首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of prolyl-leucyl-glycinamide (melanotropin release inhibiting factor, MIF) and cyclo(Leu-Gly) on development of tolerance to the analgesic, locomotor stimulant and depressant effects of morphine were investigated in the mouse. Mice were made tolerant to morphine by subcutaneous implantation of a pellet (each pellet contained 75 mg of morphine free base) for three days. Both MIF and cyclo(Leu-Gly) inhibited the development of tolerance to the analgesic response to a challenge dose of morphine in peptide-treated as compared to vehicle-treated morphine-tolerant mice. Morphine in a small dose (10 mg/kg) depressed spontaneous motor activity, while, in a larger dose (80 mg/kg), increased the motor activity. Implantation of a morphine pellet resulted in the development of tolerance to both the locomotor depressant and stimulant effects of morphine. Administration of MIF or cyclo(Leu-Gly) during induction of tolerance in doses (2 mg/kg/day for 3 days) that inhibited the development of tolerance to morphine-induced analgesia and locomotor depressant activity, did not alter the development of tolerance to the locomotor stimulant effect. These studies indicate that the development of tolerance to the analgesic and locomotor depreressant effect of morphine may involve similar mechanisms, whereas, tolerance to the locomotor stimulant effect of morphine may be mediated via a different mechanism.  相似文献   

2.
AIM: To investigate effects of thenorphine, a new compound of partial agonist of μ-opioid receptor, on the loco-motor activity and the behavioral sensitization to morphine in mice. METHODS: Locomotor activity was observed after administration of thenorphine or co-administration of thenorphine and morphine in mice. Mice were induced behavioral sensitization to morphine by intraperitoneal injection of 20 mg/kg morphine once daily for 7 d. Thenorphine was co-administrated with morphine to observe the effects of thenorphine on the development, transfer and expression of morphine-induced behavioral sensitization. RESULTS: A single dose of thenorphine (0.0625, 0.25, and 1.0 mg/kg) could dose-dependently inhibit the locomotor activity in mice (P<0.05), repeated administrations of thenorphine, however, were not able to induce locomotor sensitization, but induced tolerance. Pretreatment with thenorphine 30 min prior to morphine effectively inhibited the psychomotor effect of morphine in mice (P<0.01). Co-adminis  相似文献   

3.
In a step-down passive avoidance task, the pre-training injection of 1.25-10 mg/kg of morphine impaired memory. This was restored when injection of the same dose of morphine (pre-test treatment) was repeated 24 h later (morphine state-dependent learning: morphine St-D). ATP-dependent potassium (K(ATP)) channels have been reported to be involved in several actions of morphine following mu-receptor stimulation. We have studied the effect of K(ATP) modulators and naloxone in the restoration of memory by morphine in mice. To investigate the part played by cholinergic systems in the effects of a K(ATP) antagonist (glibenclamide) on morphine St-D, we administered low doses of atropine before glibenclamide administration. Locomotor activity was also studied. Naloxone (0.06-1 mg/kg) reversed the effect of pre-test morphine administration. The effects of the K(ATP) channel blocker glibenclamide (2-18 mg/kg) were similar to those of the pre-test administration of morphine. Pre-test co-administration of glibenclamide and morphine showed no potentiation of the morphine effect. Glibenclamide alone or in combination with morphine did not affect locomotor activity. Pre-test administration of different doses of diazoxide (15-60 mg/kg), a K(ATP)-channel opener, had no effect on restoration of memory when used alone or in combination with morphine. In both cases, the locomotor activity was significantly reduced. Diazoxide blocked the effect of glibenclamide on memory recall. Low-dose atropine also prevented glibenclamide enhancement of memory recall, suggesting that this action of glibenclamide is through the cholinergic system.  相似文献   

4.
1. Recent evidence from studies in mice lacking the opioid receptor-like (ORL-1) receptor and from experiments using antibodies raised against orphanin FQ/nociceptin (OFQ/N) suggest that this peptide may be involved in morphine tolerance. In the present study we sought to investigate if administration of exogenous OFQ/N would modulate the development of tolerance to the antinociceptive effect of morphine. 2. Rats were treated for 3 days with either saline or morphine (10 mg kg(-1), s.c.) followed, 15 and 75 min later, by two intracerebroventricular injections of either artificial cerebrospinal fluid (aCSF) or OFQ/N. The dose of OFQ/N was doubled each day (7.5, 15, 30 nmol). On day 4, rats were tested on a hot plate apparatus before and 30, 60 and 90 min after morphine administration. 3. Repeated OFQ/N treatment did not affect basal nociceptive responses or morphine-induced antinociception. However, the same treatment significantly attenuated the development of morphine tolerance. 4. Since learning and memory could contribute to the development of morphine tolerance, in subsequent studies, we examined the effect of OFQ/N administered in the CA3 region of the hippocampus, where OFQ/N has been shown to block LTP and impair spatial memory. A greater attenuation of morphine tolerance with no alteration of baseline hot plate latency or morphine-induced antinociception was observed when OFQ/N was administered in this area of the rat brain. 5. Taken together, our results demonstrate that OFQ/N may act in the hippocampus to attenuate morphine tolerance.  相似文献   

5.
Elevations in nitric oxide (NO) have been implicated in the development of morphine antinociceptive tolerance. This study was conducted to establish the role of specific isoforms of NO synthase (NOS) in morphine tolerance development using genetically modified mice. METHODS: Three groups of mice (endothelial NOS [eNOS]-deficient, neuronal NOS [nNOS]-deficient, and NOS-competent) were used in this experiment. On Day 1, the analgesic response (radiant heat tail-flick) to a challenge dose of morphine (4 mg/kg) was determined over 3 hr. Tolerance was induced on Days 1-5 by administering morphine subcutaneously (10 mg/kg) or L-arginine, a NO precursor, intraperitoneally (200 mg/kg), twice daily. Analgesic response to the challenge dose was determined again on Day 6. RESULTS: Following sustained morphine administration, nNOS-deficient mice exhibited less tolerance development when compared to the control group, although measurable tolerance still occurred. Mice deficient in eNOS evidenced a degree of tolerance similar to that of control. Prolonged L-arginine administration produced significant functional tolerance to morphine in NOS-competent and eNOS-deficient mice. The loss of morphine responsivity after L-arginine administration was similar to that after morphine pretreatment. L-Arginine did not affect the antinociceptive response to morphine in mice deficient in nNOS, suggesting that the small degree of morphine-induced tolerance in this group occurs through an alternate pathway. CONCLUSIONS: These data demonstrate the pivotal role of the neuronal isoform of NOS in development of morphine antinociceptive tolerance. Furthermore, tolerance development appears to be predominantly a NO-mediated process, but likely is augmented by a secondary (non-NO) pathway.  相似文献   

6.
Mice were trained in step-down and step-through type passive avoidance learning tasks and given retention tests. Pre-training administration of morphine impaired retention, the effect recovering completely after an additional injection of the same dose of morphine given 30 min before the retention test. Amnesia produced by scopolamine, cycloheximide and electroconvulsive shock was also reversed by pre-test morphine. Pre-test saline also reversed the morphine-induced memory impairment to some extent, indicating that the recovery may partially be due to the state dependent effect. Thus, it is demonstrated that pre-test morphine not only state dependently but also directly reversed memory impairment in mice.  相似文献   

7.
The hot plate method was used to assess tolerance in rats following daily injections of morphine. Following analgesia assessment, or a time equated rest period, rats were injected with either saline or a pituitary peptide. Arginine vasopressin, but not ACTH 4-10, prolonged the retention of morphine tolerance when assessed five weeks after the last injection. Neither the rate nor the degree of tolerance development were influenced by either peptide. These hormones had no effect on retention of tolerance development were influenced by either peptide. These hormones had no effect on retention of tolerance in rats not assessed for analgesia during the period of tolerance development. The effects of pituitary peptides on morphine tolerance are analogous to the effects they have on learning and memory processes, suggesting that similar adaptational processes are occurring in both phenomena.  相似文献   

8.
This study assessed the effect of the central benzodiazepine receptor antagonist, 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester (flumazenil), on morphine-induced analgesia, locomotor effects, and development of tolerance in rats. The thermally evoked pain (tail flick) response was determined after acute and chronic intraperitoneal (i.p.) administration of morphine and flumazenil, alone and in combination. In acute studies, flumazenil induced weak analgesia unrelated to dose and sex, whereas morphine-induced analgesia was dependent on both dose and sex (male>female). Flumazenil dose-dependently enhanced the analgesic effect of morphine in female but not in male rats. Isobolographic analysis suggested synergism between flumazenil and morphine in female rats, but antagonism in male rats. Flumazenil-induced locomotor changes (alone and with morphine) were related to sex but not dose. Chronic coadministration of flumazenil with morphine enhanced analgesia and attenuated tolerance development in female rats. The findings suggest a possible role for flumazenil as an adjunct with opioids in acute and chronic pain therapy.  相似文献   

9.
The effects of chronic treatment with morphine and cholinergic compounds on the development of morphine tolerance, physical dependence and increased naloxone potency were studied. Using the abdominal constriction method, it was shown that morphine tolerance was apparent after s.c. administration of morphine 20.0 mg/kg three times a day for four days. It was found that, in animals which showed a low degree of morphine tolerance, the naloxone potency was similar to that determined in mice which had been pretreated with only a single dose of morphine which causes no measurable tolerance. Thus, the development of increased naloxone potency and tolerance to morphine do not parallel each other. In addition, while atropine inhibited, and anti-cholinesterase drugs enhanced, the development of increased naloxone potency caused by morphine treatment they had no or little effect on the development of morphine tolerance. Futhermore, chronic treatment with cholinergic agonists reduced, while muscarinic antagonist enhanced, the development of physical dependendence on morphine as assessed by withdrawal jumping and body weight loss. It is concluded that the increased potency of naloxone in antagonising the antinociceptive effect of morphine can be dissociated from the development of tolerance to, and physical dependen on, morphine in mice.  相似文献   

10.
The effect of 9-tetrahydrocannabinol (THC) on the locomotor activity-stimulating action of morphine has been investigated in mice. THC (10 mg/kg) has been found to potentiate morphineinduced hyperactivity. On the other hand, the stimulating action of morphine on motor activity strongly diminished in mice rendered tolerant by the implantation of a morphine pellet. The pretreatment of morphine-tolerant mice with the same dose of THC did not change the effect of morphine on the motor activity. These results suggest that tolerance also developed to the potentiating action of THC on morphine-induced hyperactivity during the development of tolerance to this action of morphine.  相似文献   

11.
Morphine conditioned reward is inhibited by MPEP,the mGluR5 antagonist   总被引:9,自引:0,他引:9  
Popik P  Wróbel M 《Neuropharmacology》2002,43(8):1210-1217
In the present study we examined the effect of MPEP [2-methyl-6-(phenylethynyl)-pyridine] a potent, selective and systemically active metabotropic glutamate receptor (mGluR) type I (subtype mGluR5) antagonist on conditioned morphine reward in mice. In an unbiased version of conditioned place preference (CPP) paradigm, single conditioning with 10 mg/kg of morphine produced reliable place preference. MPEP at 30, but not 10 mg/kg significantly inhibited the acquisition as well as expression of morphine-induced CPP, but it neither produced place preference or aversion, nor affected locomotor activity of mice. Effects of MPEP on learning and memory were studied in the elevated plus maze model of spatial learning. In contrast to 0.1 mg/kg of MK-801, which inhibited the acquisition of this task, 30 mg/kg of MPEP affected neither learning nor memory retrieval. These data suggest that mGluR5 may be involved in conditioned morphine reward.  相似文献   

12.
The antagonistic effect of pseudoginoside-F11 (PF(11)) on the various actions of morphine was studied in mice. The results demonstrated that PF(11), at the doses of 4 and 8 mg/kg, PO, significantly inhibited morphine (10 mg/kg, SC)-induced memory impairment in the Morris water maze test. PF(11), at 4 mg/kg, PO, did not influence conditioned place preference per se, yet markedly blocked the conditioned place preference to morphine. PF(11), at the doses of 4 and 8 mg/kg, PO, also significantly antagonized morphine (5 mg/kg, SC)-induced analgesia tested by tail pinch method. PF(11), at 4 mg/kg, PO, did not influence locomotor activity per se, yet inhibited the development of the reverse tolerance, as shown by the increase in locomotor activity, to morphine. At the doses of 4 and 8 mg/kg, PO, PF(11) significantly antagonized the development of analgesia tolerance to morphine in the tail pinch test. Thus, the above results demonstrate for the first time that PF(11) can antagonize some actions of morphine. However, the mechanism of action of PF(11) merits further evaluation.  相似文献   

13.
The characteristics of chronically administered amphetamine on the locomotor and anticonvulsant effects were studied in adult CF-1 mice. The influence of dose of the drug and interdose interval on the development of "reverse tolerance" to the locomotor stimulation was investigated, in addition to the selectivity of the response and the persistence of the change in pharmacodynamics. Once-daily treatment with 6 mg/kg amphetamine for 4 weeks resulted in a 2-3 fold increase in locomotor activity. The increase in responsiveness, however, was limited to the first period of 2 weeks and there was no subsequent change in pharmacodynamics during the last 2 weeks of treatment. After 36 days of withdrawal, the response had not returned to that of control, illustrating the persistence of the effect. The results of varying the interdose interval indicated that "reverse tolerance" occurred even when the interval was as long as 14 days. These results represent additional evidence of the persistence of the phenomenon. Selectivity of the changes in the CNS was illustrated by the cross-reactivity with a motor-stimulant dose of cocaine but not with that of morphine. Selectivity was also demonstrated by the failure of "reverse tolerance" to develop to the anticonvulsant effects of amphetamine, which also appear to be mediated dopaminergically.  相似文献   

14.
Acute morphine administration produces analgesia and reward, but prolonged use may lead to analgesic tolerance in patients chronically treated for pain and to compulsive intake in opioid addicts. Moreover, long-term exposure may induce physical dependence, manifested as somatic withdrawal symptoms in the absence of the drug. We set up three behavioral paradigms to model these adaptations in mice, using distinct regimens of repeated morphine injections to induce either analgesic tolerance, locomotor sensitization or physical dependence. Interestingly, mice tolerant to analgesia were not sensitized to hyperlocomotion, whereas sensitized mice displayed some analgesic tolerance. We then examined candidate molecular modifications that could underlie the development of each behavioral adaptation. First, analgesic tolerance was not accompanied by mu opioid receptor desensitization in the periaqueductal gray. Second, cdk5 and p35 protein levels were unchanged in caudate-putamen, nucleus accumbens and prefrontal cortex of mice displaying locomotor sensitization. Finally, naloxone-precipitated morphine withdrawal did not enhance basal or forskolin-stimulated adenylate cyclase activity in nucleus accumbens, prefrontal cortex, amygdala, bed nucleus of stria terminalis or periaqueductal gray. Therefore, the expression of behavioral adaptations to chronic morphine treatment was not associated with the regulation of micro opioid receptor, cdk5 or adenylate cyclase activity in relevant brain areas. Although we cannot exclude that these modifications were not detected under our experimental conditions, another hypothesis is that alternative molecular mechanisms, yet to be discovered, underlie analgesic tolerance, locomotor sensitization and physical dependence induced by chronic morphine administration.  相似文献   

15.
Anabolic-androgenic steroid exposure has been proposed to present a risk factor for the misuse of other drugs of abuse. We now examined whether the exposure to the anabolic-androgenic steroid, nandrolone, would affect the acute morphine responses, tolerance and dependence in rodents. For this purpose, mice received nandrolone using pre-exposure (for 14 days before morphine experiments) or co-administration (1 h before each morphine injection) procedures. Nandrolone treatments increased the acute hypothermic effects of morphine without modifying its acute antinociceptive and locomotor effects. Nandrolone also attenuated the development of tolerance to morphine antinociception in the hot plate test, but did not affect tolerance to its hypothermic effects, nor the sensitisation to morphine locomotor responses. After nandrolone pre-exposure, we observed an attenuation of morphine-induced place preference and an increase in the somatic manifestations of naloxone-precipitated morphine withdrawal. These results indicate that anabolic-androgenic steroid consumption may induce adaptations in neurobiological systems implicated in the development of morphine dependence.  相似文献   

16.
Mice lacking D1 receptors were used to study the role of these receptors in morphine-induced antinociception and locomotor sensitisation. In the hot-plate test D1 receptor deficient (-/-) and wild-type (+/+) mice showed similar reaction times under basal conditions. A single injection of 1.25 mg/kg and 2.5 mg/kg morphine resulted in a stronger antinociceptive response in D1 receptor deficient mice than in wild-type animals. Tolerance to the analgesic effect did not develop in both groups of animals when 12.5 mg/kg morphine was chronically applied twice daily for 13 days. There was no change in basal locomotor activity between saline-injected wild-type and D1 receptor deficient mice. After chronic treatment wild-type mice showed a continuous increase in locomotor activity, indicating the development of sensitisation. In contrast, a subchronic administration of morphine did not change locomotor activity in mutant mice. The lack of the development of locomotor sensitisation in D1 deficient mice was associated with reduced levels of immunoreactive mu opioid receptors in dorsal striatal patches as compared to wild-type mice. In contrast, no change in the distribution of immunoreactive mu receptors could be detected in areas related to pain pathways such as the spinal cord. Taken together, these results suggest an involvement of D1 receptors in morphine-induced locomotor activity and analgesia.  相似文献   

17.
The involvement of opiatergic mechanisms on the antiamnestic effects of piracetam was investigated in mice. First, the effects of piracetam and naloxone on the amnesia induced by scopolamine, electroconvulsive shock and morphine were evaluated by using elevated plus maze apparatus. Second, the effects of electroconvulsive shock and piracetam on the antinociceptive action of morphine were tested by means of radiant heat tail-flick experiment. Piracetam and naloxone reversed the drug- or electrically-induced amnestic effects. On the other hand, electroconvulsive shock treatment enhanced the antinociceptive effect of morphine while piracetam decreased the same activity. These results suggest an important role of the opiatergic system on the learning and memory process as well as on the antiamnestic effect of piracetam.  相似文献   

18.
Inhibition of glutamate carboxypeptidase II (GCP II; NAALADase) produces a variety of effects on glutamatergic neurotransmission. The aim of this study was to investigate effects of GCP II inhibition with the selective inhibitor, 2-PMPA, on: (a) development of tolerance to the antinociceptive effects, (b) withdrawal, and (c) conditioned reward produced by morphine in C57/Bl mice. The degree of tolerance was assessed using the tail-flick test before and after 6 days of twice daily (b.i.d.) administration of 2-PMPA and 10 mg/kg of morphine. Opioid withdrawal was measured 3 days after twice daily morphine (30 or 10 mg/kg) administration, followed by naloxone challenge. Conditioned morphine reward was investigated using conditioned place preference with a single morphine dose (10 mg/kg). High doses of 2-PMPA inhibited the development of morphine tolerance (resembling the effect of 7.5 mg/kg of the NMDA receptor antagonist, memantine) while not affecting the severity of withdrawal. A high dose of 2-PMPA (100 mg/kg) also significantly potentiated morphine withdrawal, but inhibited both acquisition and expression of morphine-induced conditioned place preference. Memantine inhibited the intensity of morphine withdrawal as well as acquisition and expression of morphine-induced conditioned place preference. In addition, 2-PMPA did not affect learning or memory retrieval in a simple two-trial test, nor did it produce withdrawal symptoms in morphine-dependent, placebo-challenged mice. Results suggest involvement of GCP II (NAALADase) in phenomena related to opioid addiction.  相似文献   

19.
1. Our previous studies suggest that in addition to the cerebral dopaminergic systems the noradrenergic ones have a crucial role in the morphine-induced behavioural sensitization in mice. Therefore the effects of alpha2-adrenoceptor antagonist, idazoxan (1 and 3 mg kg(-1), i.p.) on morphine-induced locomotor hyperactivity as well as on morphine-induced changes in cerebral noradrenaline (NA) and striatal dopamine (DA) metabolism were studied in mice withdrawn for 3 days from 5 day repeated morphine treatment. The concentrations of NA, free 3-methoxy-4-hydroxyphenylethylene glycol (MOPEG), DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine (3-MT) were determined. 2. Acute morphine (10 mg kg(-1), s.c.) increased locomotor activity in control and in morphine-withdrawn mice; idazoxan alone did not alter the activity. Idazoxan pretreatment did not alter the locomotor hyperactivity induced by acute morphine in control mice but potentiated it in morphine-withdrawn mice. 3. Acute morphine elevated MOPEG less but increased DOPAC and HVA more clearly in morphine-withdrawn mice than in controls, and decreased 3-MT only in controls. Idazoxan alone did not alter the NA or DA metabolite concentrations in control mice, but elevated MOPEG as well as DOPAC in morphine-withdrawn mice. 4. In control mice idazoxan enhanced acute morphine's elevating effect on MOPEG. In withdrawn mice idazoxan counteracted the tolerance so that acute morphine elevated MOPEG in these mice to about similar level as in controls. 5. Idazoxan pretreatment abolished the HVA increasing effect of acute morphine both in control and withdrawn mice. In control mice idazoxan enhanced morphine's elevating effect on DOPAC and abolished morphine's decreasing effect on 3-MT. Idazoxan did not alter morphine's effects on DOPAC or 3-MT concentrations in withdrawn mice. 6. Our results show that in morphine-withdrawn mice idazoxan pretreatment reveals the morphine-induced locomotor sensitization. This most probably occurs by overcoming the tolerance towards the acute morphine-induced increase of cerebral NA turnover and release. It is suggested that in mice the cerebral noradrenergic in addition to the dopaminergic systems are major determinants of the behavioural sensitization to morphine.  相似文献   

20.
Morphine-6beta-glucuronide is a major metabolite of morphine. We wanted to examine whether the effects related to opiate CNS stimulation could be mediated by different receptors for morphine and M6G by studying the development of crosstolerance between these two drugs. The effect studied was locomotor activity in C57BL/6JBom mice. We observed a dose-dependent development of tolerance to daily injections of morphine, with 20 micromol/kg giving the most rapid development of tolerance, apparent already on the second day of treatment. This was also observed for the same dose of M6G. Crosstolerance to M6G was measured both after 1 day pretreatment and 7 days pretreatment with morphine 20 micromol/kg, while the crosstolerance to morphine was tested only after 1 day pretreatment with M6G (20 micromol/kg). Lack of crosstolerance towards M6G after 1 day of morphine pretreatment was observed, whereas crosstolerance to M6G was observed after 7 days of exposure to morphine pretreatment. Crosstolerance after M6G pretreatment to morphine was observed. It was concluded that the main part of the effect caused by M6G was mediated through a specific M6G receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号