首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To study the function of GLAST, a glutamate transporter highly expressed in the cerebellar Bergmann astrocytes, the mouse GLAST gene was inactivated. GLAST-deficient mice developed normally and could manage simple coordinated tasks, such as staying on a stationary or a slowly rotating rod, but failed more challenging task such as staying on a quickly rotating rod. Electrophysiological examination revealed that Purkinje cells in the mutant mice remained to be multiply innervated by climbing fibres even at the adult stage. We also found that oedema volumes in the mutant mice increased significantly after cerebellar injury. These results indicate that GLAST plays active roles both in the cerebellar climbing fibre synapse formation and in preventing excitotoxic cerebellar damage after acute brain injury.  相似文献   

2.
Corticotropin releasing factor (CRF) and its cognate receptors, defined as Type 1 and Type 2 have been localized within the cerebellum. The Type 2 CRF receptor (CRF-R2) is known to have both a full length (CRF-R2alpha) and a truncated (CRF-R2alpha-tr) isoform. A recent study documented CRF-R2alpha primarily in Bergann glia and astrocytes, as well as in populations of Purkinje cells in the adult cerebellum. The goal of the present study is to determine if CRF-R2alpha is present in the postnatal cerebellum, and if so to describe its cellular distribution. RT-PCR data showed that CRF-R2alpha is expressed in the mouse cerebellum from birth through postnatal day 21. Between birth and P14, CRF-R2alpha-immunoreactivity was localized within the somata of Purkinje cells, and migrating GABAergic interneurons. GFAP-immunoreactive astrocytes, including Bergmann glia, also expressed CRF-R2alpha-immunoreactivity from P3-P14. There is a change, however, in CRF-R2alpha immunolabeling within neurons as the cerebellum matures. Compared to its expression in the adult cerebellum, Purkinje cells, and GABAergic interneurons showed more extensive CRF-R2alpha immunolabeling during early postnatal development. We postulate that CRF-R2alpha could be involved in developmental events related to the survival and differentiation of Purkinje cells and GABAergic neurons, whereas in the adult, this isoform of the CRF receptor family is likely involved in modulating Bergmann glia that have been shown to play a role in regulating the synaptic environment around Purkinje neurons.  相似文献   

3.
Functional neural circuit formation includes the process by which redundant synaptic connections formed earlier during development are subsequently eliminated. We report that insulin-like growth factor I (IGF-I) is a candidate factor that influences the developmental transition from multiple to mono innervation of cerebellar Purkinje cells (PCs) by climbing fibres (CFs). Continuous local application of exogenous IGF-I to the mouse cerebellum by means of ethylene-vinyl acetate copolymer (Elvax) significantly increased the degree of multiple CF innervation, when the IGF-I containing Elvax was implanted at postnatal day 8 (P8). In contrast, the IGF-I application starting at P12 had no effect on CF innervation. Conversely, continuous local application of antisera against IGF-I and its receptor significantly decreased the degree of multiple CF innervation when the application started at P8. We found that chronic treatment of exogenous IGF-I from P8 significantly enhanced the CF-mediated excitatory postsynaptic currents (CF-EPSCs). This effect was manifest for the smaller CF-EPSCs but not for the largest CF-EPSC of the multiple-innervated PCs. Conversely, chronic application of antisera from P8 caused attenuation of the largest CF-EPSCs. Other parameters for basic synaptic functions and cerebellar morphology were largely normal after the IGF-I or antisera treatment. These results suggest that IGF-I enhances the strength of developing CF synapses and may promote their survival, whereas the shortage of IGF-I impairs the development of CF synapses and, as a result, may facilitate their elimination. Thus, IGF-I is a potentially important factor among various signalling molecules that can influence CF synapse elimination during cerebellar development.  相似文献   

4.
Recent studies in vivo have shown that cells of the cerebellum, and particularly Purkinje neurons (PNs), are susceptible to damage following traumatic brain injury (TBI). To investigate more closely the effects of TBI at the cellular level, we subjected cerebellar cell cultures to injury using an in vitro model of stretch-induced mechanical trauma and found increased cell damage and neuronal loss with increasing levels of injury and time post-injury. The release of neuron-specific enolase and S-100 beta were also elevated after injury. Compared to our previous findings in hippocampal cells, S-100 beta levels were much higher in cerebellar cultures after injury, suggesting that cells from different brain regions show variable responses to mechanical trauma. Lastly, the addition of exogenous S-100 beta to uninjured cerebellar cells caused no overt change in cell viability or overall neuronal number; there were, however, fewer calbindin-positive PNs, similar to findings after stretch injury.  相似文献   

5.
We have demonstrated that transferrin binding protein (TfBP), ferritin, and iron, are specifically localized in Bergmann glia, while the transferrin receptor is confined to Purkinje cells in the chicken cerebellum. The results of this study suggest that Bergmann glia have previously undescribed functions related to iron regulation such as sequestration of iron and the maintenance of iron homeostasis in the cerebellum.  相似文献   

6.
In neurons, AMPA glutamate receptors are developmentally regulated and selectively targeted to synaptic sites. Astroglial cells also express AMPA receptors, but their developmental pattern of expression and targeting mechanisms are unknown. In this study we investigated by immunocytochemistry at the light and electron microscopy level the expression of GluR1 and its scaffolding proteins SAP97 (synapse-associated protein) and 4.1N during cerebellar development. In cerebellar cortex the GluR1 AMPA receptor subunit is expressed exclusively in Bergmann glia in the adult rodent. Interestingly, we observed that GluR1 was expressed postsynaptically at the climbing fibers (CF) synapse at early ages during Purkinje cell dendritic growth and before the complete ensheathment of CF/Purkinje cell synapses by Bergmann glia. However, its expression changed from neurons to Bergmann glia once these glial cells had completed their enwrapping process. In contrast, GluR2/3 and GluR4 AMPAR subunits were stably expressed in both Purkinje cells (GluR2/3) and Bergmann glia (GluR4) throughout postnatal development. Our data indicate that GluR1 expression undergoes a developmental switch from neurons to glia and that this appears to correlate with the degree of Purkinje cell dendritic growth and their enwrapping by Bergmann glia. SAP97 and 4.1N were developmentally regulated in the same pattern as GluR1. Therefore, SAP97 and 4.1N may play a role in the transport and insertion of GluR1 at CF/Purkinje cell synapses during early ages and at Bergmann glia plasma membrane in the adult. The parallel fiber (PF)/Purkinje cell synapse contained GluR2/3 but lacked GluR1, SAP97, and 4.1N at the time of PF synaptogenesis.  相似文献   

7.
Astrocytes have an important role in synaptic formation and function but how astrocytic processes become associated with synaptic structures during development is not well understood. Here we analyzed the pattern of growth of the processes extending off the main Bergmann glial (BG) shafts during synaptogenesis in the cerebellum. We found that during this period, BG process outgrowth was correlated with increased ensheathment of dendritic spines. In addition, two-photon time-lapse imaging revealed that BG processes were highly dynamic, and processes became more stable as the period of spine ensheathment progressed. While process motility was dependent on actin polymerization, activity of cytoskeletal regulators Rac1 and RhoG did not play a role in glial process dynamics or density, but was critical for maintaining process length. We extended this finding to probe the relationship between process morphology and ensheathment, finding that shortened processes result in decreased coverage of the spine. Furthermore, we found that areas in which BG expressed dn-Rac1, and therefore had a lower level of synaptic ensheathment, showed an overall increase in synapse number. These analyses reveal how BG processes grow to surround synaptic structures, elucidate the importance of BG process structure for proper development of synaptic ensheathment, and reveal a role for ensheathment in synapse formation.  相似文献   

8.
Migration of the external granular layer cells in the cerebellum of rats was delayed after exposure to moderate levels of ethanol during a pre-gestational period, through gestation and lactation until weaning. After ethanol withdrawal, cell soma and dendrites were observed to be larger in granule cells. Likewise, Bergmann glia showed several cytoarchitectonic features suggesting cell immaturity, as well as some apparent compensatory plastic responses after ethanol withdrawal. These effects may be due to ethanol impairing neurotrophin-mediated processes during cerebellar development that could lead to alterations in Purkinje cell structure and activity, and thereafter in the psychoneural functions in which the cerebellar cortex is involved.  相似文献   

9.
目的分析Toll样受体4(TLR4)蛋白在小鼠小脑组织中的表达情况。 方法选取6月龄大小的TLR4基因敲除(TLR4-/-)小鼠及其同窝对照的野生型(TLR4+/+)小鼠的小脑组织,制成冰冻切片,通过免疫荧光染色技术检测TLR4在TLR4+/+小鼠小脑冰冻切片组织中的表达,并利用小脑组织特定细胞的蛋白标记Marker与其共染,TLR4-/-小鼠小脑冰冻切片作为阴性对照,最后通过激光共聚焦显微镜获取图像并确定TLR4在小脑组织中的表达。 结果TLR4高表达于钙结合蛋白阳性的小脑蒲肯野细胞中,少量表达于离子钙接头蛋白阳性的小胶质细胞中,而在性别决定区Y盒2号蛋白阳性的伯格曼胶质细胞和神经元特异核蛋白阳性的颗粒细胞中并无表达。 结论TLR4高表达于小鼠小脑蒲肯野细胞中,深入分析TLR4在蒲肯野细胞功能执行中的作用,将有助于揭示TLR4在小脑功能执行中的作用。  相似文献   

10.
11.
Y Kuang  Q Liu  X Shu  C Zhang  N Huang  J Li  M Jiang  H Li 《Glia》2012,60(11):1734-1746
MicroRNAs (miRNAs) have important roles in the development of the central nervous system (CNS). Several reports indicate that tissue development and cellular differentiation in the developing forebrain are disrupted in the absence of miRNAs. However, the functions of miRNAs during cerebellar development have not been systematically characterized. Here, we conditionally knocked out the Dicer1 gene under the control of the human glial fibrillary acidic protein (hGFAP) promoter to examine the effect of miRNAs in the developing cerebellum. We particularly focused on the phenotype of Bergmann glia (BG). The hGFAP‐Cre activity was detected as early as embryonic day 13.5 (E13.5) at the rhombic lip (RL) in the cerebellar plate, and later in several postnatal cerebellar cell types, including BG. Dicer1 ablation induces a smaller and less developed cerebellum, accompanied by aberrant BG morphology. Notch1 signaling appears to be blocked in Dicer1‐ablated BG, with reduced expression of the Notch1 target gene, brain lipid binding protein (BLBP). Using neuronal co‐culture assays, we showed an intrinsic effect of Dicer1 on BG morphology and Notch1 target gene expression. We further identified miR‐9 as being differentially expressed in BG and showed that miR‐9 is a critical, but not the only, miRNA component of the Notch1 signaling pathway in cultured BG cells. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
In several theories of the function of the cerebellum in motor control, the mossy-fiber-parallel fiber input has been suggested to provide information used in the control of ongoing movements whereas the role of climbing fibers is to induce plastic changes of parallel fiber (PF) synapses on Purkinje cells. From studies of climbing fibers during the last few decades, we have gained detailed knowledge about the zonal and microzonal organization of the cerebellar cortex and the information carried by climbing fibers. However, properties of the PF input to Purkinje cells and inhibitory interneurones have been largely unknown. The present review, which focuses on the C3 zone of the cerebellar anterior lobe, will present and discuss recent data of the cutaneous PF input to Purkinje cells, interneurons and Golgi cells as well as novel forms of PF plasticity.  相似文献   

13.
14.
Solid pieces of cerebellar primordia from 12-day-old C57Bl embryos were implanted in the cerebellar vermis of 3-4-month-old "Purkinje cell degeneration" mutant mice. Ten to 22 days after grafting, mutant mice were sacrificed, and synaptic responses of grafted Purkinje cells were studied by intracellular recordings performed in 400 microns thick sagittal slices in vitro. As early as 10 days after transplantation, grafted Purkinje cells have already completed their migration from the implant into the host molecular layer. Accordingly, inhibitory as well as excitatory responses were already elicited in these cells by electrical stimulation of the host subcortical white matter. Furthermore, a transient stage of multiple innervation of Purkinje cells by climbing fibers exists between 10 and 15 days after grafting, as revealed by the stepwise variation in amplitude of the climbing fiber-mediated excitatory postsynaptic potentials recorded before 15 days after grafting. Thirteen days after transplantation, typical all-or-none climbing fiber-mediated responses, parallel fiber-mediated excitatory postsynaptic potentials, and inhibitory postsynaptic potentials were also already present. Finally, normal adult-type synaptic responses were observed in all tested cells 15 to 17 days after grafting. Together with the companion paper (Sotelo et al., 1990), these results demonstrate that grafted Purkinje cells are able to impose on host afferents a pattern of synaptogenesis which closely follows that occurring during normal development, in particular, the transient stage of multiple innervation of Purkinje cells by climbing fibers.  相似文献   

15.
The distribution of corticotropin-releasing factor (CRF), the development of CRF-binding sites, and the age at which application of CRF elicits a physiological response have been described previously in the postnatal mouse cerebellum. The intent of the present study was to determine the cellular and subcellular distribution of the CRF type 1 receptor (CRF-R1) in the vermis of the postnatal mouse cerebellum and to correlate these data with those presented in previous studies. On P0, CRF-R1 is present in the apical processes of migrating Purkinje cells. Between P0 and P8, CRF-R1 immunostaining is confined to a supranuclear position in Purkinje cell bodies. Between P9 and P14, the receptor immunolabeling circumscribes Purkinje cell nuclei and extends into their primary dendrites. An adult-like distribution is achieved between P16 and P21. Between P0 and P14, the CRF-R1 antibody also labels processes of migrating GABAergic interneurons that are directed toward the pial surface. By P12, labeling begins to circumscribe the nucleus of GABAergic cells in the internal granule cell layer. Finally, astrocytic processes in the white matter, as well as radial glial processes, show focal labeling with the CRF-R1 antibody beginning at P3 and throughout postnatal development. A previous study demonstrated that CRF does not elicit a physiological response in Purkinje cells until P9. This observation, together with the data presented in this study, suggests that the binding of CRF to the type 1 receptor may be involved in regulating the development of cerebellar neurons and glia immediately after birth, before CRF assumes its function as a neuromodulator later in postnatal development and in the adult.  相似文献   

16.
Cell proliferation is an essential force to build up the size, shape, and function of an organ. This force is particularly prominent in the production of the cerebellar granule neurons, which represent 80% of all brain neurons. Extensive cell biological and tissue transplantation studies have uncovered both long-range diffusible and local cell-cell, contact-dependent growth cues for the granular neurons. The assignment of specific gene products to their contributions to the genesis of the granular neurons is greatly facilitated by in vitro culture assays and knock-out mouse analyses. Among them, the Growth arrest specific gene 1 (Gas1), a known negative regulator of the cell cycle, was shown to have profound influence on the production of the granule cells. Our aim here is to review the contributions of Gas1 and a few other selected genes and put them into a more comprehensive framework, though it may be speculative at times, of granule cell proliferation regulation.  相似文献   

17.
The expression of AMPA receptor subunit mRNAs and the binding of [(3)H]AMPA were studied in the cerebellum of normal and "Purkinje cell degeneration" ( pcd) mutant mouse. In the pcd cerebellum, [(3)H]AMPA binding was decreased significantly in both the molecular and granule cell layers by 63% and 36%, respectively. In those mutants, GluRA, GluRB and GluRC mRNAs were not detected in the Purkinje cell layer, and the levels of GluRB and GluRD mRNAs were significantly decreased in the granule cell layer by 16% and 57%, respectively. Cerebellar grafts transplanted into the pcd cerebellum expressed only GluRB and GluRC mRNAs, suggesting that donor cells express the appropriate subunits normally expressed by Purkinje neurons. Our results, firstly, support the idea that the expression of the GluRA subunit in Golgi epithelial cells may depend upon the sustained interaction with adjacent Purkinje cells, and secondly, suggest that granule cells which are more resistant to transsynaptic death may express higher levels of GluRB mRNA.  相似文献   

18.
To identify cerebellar regions that are involved in the control of limb muscles, rabies virus was injected into the tibialis anterior (TA), the gastrocnemius (GC) or, for comparison, into the flexor digitorum (FD) muscles of the rat. Progression of retrograde transneuronal infection at supraspinal levels was assessed after variable time spans and was divided into three groups. Initially, infected neurons were observed in the reticular formation, lateral vestibular nucleus, red nucleus and motor cortex (group 1). Group 2 was characterized by labelling within the cerebellar nuclei as well as of two vermal strips of Purkinje cells (PCs). Double-labelling with zebrin enabled identification of these strips as the lateral part of the A1- and B-zone. For TA both zones were ipsilateral, whereas for GC the A1 strip predominated contralaterally. Group 3 infections showed additional labelling of multiple, in part bilateral, identifiable strips of PCs in vermis, paravermis and hemisphere. FD injections resulted in less robust labelling of vermal strips and more pronounced labelling within paravermal and hemispheral zonal regions. Only sporadic labelling in corresponding regions of the inferior olive and no labelling of cortical interneurons or granule cells was observed. Prolonged infection was seen to result in degeneration of PCs and possibly of motoneurons. We conclude that vermal, paravermal as well as hemispheral zones of the cerebellar cortex converge upon motoneurons that innervate a particular muscle. In addition, individual zones may control motorpools of different muscles and thus contribute to muscle synergies.  相似文献   

19.
The cerebellar cortex receives neural information from other brain regions to allow fine motor coordination and motor learning. The primary output neurons from the cerebellum are the Purkinje neurons that transmit inhibitory responses to deep cerebellar nuclei through their myelinated axons. Altered morphological organization and electrical properties of the Purkinje axons lead to detrimental changes in locomotor activity often leading to cerebellar ataxias. Two cytoskeletal scaffolding proteins Band 4.1B (4.1B) and Whirlin (Whrn) have been previously shown to play independent roles in axonal domain organization and maintenance in myelinated axons in the spinal cord and sciatic nerves. Immunoblot analysis had indicated cerebellar expression for both 4.1B and Whrn; however, their subcellular localization and cerebellum-specific functions have not been characterized. Using 4.1B and Whrn single and double mutant animals, we show that both proteins are expressed in common cellular compartments of the cerebellum and play cooperative roles in preservation of the integrity of Purkinje neuron myelinated axons. We demonstrate that both 4.1B and Whrn are required for the maintenance of axonal ultrastructure and health. Loss of 4.1B and Whrn leads to axonal transport defects manifested by formation of swellings containing cytoskeletal components, membranous organelles, and vesicles. Moreover, ablation of both proteins progressively affects cerebellar function with impairment in locomotor performance detected by altered gait parameters. Together, our data indicate that 4.1B and Whrn are required for maintaining proper axonal cytoskeletal organization and axonal domains, which is necessary for cerebellum-controlled fine motor coordination.  相似文献   

20.
To investigate the somatotopic organization of the cerebellum, we analysed multisynaptic inputs to the primary motor cortex (MI) using retrograde transneuronal transport of rabies virus. At 3 days after rabies injections into proximal forelimb, distal forelimb and hindlimb representations of the macaque MI, second-order neurons via the thalamus were labeled in the deep cerebellar nuclei, including the dentate (DN), anterior interpositus (AIN) and posterior interpositus nuclei. In the DN, the labeling of both the forelimb and hindlimb was seen mainly in the dorsal aspect. The labeling of the hindlimb was located rostral to that of the forelimb and the labeling of the proximal forelimb was located slightly rostral to that of the distal forelimb. The same rostrocaudal arrangement was observed in the AIN. In the posterior interpositus nucleus, however, labeling from the MI hindlimb and forelimb representations largely overlapped. At the 4-day postinjection period, third-order labeling occurred in Purkinje cells of the cerebellar hemisphere. The Purkinje cell labeling from the forelimb representation, including the proximal and distal regions, was observed primarily in lobules IV-VI and crus I. The proximal forelimb labeling was both rostral and lateral to that of the distal forelimb within lobules IV-VI. However, the hindlimb labeling was seen both rostral and lateral to that of the proximal forelimb within lobules III-VI. These results indicate that the hindlimb, proximal forelimb and distal forelimb are arranged rostrocaudally in the DN and AIN, whereas there is dual somatotopy along the rostrocaudal and lateromedial axes in the cerebellar cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号