首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain structure and cognition in a community sample of elderly Latinos   总被引:4,自引:0,他引:4  
BACKGROUND: Previous studies have found that hippocampal atrophy and white matter hyperintensities (WMH) on MRI are linked to cognitive impairment and dementia. The authors measured these variables in a population-based cohort of older Mexican Americans with a wide spectrum of cognitive ability, ranging from normal cognition to dementia. OBJECTIVE: To investigate whether these structural brain changes were seen in individuals prior to the development of dementia and how these changes were related to the presence of dementia. METHODS: A sample of 122 subjects was selected from the Sacramento Area Latino Study on Aging, and subjects were categorized into four groups of increasing levels of cognitive impairment: normal, memory impaired (MI), cognitively impaired but not demented (CIND), and demented. Hippocampal volume was quantified using a region of interest approach. WMH was rated on a semiquantitative scale as the percent of total volume of white matter. RESULTS: Hippocampal volume was significantly reduced in CIND and demented individuals, and WMH were significantly increased in demented subjects. MI subjects did not have any significant changes in hippocampal volume or WMH. The risk for developing dementia was significantly and comparably increased in subjects with either hippocampal atrophy or high WMH. However, the risk for dementia increased dramatically in subjects with both hippocampal atrophy and a high degree of WMH. CONCLUSION: Reductions in hippocampal volume may be present before dementia but not until cognitive impairment is relatively severe. Because there is a synergistic effect between high WMH and hippocampal atrophy, interactions between vascular and degenerative processes may be important determinants of dementia.  相似文献   

2.
OBJECTIVE: To determine the effects of subcortical ischemic vascular dementia (SIVD) and AD on entorhinal cortex (ERC) and hippocampus. METHODS: Thirty-eight cognitively normal subjects, 18 patients with SIVD, and 22 patients with AD were included. Volumes of ERC and hippocampus were manually measured based on MRI. Global cerebral changes of cortical gray matter, subcortical gray matter, white matter, sulcal CSF, ventricular CSF (vCSF), and white matter signal hyperintensities (WMSH) were assessed. RESULTS: Patients with SIVD had 21.7% (p < 0.01) smaller ERC and 18.2% (p < 0.01) smaller hippocampi than cognitively normal subjects and 24.4% (p < 0.01) larger ERC and 11.1% (p < 0.05) larger hippocampi than patients with AD. In addition, patients with SIVD had less cortical gray matter and white matter and more vCSF and WMSH (all p < 0.01) than cognitively normal subjects and more vCSF and WMSH (p < 0.01) than patients with AD. The volumes of ERC and hippocampus were positively correlated to similar extents (p < 0.01) in SIVD and AD. Cortical gray matter loss was positively correlated (p < 0.01) with hippocampal atrophy, but not with ERC atrophy, in SIVD and AD. Hippocampal volume alone could classify 82% of patients with SIVD from cognitively normal subjects and 63% of patients with SIVD from subjects with AD. Adding global cerebral changes to hippocampus substantially improved the classification to 96% between patients with SIVD and cognitively normal subjects and 83% between subjects with SIVD and those with AD, whereas adding ERC change to hippocampus did not significantly improve the discrimination. CONCLUSIONS: The entorhinal cortex and hippocampus are less affected by subcortical ischemic vascular dementia than by AD.  相似文献   

3.
BACKGROUND: Magnetic resonance imaging (MRI) of hippocampal atrophy is a sensitive but not specific method to support the clinical diagnosis of early Alzheimer's disease (AD). We recently described our findings that atrophy of the entorhinal cortex (ERC) in frontotemporal dementia (FTD) is equal to that found in AD but that hippocampal atrophy in FTD is less than that found in AD. The MRI volumes of these structures provide a topographic representation of the region of interest. We hypothesized that two different dementias with distinct histopathologic and clinical features might, in addition to quantitative patterns, display topographically different patterns of atrophy. METHODS: We adopted a morphometric approach to monitor the pattern of atrophy of the hippocampus and the ERC by computing two-dimensional profiles from MRI volumes of the structures in control subjects and patients with FTD and AD. RESULTS: Compared with control subjects, atrophy of the hippocampus in patients with AD was diffuse. In patients with FTD, atrophy of the hippocampus was localized predominantly in the anterior hippocampus, suggesting a different pattern of hippocampal atrophy in FTD compared with AD. The amount and pattern of atrophy of the entorhinal cortex was virtually equal in both demented groups. CONCLUSIONS: This study provides novel data on the nature of medial temporal lobe atrophy in FTD. Morphometric MRI may be a useful technique for characterizing different patterns of atrophy in primary degenerative dementias in vivo.  相似文献   

4.
Hippocampal atrophy and neuron loss are early and reproducible findings in Alzheimer's disease, and recent magnetic resonance imaging studies indicate that hippocampal atrophy may also be present in Parkinson's disease (PD). To determine whether or not cell loss occurs in PD, we estimated the total neuron and glial cell numbers as well as the total volume unilaterally in the hippocampi of eight demented PD patients and eight control subjects. Cell numbers were estimated in the neuron-containing layers of CA1, CA2-(3), CA4, the dentate gyrus, and subiculum using the optical-fractionator technique. The Cavalieri method was used to estimate the volume of the total hippocampus and its subregions. We did not find significant differences in cell numbers or volumes in PD brains when compared with control subjects. Our results thus indicate that hippocampal atrophy and cell loss are not necessarily involved in the memory impairment and dementia observed in PD.  相似文献   

5.
OBJECTIVES: To compare medial and lateral temporal lobe atrophy on magnetic resonance imaging (MRI) in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), and to examine the relationship between volumetric indices and cognitive and non-cognitive symptoms. METHODS: T(1)-weighted 1.0-tesla MRI scans were acquired in elderly subjects with DLB (n = 26; mean age = 75.8 years) and AD (n = 22; 77.3 years) and normal controls (n = 26; 76.2 years). MRI-based volume measurements of the hippocampus, parahippocampus, fusiform gyrus, combined inferior and middle temporal gyri, and superior temporal gyrus were acquired. RESULTS: Hippocampal and parahippocampal volumes were significantly larger in subjects with DLB compared to AD. Differences in hippocampal volumes between DLB and AD were observed across the entire length, and in all subjects with dementia there was a loss of hippocampal asymmetry compared to normal controls. Atrophy of temporal lobe structures correlated with memory impairment in both groups, and with age in DLB. There was no association between atrophy and psychotic symptoms in either group. CONCLUSIONS: Subjects with DLB and AD have a different pattern of temporal lobe atrophy with the most striking differences relating to medial rather than lateral temporal lobe structures. These structural differences could explain the relative preservation of memory function in DLB compared to AD.  相似文献   

6.
MRI brain changes in subjects with Down syndrome with and without dementia   总被引:1,自引:0,他引:1  
Individuals with Down syndrome (DS), a disorder of known genetic etiology (trisomy of chromosome 21), exhibit several types of structural brain abnormalities that are detectable pathologically and by MRI. In addition, in middle age, individuals with DS develop histological and, in some cases, clinical features of Alzheimer's disease (AD). Abnormalities in MRI scans of 50 adults with DS, 11 of whom had clinical dementia, are described and compared with those of 23 cognitively normal, healthy subjects who were matched for age, sex, and race. Qualitative visual analogue scale (VAS) ratings on MRI hard copies for all subjects and computer-aided volume measures for a subsample of subjects were carried out. On VAS, subjects with DS had larger lateral ventricles, a higher frequency of posterior fossa arachnoid cysts/megacisterna magna and fewer scans rated as normal compared with controls. Quantitatively, total brain and gray-matter volumes were reduced in DS, as were the volumes of the left hippocampus and amygdala; ventricle volumes were larger. Post hoc comparisons of subjects with DS with and without dementia revealed that on VAS the former had more generalized atrophy for age, mesial temporal shrinkage, and third ventricular enlargement. Similarly, total train, left hippocampus, and left amygdala volumes were reduced quantitatively in subjects with DS with dementia, while ventricular volumes were increased.  相似文献   

7.
The objective of this study was to identify possible group differences between PD patients with dementia and without dementia by combining different functional and structural imaging methods in vivo, which might provide an opportunity to disentangle the pathophysiological correlates of cognitive impairment and dementia in PD. We performed a neuropsychological evaluation, structural brain MRI, [18F]FDG PET and [11C]PIB PET in 19 PD patients [eight non-demented (PD), eleven demented (PDD)] and 24 healthy elderly volunteers. [11C]PIB region-to-cerebellum ratios did not differ significantly between the groups in any brain region (p > 0.05). PDD patients showed impaired glucose metabolism in cortical brain regions and this reduction was associated with the degree of cognitive impairment. PDD patients had more atrophy both in the hippocampus and the frontal cortex compared with PD patients and controls, and hippocampal atrophy was associated with impaired memory. This cross-sectional data suggests that development of dementia in PD is associated with extensive spread of hypometabolism beyond the occipital cortex, and with hippocampal and frontal atrophy but not beta-amyloid deposition consistent with a unique biological process related to PD rather than co-incidental development of AD in persons with PD.  相似文献   

8.
BACKGROUND: Hippocampal atrophy is an early feature of Alzheimer's disease (AD) but it has also been reported in vascular dementia (VaD). It is uncertain whether hippocampal size can help differentiate the two disorders. METHODS: We assessed 90 stroke/TIA patients 3-6 months after the event, and 75 control subjects, with neuropsychological tests, medical and psychiatric examination and brain MRI scans. A diagnosis of VaD, vascular mild cognitive impairment (VaMCI) or no cognitive impairment (NCI) was reached by consensus on agreed criteria. T1-weighted MRI was used to obtain total intracranial volume (TICV), gray and white matter volume, CSF volume, hippocampus and amygdala volumes, and T2-weighted scans for white matter hyperintensity (WMH) ratings. RESULTS: Stroke/TIA patients had more white matter hyperintensities (WMHs), larger ventricle-to-brain ratios and smaller amygdalae than controls, but hippocampus size and gray and white matter volumes were not different. WMHs and amygdala but not hippocampal volume distinguished stroke/TIA patients with VaD and VaMCI and without NCI and amygdala volumes. Right hippocampus volume significantly correlated with new visual learning. CONCLUSIONS: Stroke/TIA patients and patients with post-stroke VaMCI or mild VaD do not have hippocampal atrophy. The amygdala is smaller in stroke/TIA patients, especially in those with cognitive impairment, and this may be accounted for by white matter lesions. The hippocampus volume relates to episodic memory, especially right hippocampus and new visual learning. A longitudinal study of these subjects will determine whether hippocampal atrophy is a late development in VaD.  相似文献   

9.
Parkinson's disease is associated with hippocampal atrophy.   总被引:9,自引:0,他引:9  
Patients with Parkinson's disease (PD) may have hippocampal atrophy compared with controls. We compared hippocampal, and extra-hippocampal volumes between PD, PDD (patients with PD who have mild cognitive impairment or dementia), Alzheimer's disease (AD) and controls using volumetric magnetic resonance imaging (MRI). Participants (10 patients with PD, 10 with PDD, 11 with AD, and 12 control subjects) had an informant interview, neurological examination, and psychometric testing. Established, reliable methods were used to measure the hippocampus, parahippocampal gyrus, temporal, frontal, and parieto-occipital lobes. Correction for intracranial volume was carried out before comparison. There was no age difference between groups (mean age, 74 years). On the Clinical Dementia Rating scale (CDR) cognitive impairment was mild (CDR = 0.5) in the majority of PDD and AD patients. Hippocampal (P < 0.0004) volumes were smaller in the patient groups. Effect sizes compared with the control group were: PD, 0.66; PDD, 1.22; and AD, 1.81. The other volumes did not differ significantly. Among PD and PDD patients, recognition memory (r = 0.54, P = 0.015) and Mini-Mental State Examination scores (r = 0.56, P = 0.01) correlated with left, but not right hippocampal volume. In conclusion, hippocampal volume showed a pattern (Control > PD > PDD > AD) suggesting progressive hippocampal volume loss in PD. Volumetric MRI imaging might provide an early marker for dementia in PD.  相似文献   

10.
Patients with Parkinson's disease (PD) may present impairment in cognitive functions even at early stages of the disease. When compared with the general population, their risk of dementia is five to six times higher. Recent investigations using structural MRI have shown that dementia in PD is related to cortical structural changes and that specific cognitive dysfunctions can be attributed to atrophy in specific structures. We review the structural MRI studies carried out in PD using either a manual region of interest (ROI) approach or voxel‐based morphometry (VBM). ROI studies have shown that hippocampal volume is decreased in patients with PD with and without dementia; in addition, hippocampal atrophy correlated with deficits in verbal memory. VBM studies have demonstrated that dementia in PD involves structural changes in limbic areas and widespread cortical atrophy. Findings in nondemented patients with PD are less conclusive, possibly because cognitively heterogeneous groups of patients have been studied. Patients with PD with cognitive impairment and/or visual hallucinations present greater brain atrophy than patients without these characteristics. These findings suggest that cortical atrophy is related to cognitive dysfunction in PD and precedes the development of dementia. Structural MRI might therefore provide an early marker for dementia in PD. © 2009 Movement Disorder Society  相似文献   

11.
Parkinson's disease (PD) involves neuropathological changes in the limbic system that lead to neuronal loss and volumetric reductions of several nuclei. We investigated possible volumetric reductions of the amygdala and hippocampus associated to PD. We carried out magnetic resonance imaging (MRI) volumetric studies in 16 patients with PD and dementia (PDD), 16 patients with PD without dementia (PD), and 16 healthy subjects. The general analysis of variance (ANOVA) showed a significant group effect (for the amygdala, P = 0.01; for the hippocampus, P = 0.005). A post-hoc test demonstrated that the differences were due to PDD and control group comparisons for the amygdala (P = 0.008) and for the hippocampus (P = 0.004). In nondemented PD subjects, we observed an 11% reduction in the amygdala and a 10% reduction in the hippocampus compared with that in controls. In summary, demented PD patients have clear amygdalar and hippocampal atrophy that remains statistically significant after controlling for global cerebral atrophy. Nondemented PD patients also showed a degree of volumetric reduction in these structures although the differences were not statistically significant.  相似文献   

12.
《Alzheimer's & dementia》2008,4(4):271-279
BackgroundAlzheimer's disease (AD) is the most common degenerative neurologic disorder. The onset of symptoms is insidious and follows a long period of progression of an asymptomatic pathology that proceeds in a precise anatomic and temporal sequence. Recent studies with quantitative magnetic resonance imaging techniques have shown the localization of the in vivo pathology of AD and its antecedent, mild cognitive impairment. The objective of the present study was to determine whether a sensitive and reliable marker for the presymptomatic phase of the disorder could be identified by longitudinal analysis of an initially asymptomatic, community-based population.MethodsOne hundred forty-eight healthy, cognitively normal participants in the Cardiovascular Health Study–Cognition Study had detailed clinical examinations and magnetic resonance imaging scans in 1998–1999 and 2002–2003. Modulated voxel-based morphometry was used to compare regional brain volumes in subjects who remained cognitively normal after 5 to 6 years of follow-up (n = 127) with those who developed probable AD during the same period (n = 21).ResultsAmong normal subjects destined to develop AD, there was significant atrophy in the basal forebrain area as long as 4.5 years before the development of clinical symptoms. When the left hippocampus was also atrophic, the onset of dementia typically occurred earlier than in cases in which the atrophy was confined to basal forebrain.ConclusionsAtrophy in the basal forebrain precedes the development of AD in subjects with cognition judged to be normal by neuropsychological testing. The time required to develop dementia appears to be shortened if hippocampal atrophy is also present. These data indicate that atrophy restricted to medial basal forebrain is a biomarker that predicts development of probable AD in asymptomatic elderly subjects.  相似文献   

13.
OBJECTIVES: To explore volume changes of the entorhinal cortex (ERC) and hippocampus in mild cognitive impairment (MCI) and Alzheimer's disease (AD) compared with normal cognition (NC); to determine the powers of the ERC and the hippocampus for discrimination between these groups. METHODS: This study included 40 subjects with NC, 36 patients with MCI, and 29 patients with AD. Volumes of the ERC and hippocampus were manually measured based on coronal T1 weighted MR images. Global cerebral changes were assessed using semiautomatic image segmentation. RESULTS: Both ERC and hippocampal volumes were reduced in MCI (ERC 13%, hippocampus 11%, p<0.05) and AD (ERC 39%, hippocampus 27%, p<0.01) compared with NC. Furthermore, AD showed greater volume losses in the ERC than in the hippocampus (p<0.01). In addition, AD and MCI also had cortical grey matter loss (p< 0.01) and ventricular enlargement (p<0.01) when compared with NC. There was a significant correlation between ERC and hippocampal volumes in MCI and AD (both p<0.001), but not in NC. Using ERC and hippocampus together improved discrimination between AD and CN but did not improve discrimination between MCI and NC. The ERC was better than the hippocampus for distinguishing MCI from AD. In addition, loss of cortical grey matter significantly contributed to the hippocampus for discriminating MCI and AD from NC. CONCLUSIONS: Volume reductions in the ERC and hippocampus may be early signs of AD pathology that can be measured using MRI.  相似文献   

14.
CONTEXT: The recent focus on the development of preventive interventions for Alzheimer disease has fueled the search for biomarkers of presymptomatic disease. Patients with Alzheimer disease and mild cognitive impairment have marked atrophy of the hippocampus and amygdala compared with healthy elderly people. Whether atrophy of these structures is also present in persons without cognitive impairment who later develop dementia is unknown. OBJECTIVE: To assess whether volumetric assessment of the hippocampus and amygdala using magnetic resonance imaging (MRI) predicts dementia in elderly people without cognitive impairment. DESIGN: Longitudinal cohort study. SETTING: A general community in the Netherlands. PARTICIPANTS: Five hundred eleven persons, aged 60 to 90 years, free of dementia at baseline were followed up during 3043 person-years (mean per person, 6.0 years). We performed volumetric assessment of the hippocampus and amygdala, obtained information about daily memory problems, and performed extensive neuropsychological testing in all study participants. MAIN OUTCOME MEASURE: Dementia, as assessed by repeated neuropsychological screening and monitoring of medical records. RESULTS: Thirty-five persons developed dementia (26 with Alzheimer disease). Hippocampal and amygdalar volumes were strongly associated with the risk of dementia; the age-, sex-, and education-adjusted hazard ratio per 1-SD decrease in volume was 3.0 (95% confidence interval, 2.0-4.6) for the hippocampus and 2.1 (95% confidence interval, 1.5-2.9) for the amygdala. The hazard ratios associated with atrophy were similar in persons without memory complaints or low cognitive function at baseline. Compared with those remaining free of dementia, baseline brain volumes were 17% smaller in persons who received a clinical diagnosis of dementia within 2 to 3 years after MRI and still 5% smaller in those whose conditions were diagnosed 6 years after MRI. CONCLUSION: Atrophy of the hippocampus and amygdala on MRI in cognitively intact elderly people predicts dementia during a 6-year follow-up.  相似文献   

15.
Entorhinal cortex (ERC) volume in adults with mild cognitive impairment has been shown to predict prodromal Alzheimer's disease (AD). Likewise, neuronal loss in ERC has been associated with AD, but not with normal aging. Because ERC is part of a major pathway modulating input to the hippocampus, structural changes there may result in changes to cognitive performance and functional brain activity during memory tasks. In 32 cognitively intact older adults, we examined the relationship between left ERC thickness and functional magnetic resonance imaging (fMRI) activity during an associative verbal memory task. This task has been shown previously to activate regions that are sensitive to aging and AD risk. ERC was manually defined on native space, high resolution, oblique coronal MRI scans. Subjects having thicker left ERC showed greater activation in anterior cingulate and medial frontal regions during memory retrieval, but not encoding. This result was independent of hippocampal volume. Anterior cingulate cortex is directly connected to ERC, and is, along with medial frontal cortex, implicated in error detection, which is impaired in AD. Our results suggest that in healthy older adults, processes that engage frontal regions during memory retrieval are related to ERC structure. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Frontal lobe dysfunction and other cognitive deficits have been described in Parkinson's disease (PD), which may lead to dementia. Both striatal dopaminergic deficiency and regional or global brain volume loss have been suggested to contribute to cognitive decline in PD. We therefore performed a neuropsychological evaluation, structural brain MRI and Fdopa PET in patients with PD and healthy elderly volunteers. PD patients had impaired cognitive performance in many neuropsychological tests compared to controls, not limited just to frontal lobe function tests. Caudate Fdopa correlated positively with performance in verbal (immediate and delayed) and visual memory. Patients with PD showed atrophy in the hippocampus and the prefrontal cortex and hippocampal atrophy was related to impaired memory. Our findings suggest that striatal dopaminergic depletion and global brain volume loss contribute to cognitive impairment in non-demented PD patients, but dysfunction of extra-striatal dopaminergic or non-dopaminergic systems probably plays a role especially in more generalized cognitive impairment.  相似文献   

17.
BACKGROUND: Early stage patients with Parkinson's disease (PD) show cognitive impairment in frontal lobe functions and memory tests. Hippocampal atrophy is seen in medicated patients with advanced PD. OBJECTIVES: To examine whether prefrontal or hippocampal atrophy are already present in early stage PD, and whether such atrophy is associated with cognitive impairment. METHODS: Twenty non-medicated, non-demented patients with early stage PD and 22 neurologically healthy age matched controls were studied. All subjects underwent magnetic resonance imaging to study hippocampal and prefrontal atrophy. Atrophy was evaluated by a neuroradiologist using a five point scale. In addition, the patients underwent a neuropsychological test battery sensitive to frontal lobe functions and memory. RESULTS: Patients with PD had atrophy in the right and the left prefrontal cortex. In the right hippocampus, the mean atrophy score was 1.15 in PD and 0.45 in controls. Corresponding figures for the left hippocampus were 1.05 for PD and 0.64 for controls. In PD, the left hippocampus atrophy correlated with verbal memory and prefrontal atrophy correlated with impaired performance in a test measuring vigilance. CONCLUSIONS: Non-medicated, non-demented patients with early stage PD show hippocampal and prefrontal atrophy. Impaired memory is related to hippocampal atrophy, whereas sustained attention is related to prefrontal atrophy.  相似文献   

18.
OBJECTIVE: To compare whole brain and caudate volume on MRI in subjects with Parkinson's disease without cognitive impairment (PD), Parkinson's disease with dementia with Lewy bodies (PD + DLB), Alzheimer's disease (AD) and normal control subjects. To examine the relationship between caudate volume and cognitive impairment, depression and movement disorder. METHOD: Whole brain and caudate volumes were segmented from volumetric 1.5-tesla magnetic resonance imaging (MRI) scans of older subjects with PD (n = 28; mean age 75.5 years), PD + DLB (n = 20; 73.0 years), AD (n = 27; 77.5 years) and normal controls (n = 35; 74.9 years). RESULTS: Subjects with AD had significantly reduced whole brain and caudate volume compared to controls and those with PD. Caudate atrophy in AD was proportionate to whole brain atrophy. There were no significant differences in whole brain or caudate volume between controls, PD and PD + DLB. There were no significant correlations between caudate volume and either global cognitive function, executive performance or processing speed. CONCLUSIONS: Caudate atrophy occurs in AD but not PD without dementia. Caudate atrophy is not regionally specific but part of generalised brain volume loss. Structural changes in the caudate, as assessed by in vivo MRI, do not appear to contribute to the cognitive impairment observed amongst patients with PD, PD + DLB or AD. Results indicate that the executive and attentional dysfunctions associated with PD and DLB are unlikely to be a direct and specific consequence of caudate atrophy as assessed on MRI.  相似文献   

19.
OBJECTIVE: This study sought to determine whether volumes of the hippocampus and amygdala are disproportionately smaller in subjects with Down's syndrome than in normal comparison subjects and whether volume reduction is greater in Down's syndrome subjects with dementia. METHOD: The subjects were 25 adults with Down's syndrome (eight with dementia) and 25 cognitively normal adults who were individually matched on age, sex, and race. Magnetic resonance imaging measures included volumes of the hippocampus, amygdala, and total brain. Nineteen of the Down's syndrome subjects had follow-up scans (interscan interval = 9-41 months). RESULTS: Nondemented Down's syndrome subjects had significantly smaller volumes of the hippocampus, but not the amygdala, than their comparison subjects, even when total brain volume was controlled for. Volumes of both the hippocampus and the amygdala were smaller in the demented Down's syndrome subjects than in their comparison subjects, even when total brain volume was controlled for. Age was not correlated with volume of the hippocampus or amygdala among the nondemented Down's syndrome subjects and the comparison subjects; age was correlated with volume of the amygdala, but not the hippocampus, among the Down's syndrome subjects with dementia. Changes in volume over time were not statistically significant for either the demented or the nondemented subjects. CONCLUSIONS: Hippocampal volume, while disproportionately small for brain size in individuals with Down's syndrome, remains fairly constant through the fifth decade of life in those without dementia. All subjects over age 50 who had Down's syndrome demonstrated volume reduction in the hippocampus as well as clinical signs of dementia. Dementia was also associated with volume reductions in the amygdala that exceeded reductions in total brain volume.  相似文献   

20.
BACKGROUND: Causes of cognitive impairment in subcortical ischemic vascular disease (SIVD) are less well understood than in AD, but have been thought to result from direct effects of subcortical lacunes and white matter lesions, perhaps related to disruption of important cortical-subcortical pathways. OBJECTIVE: To examine the relation between cognitive abilities and quantitative MRI measures of subcortical cerebrovascular disease and cortical and hippocampal atrophy. METHODS: Subjects were 157 participants in a multicenter study of SIVD and AD who included cognitively normal, cognitively impaired, and demented individuals with and without subcortical lacunar infarcts. Dependent variables were neuropsychological tests of global cognitive function, memory, language, and executive function. Independent variables were quantitative MRI measures of volume of lacunar infarcts in specific subcortical structures, volume of white matter lesion (WML), volume of cortical gray matter (cGM), and total hippocampal volume (HV). Multiple regression analyses were used to identify MRI predictors of cognition. RESULTS: Subcortical lacunes were not related to cognitive measures independent of effects of other MRI variables. WML was independently related to selected, timed measures. HV and cGM were strong and independent predictors of cognitive variables, with effects that did not differ in subjects with and without subcortical lacunes. CONCLUSIONS: Results suggest that cognitive impairment associated with subcortical ischemic vascular disease is primarily a result of associated hippocampal and cortical changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号