The synaptic input of glutamate decarboxylase-immunoreactive neurons was studied in the electron microscope. Immunoreactive neurons received immunoreactive boutons forming symmetrical synapses on their cell bodies. The Golgi-impregnation made it possible to study the input along the dendrites of immunoreactive neurons. One of the large neurons in layer III whose soma was immunoreactive was also Golgi-impregnated: it received numerous non-immunoreactive asymmetrical synaptic contacts along its dendrites and occasional ones on its soma. The same neuron also received a few boutons forming symmetrical synaptic contacts along its Golgi-impregnated dendrites; most of these boutons were immunoreactive for glutamate decarboxylase. Glutamate decarboxylase-immunoreactive boutons were also found in symmetrical synaptic contact with non-immunoreactive neurons that were Golgi-impregnated. A small pyramidal cell in layer III was shown to receive several such boutons along its somatic membrane. It is concluded that the combination of immunoperoxidase staining and Golgi impregnation is technically feasible and that it can provide new information. The present study has shown that there are many morphologically distinct kinds of aspiny GABAergic neurons in the visual cortex; that the predominant type of synaptic input to the dendrites of such neurons is from boutons forming asymmetrical synapses, but that some of the GABAergic neurons also receive a dense symmetrical synaptic input on their cell bodies, and occasional synapses along their dendrites, from the boutons of other GABAergic neurons. These findings provide a morphological basis, firstly, for a presumed powerful excitatory input to GABAergic interneurons and, secondly, for the disinhibition which has been postulated from electrophysiological studies to occur in the cat's visual cortex.  相似文献   

15.
Summary Glutamic acid decarboxylase (GAD), the enzyme that synthesizes the neurotransmitter -aminobutyric acid (GABA), has been localized in the rat visual cortex by immunocytochemical methods with both light and electron microscopy. In both colchicine-injected and non-injected preparations of the visual cortex, GAD-positive reaction product was observed in somata, proximal dendrites and axon terminals of non-pyramidal neurons. The GAD-positive terminals were observed to form symmetric synaptic junctions most commonly with dendritic shafts and somata of pyramidal and stellate neurons and less frequently with initial axon segments of pyramidal neurons and dendritic spines. In colchicine-injected preparations, GAD-positive somata were located in all cortical layers including the immediately subjacent white matter. In contrast, sections from non-injected rats displayed GAD-positive somata within a superficial and a deep cortical band. The GAD-positive somata observed in both types of preparations received both symmetric and asymmetric synaptic junctions, lacked apical dendrites, and had radially oriented dendrites of small diameter. These characteristics of GAD-positive neurons indicate that they are aspinous and sparsely-spinous stellate neurons. The localization of GAD within these neurons in combination with physiological and pharmacological data indicate that these local circuit neurons mediate GABA-ergic inhibition in the neocortex.  相似文献   

16.
Summary Following large lesions of the cat visual cortex, the distribution of degenerating terminal boutons in the Clare-Bishop area was studied electron microscopically. Degenerating boutons were found throughout the cortical layers but mostly in layer III (51% of the total number of degenerating boutons) and layer V (24%). A smaller number of boutons were found in layers II (12%) and IV (9%), and very few in layers VI (3%) and I (1%). No degenerating terminals were observed in the upper two-thirds of layer I. Seventy-six per cent of the total degenerating boutons terminated on dendritic spines, 22% on dendritic shafts, and 2% on somata. Some degenerating boutons made synaptic contacts with somata and dendrites of nonpyramidal neurons. For example, one degenerating bouton was observed in contact with an apical dendrite of a fusiform cell. Three examples of dendritic spines, with which degenerating boutons made synaptic contacts, were found to belong to spinous stellate cells. No degenerating boutons were observed making synaptic contacts with profiles that could conclusively be traced to pyramidal cell somata.  相似文献   

17.
Summary The ultrastructure of the centromedian nucleus of the monkey thalamus was analysed qualitatively and quantitatively and projection neurons, local circuit neurons, and synaptic bouton populations identified. Projection neurons were mostly medium-sized, with oval-fusiform or polygonal perikarya, few primary dendrites, and frequent somatic spines; local circuit neurons were smaller. Four basic types of synaptic boutons were distinguished: (1) Small- to medium-sized boutons containing round vesicles (SR) and forming asymmetric contacts, identified as corticothalamic terminals. (2) Heterogeneous medium-sized boutons with asymmetric contacts and round vesicles, similar to the so-called large round (LR) boutons, which were in part of cortical origin. (3) Heterogeneous GAD-positive small- to medium-sized boutons, containing pleomorphic vesicles and forming symmetric contacts (F1 type), which included pallidothalamic terminals. (4) Presynaptic profiles represented by GAD-positive vesicle-containing dendrites of local circuit neurons. Complex synaptic arrangements, serial synapses and triads with LR and SR boutons engaging all parts of projection neuron dendrites and somata, were seen consistently, whereas classical glomeruli were infrequent. LR and SR boutons also established synapses on dendrites of local circuit neurons. F1 boutons established synapses on projection neuron somata, dendrites and initial axon segments. Compared to other previously studied motor-related thalamic nuclei, differences in synaptic coverage between proximal and distal projection neuron dendrites were less pronounced, and the density of synapses formed by local circuit dendrites on projection neuron dendrites was lower. Thus, compared to other thalamic nuclei, the overlap of different inputs was higher on monkey centromedian cells, and centromedian inhibitory circuits displayed a different organization.  相似文献   

18.
Summary The structural features of PV-immunoreactive (PV-I) neurons, a particular subpopulation of GABAergic neurons, in the hippocampus were studied by immunocytochemistry. The PV-I cell bodies were concentrated within the stratum pyramidale (SP) and stratum oriens (SO) in the hippocampus. PV-I puncta were frequent in SP, while they were rarely seen in other layers. The dendritic arborization of PV-I neurons resembled that of some of the nonpyramidal cells observed after Golgi-impregnation. The most commonly observed PV-I neurons had their perikarya located in SP with dendrites extending into SO and the stratum radiatum (SR). Most of the dendrites in SR had typical beaded or varicose segments. The dendrites extending into SO had few beaded parts. There were many bipolar and multipolar neurons with smooth dendrites in SO, but only a small number of such multipolar neurons in SR. An electron microscopic analysis revealed that PV-I products were located to perikarya, dendrites, myelinated axons and synaptic boutons. The perikarya of PV-I neurons exhibited several ultrastructural features of nonpyramidal cells, e.g., abundant cisternae of endoplasmic reticulum, mitochondria and other perikaryal organelles, an infolded nuclear envelope and intranuclear inclusions. They received many asymmetric synapses with round presynaptic vesicles. There were numerous PV-I boutons, presumably axonal endings, covering the pyramidal cell bodies. The PV-I boutons also contacted the axon initial segments and proximal dendrites of the pyramidal cells. In addition PV-I terminals were found on somata and dendrites of both PV-I or PV-negative nonpyramidal cells. The results suggest that PV-containing neurons include basket and axo-axonic cells.  相似文献   

19.
P Somogyi  I Soltész 《Neuroscience》1986,19(4):1051-1065
To identify the putative transmitter of large basket and clutch cells in the cat's visual cortex, an antiserum raised against GABA coupled to bovine serum albumen by glutaraldehyde and a postembedding, electron microscopic immunogold procedure were used. Two basket and four clutch cells were revealed by intracellular injection of horseradish peroxidase. They were identified on the basis of the distribution of their processes and their synaptic connections. Large basket cells terminate mainly in layer III, while clutch cells which have a more restricted axon, terminate mainly in layer IV. Both types of neuron have a small radial projection. They establish type II synaptic contacts and about 20-30% of their synapses are made with the somata of other neurons, the rest with dendrites and dendritic spines. Altogether 112 identified, HRP-filled boutons, the dendrites of three clutch cells and myelinated axons of both basket and clutch cells were tested for the presence of GABA. They were all immunopositive. The postsynaptic neurons received synapses from numerous other GABA-positive boutons in addition to the horseradish peroxidase-filled ones. Dendritic spines that received a synapse from a GABA-positive basket or clutch cell bouton also received a type I synaptic contact from a GABA-negative bouton. A few of the postsynaptic dendrites, but none of the postsynaptic somata, were immunoreactive for GABA. The fine structural characteristics of the majority of postsynaptic targets suggested that they were pyramidal and spiny stellate cells. These results provide direct evidence for the presence of immunoreactive GABA in identified basket and clutch cells and strongly suggest that GABA is a neurotransmitter at their synapses. The laminar distribution of the synaptic terminals of basket and clutch cells demonstrates that some GABAergic neurons with similar target specificity segregate into different laminae, and that the same GABAergic cells can take part in both horizontal and radial interactions.  相似文献   

20.
GABAergic neurons have been identified in monkey sensory-motor cerebral cortex by light microscopic, immunocytochemical localization of the GABA synthesizing enzyme, glutamic acid decarboxylase (GAD). All GAD-positive neurons are non-pyramidal cells. Their somata are present in all layers and are evenly distributed across layers II-VI of the motor cortex (area 4), but are found in greater concentrations in layers II, IV and VI of all areas of first somatic sensory cortex (SI; areas 3a, 3b and 1-2). GAD-positive puncta (putative axon terminals) are present throughout the sensory-motor cortex, and they are found immediately adjacent to the somata, dendrites and presumptive axon initial segments of GAD-negative pyramidal cells. In addition, they are observed in close approximation to the somata of both large and small GAD-positive neurons. In area 4, the density of puncta is highest in the superficial cortical layers (layers I-III) and gradually declines throughout the deeper layers. In SI, the highest densities of puncta are present in layer IV, while moderately high densities are found in layers I-III and VI. In areas 3a and 3b, the puncta in layers IV and VI are particularly numerous and form foci that exhibit greater density than adjacent regions. GAD-positive neurons with large somata, 15-33 micron in diameter, are present in layers IIIB-VI of all areas. Such cells have many primary dendrites that radiate in all directions. In addition they have axons that ascend either from the superficial aspect of the somata or from primary dendrites, and that exhibit horizontal collateral branches. These neurons closely resemble the large basket cells (Marin-Padilla, 1969; Jones, 1975), and they may give rise to many of the GAD-positive endings surrounding the somata and proximal dendrites of pyramidal cells in layers III-VI. In addition, small GAD-positive somata are present in all layers, but they are most numerous in layers II and IIIA of all areas and in layer IV of SI. The somata and proximal dendrites of these cells vary from a multipolar shape with small, beaded dendrites, found primarily in layer IV, to bitufted and multipolar shapes with larger, smooth dendrites. The diversity of somal sizes and locations, the variety of dendritic patterns, and the different distributions of GAD-positive puncta, all combine to suggest that several different morphological classes of intrinsic neurons comprise the GABA neurons of monkey cerebral cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号