首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Distribution of collagen cross-links in normal human trabecular bone.   总被引:3,自引:0,他引:3  
Infrared imaging analysis of normal human iliac crest biopsy specimens shows a characteristic spatial variation in the nonreducible:reducible collagen cross-links at trabecular surfaces, depending on the surfaces' metabolic status. INTRODUCTION: Bone is a composite material consisting of mineral, collagen, non-collagenous proteins, and lipids. Bone collagen, mainly type I, provides the scaffold on which mineral is deposited and imparts specific mechanical properties, determined in part by the amount of collagen present, its orientation and fibril diameter, and the distribution of its cross-links. MATERIALS AND METHODS: In this study, the technique of Fourier transform infrared imaging (FTIRI) was used to determine the ratio of nonreducible:reducible cross-links, in 2- to 4-microm-thick sections from human iliac crest biopsy specimens (N = 14) at trabecular surfaces as a function of surface activity (forming versus resorbing), with an approximately 6.3-mm spatial resolution. The biopsy specimens were obtained from patients devoid of any metabolic bone disease based on histomorphometric and bone densitometric parameters. RESULTS AND CONCLUSIONS: Distributions of collagen cross-links within the first 50 mm at forming trabecular surfaces demonstrated a progressive increase in the nonreducible:reducible collagen cross-link ratio, unlike in the case of resorbing surfaces, in which the collagen cross-links ratio (as defined for the purposes of the present report) was relatively constant.  相似文献   

2.
Osteomalacia is a pathological bone condition in which there is deficient primary mineralization of the matrix, leading to an accumulation of osteoid tissue and reduced bone mechanical strength. The hypothesis that there are no qualitative or quantitative differences in osteomalacic bone mineral or matrix compared to disease-free bones was tested by examining unstained sections of polymethyl methacrylate (PMMA) embedded iliac crest biopsies using Fourier transform infrared imaging (FTIRI) at approximately 6-microm spatial resolution. Controls were seven female subjects, aged 36-57, without apparent bone disease. The experimental group consisted of 11 patients aged 22-72, diagnosed with osteomalacia. The spectroscopic parameters analyzed in each data set were previously established as sensitive to bone quality: phosphate/amide I band area ratio (mineral content), 1660/1690 cm(-1) peak ratio (collagen cross-links), and the 1030/1020 cm(-1) peak ratio (mineral crystallinity). The correspondence between spectroscopic mineral content (phosphate/amide I ratio) and ash weight was validated for apatite crystals of different composition and crystallite size. The FTIRI results from the biopsies expressed as color-coded images and pixel population means were compared with the nonparametric Mann-Whitney U test. There were no significant differences in the cortical parameters. Significant difference was found in the mineral content of the trabecular regions with a lower mean value in osteomalacia (P = 0.01) than in controls. Mineral crystallinity tended to be decreased in the trabecular bone (P = 0.09). This study supports the hypothesis that, in osteomalacia, the quality of the organic matrix and of mineral in the center of bone does not change, while less-than-optimal mineralization occurs at the bone surface. This study provides the first spectroscopic evaluation of whole bone mineral and matrix properties in osteomalacia, demonstrating that there are few differences in collagen cross-links between biopsies from patients with osteomalacia and from individuals without histological evidence of bone disease.  相似文献   

3.
A recent study of ovariectomized monkeys, treated with recombinant human parathyroid hormone (rhPTH)(1-34) at 1 or 5 mg/kg/day for 18 months or for 12 months followed by 6 months withdrawal from treatment, showed significant differences in the geometry and histomorphometry of cortical bone of the midshaft humerus. To determine the extent to which the rapid bone turnover and cortical porosity induced by rhPTH(1-34) in ovariectomized monkeys modified mineral content, mineral crystal maturity and collagen maturity (cross-link distribution) in the cortical periosteal and endosteal regions, cross-sections of the cortical bone of the mid-humerus, were examined using Fourier transform infrared imaging (FTIRI). FTIRI analyses demonstrated that rhPTH(1-34) altered bone mineral and collagen properties in a dose-dependent manner. Mineral crystal maturity and collagen cross-link ratio (pyridinoline/dehydro-dihydroxylysinonorleucine) on both endosteal and periosteal surfaces decreased relative to ovariectomized animals, consistent with new bone formation. These changes were partially sustained after withdrawal of the higher dose of rhPTH(1-34), suggesting a prolonged after-effect on bone properties for at least two bone remodeling cycles. In conclusion, treatment of ovariectomized monkeys with rhPTH(1-34) had significant effects on cortical bone mineral-to-matrix ratio, mineral crystal maturity, and collagen cross-link ratio. These were fully reversible when the 1-microg rhPTH(1-34) treatment was withdrawn, but only partially reversed when the 5-microg rhPTH(1-34) dose was withdrawn.  相似文献   

4.
Infrared imaging analysis of iliac crest biopsy specimens from patients with osteoporotic and multiple spontaneous fractures shows significant differences in the spatial variation of the nonreducible:reducible collagen cross-links at bone-forming trabecular surfaces compared with normal bone. INTRODUCTION: Although the role of BMC and bone mineral quality in determining fracture risk has been extensively studied, considerably less attention has been paid to the quality of collagen in fragile bone. MATERIALS AND METHODS: In this study, the technique of Fourier transform infrared imaging (FTIRI) was used to determine the ratio of nonreducible:reducible cross-links, in 2- to 4-microm-thick sections, from human iliac crest biopsy specimens (N = 27) at bone-forming trabecular surfaces. The biopsy specimens were obtained from patients that had been diagnosed as high- or low-turnover osteoporosis, as well as premenopausal women <40 years of age, with normal BMD and biochemistry, who suffered multiple spontaneous fractures. The obtained values were compared with previously published analyses of trabecular bone from normal non-osteoporotic subjects (N = 14, 6 males and 8 females; age range, 51-70 years). RESULTS AND CONCLUSIONS: Collagen cross-links distribution within the first 50 microm at forming trabecular surfaces in patients with fragile bone was markedly different compared with normal bone.  相似文献   

5.
Dentin sialophosphoprotein has been implicated in the mineralization process based on the defective dentin formation in Dspp null mice (Dspp-/-). Dspp is expressed at low levels in bone and Dspp-/- femurs assessed by quantitative micro-computed tomography (micro-CT) and Fourier transform infrared spectroscopic imaging (FTIRI) exhibit some mineral and matrix property differences from wildtype femurs in both developing and mature mice. Compared to wildtype, Dspp-/- mice initially (5 weeks) and at 7 months had significantly higher trabecular bone volume fractions and lower trabecular separation, while at 9 months, bone volume fraction and trabecular number were lower. Cortical bone mineral density, area, and moments of inertia in Dspp-/- were reduced at 9 months. By FTIRI, Dspp-/- animals initially (5 months) contained more stoichiometric bone apatite with higher crystallinity (crystal size/perfection) and lower carbonate substitution. This difference progressively reversed with age (significantly decreased crystallinity and increased acid phosphate content in Dspp-/- cortical bone by 9 months of age). Mineral density as determined in 3D micro-CT and mineral-to-matrix ratios as determined by 2D FTIRI in individual cortical and trabecular bones were correlated (r(2)=0.6, p<0.04). From the matrix analysis, the collagen maturity of both cortical and trabecular bones was greater in Dspp-/- than controls at 5 weeks; by 9 months this difference in cross-linking pattern did not exist. Variations in mineral and matrix properties observed at different ages are attributable, in part, to the ability of the Dspp gene products to regulate both initial mineralization and remodeling, implying an effect of Dspp on bone turnover.  相似文献   

6.
HRT is an effective prophylaxis against postmenopausal bone loss. Infrared imaging of paired iliac crest biopsies obtained at baseline and after 2 years of HRT therapy demonstrate an effect on the mineral crystallinity and collagen cross-links that may affect bone quality. Several studies have demonstrated that hormonal replacement therapy (HRT) is an effective prophylaxis against postmenopausal bone loss, although the underlying mechanisms are still debated. Infrared spectroscopy has been used previously for analyzing bone mineral crystallinity and three-dimensional structures of collagen and other proteins. In the present study, the technique of Fourier transform infrared microscopic imaging (FTIRI) was used to investigate the effect of estrogen on bone quality (arbitrarily defined as mineral/matrix ratio, mineral crystallinity/maturity, and relative ratio of collagen cross-links [pyridinoline/ deH-DHLNL]) at the ultrastructural level, in mineralized, thin tissue sections from double (before and after administration of HRT regimen; cyclic estrogen and progestogen [norethisterone acetate]) iliac crest biopsy specimens from 10 healthy, early postmenopausal women who were not on any medication with known influence on calcium metabolism. FTIRI allows the analysis of undemineralized thin tissue sections (each image analyzes a 400 x 400 microm2 area with a spatial resolution of approximately 6.3 mm). For each bone quality variable considered, the after-treatment data exhibited an increase in the mean value, signifying definite changes in bone properties at the molecular level after HRT treatment. Furthermore, these findings are consistent with suppressed osteoclastic activity.  相似文献   

7.
Osteonectin function in bone was investigated by infrared analysis of bones from osteonectin-null (KO) and wildtype mice (four each at 11, 17, and 36 weeks). An increase in mineral content and crystallinity in newly formed KO bone and collagen maturity at all sites was found using FTIR microspectroscopy and imaging; consistent with osteonectin's postulated role in regulating bone formation and remodeling. Mineral and matrix properties of tibias of osteonectin-null mice and their age- and background-matched wildtype controls were compared using Fourier-transform infrared microspectroscopy (FTIRM) and infrared imaging (FTIRI) at 10- and 7-mm spatial resolution, respectively. The bones came from animals that were 11, 17, and 36 weeks of age. Individual FTIRM spectra were acquired from 20 x 20 microm areas, whereas 4096 simultaneous FTIRI spectra were acquired from 400 x 400 microm areas. The FTIRM data for mineral-to-matrix, mineral crystallinity, and collagen maturity were highly correlated with the FTIRI data in similar regions. In general, the osteonectin-null mice bones had higher mineral contents and greater crystallinity (crystal size and perfection) than the age-matched wildtype controls. Specifically, the mineral content of the newly forming periosteal bone was increased in the osteonectin-null mice; the crystallinity of the cortical bone was decreased in all but the oldest animals, relative to the wildtype. The most significant finding, however, was increased collagen maturity in both the cortical and trabecular bone of the osteonectin-null mice. These spectroscopic data are consistent with a mechanism of decreased bone formation and remodeling.  相似文献   

8.
This study sought to evaluate whether the architecture of the matrix of cortical and trabecular bone is exactly the same. For this purpose we analyzed the extent of some posttranslational modifications of type I collagen, which is the major component of bone matrix. Ten female and 10 male 100-day-old rats were sacrificed and the content of hydroxylysine, glycosylated hydroxylysine, and pyridinium cross-links of collagen from cortical and trabecular bone was determined. The amount of each compound was expressed as a molar ratio with hydroxyproline. The collagen posttranslational modification pattern appears to be the same in both sexes but with a higher extent of differences in females compared with males. Comparing cortical and trabecular bone, the former contains a higher amount of hydroxylysine residues whereas in the latter, glycosylation of hydroxylysine is higher and pyridinium cross-link concentration is lower. Moreover, an inverse linear relationship between glycosylated hydroxylysine and pyridinium cross-links concentration was established, both for female (r =−0.455, P= 0.04) and male rats (r =−0.426; P= 0.06). This paper discusses what these findings may mean in functional terms. Received: 14 March 1995 / Accepted: 9 August 1995  相似文献   

9.
Summary Groups of 19-day-old rats were ovariectomized or were given sham operations. Measurements in urine of the pyridinium cross-links of collagen, pyridinoline and deoxypyridinoline, 7 weeks after surgery showed significantly higher amounts of cross-links relative to creatinine in the ovariectomized groups compared with the controls. Analyses before and after acid hydrolysis of the urine revealed that the increased excretion was only as free cross-link with no change in the concentrations of the bound forms. The loss of trabecular bone in the ovariectomized group was confirmed by immunocytochemical staining with antibodies to type I collagen. There were no differences between the ovariectomized and control groups in the concentrations of cross-links in the tibial bone or the articular cartilage. Measurements of free pyridinoline and deoxypyridinoline in urine therefore appear to provide a good index of the increased bone resorption induced by estrogen deficiency.  相似文献   

10.
Sclerostin antibody (Scl‐Ab) is a novel bone‐forming agent that is currently undergoing preclinical and clinical testing. Scl‐Ab treatment is known to dramatically increase bone mass, but little is known about the quality of the bone formed during treatment. In the current study, global mineralization of bone matrix in rats and nonhuman primates treated with vehicle or Scl‐Ab was assayed by backscattered scanning electron microscopy (bSEM) to quantify the bone mineral density distribution (BMDD). Additionally, fluorochrome labeling allowed tissue age–specific measurements to be made in the primate model with Fourier‐transform infrared microspectroscopy to determine the kinetics of mineralization, carbonate substitution, crystallinity, and collagen cross‐linking. Despite up to 54% increases in the bone volume after Scl‐Ab treatment, the mean global mineralization of trabecular and cortical bone was unaffected in both animal models investigated. However, there were two subtle changes in the BMDD after Scl‐Ab treatment in the primate trabecular bone, including an increase in the number of pixels with a low mineralization value (Z5) and a decrease in the standard deviation of the distribution. Tissue age–specific measurements in the primate model showed that Scl‐Ab treatment did not affect the mineral‐to‐matrix ratio, crystallinity, or collagen cross‐linking in the endocortical, intracortical, or trabecular compartments. Scl‐Ab treatment was associated with a nonsignificant trend toward accelerated mineralization intracortically and a nearly 10% increase in carbonate substitution for tissue older than 2 weeks in the trabecular compartment (p < 0.001). These findings suggest that Scl‐Ab treatment does not negatively impact bone matrix quality. © 2014 American Society for Bone and Mineral Research.  相似文献   

11.
The inhomogeneous mineral content and its topographical distribution on a microscopic scale are major determinants of the mechanical quality of trabecular bone. The kinetics of bone tissue deposition and resorption together with the kinetics of the mineralization process determine the distribution of mineral in the tissue. The heterogeneity of the mineral content is described by the well-established bone mineralization density distribution (BMDD), which is experimentally accessible, e.g., using quantitative electron backscattering imaging (qBEI). In the present work, we demonstrate that the shape of the BMDD histogram of trabecular bone reflects directly the mineralization kinetics. Based on the experimental BMDD data of trabecular bone from healthy human adults and using a mathematical model for the remodeling and the mineralization process, the following main results were obtained. The peaked BMDD reflects necessarily a two-phase mineralization process with a fast primary phase and a slow secondary phase where the corresponding time constants differ three orders of magnitude. The obtained mineralization law, which describes the increase in the mineral content in a bone packet as a function of time, provides information not only about the initial mineralization surge, but also about the slow increase afterwards on the time scale of years. In addition to the mineralization kinetics the turnover rate of the remodeling process has a strong influence on the peak position and the shape of the BMDD. The described theoretical framework opens new possibilities for an analysis of experimentally measured BMDDs with respect to changes caused by diseases or treatments. It allows addressing whether changes in the BMDD have to be attributed to a variation in the turnover rate which consequently affects the density distribution or to a primary disorder in the mineralization process most likely reflecting alterations of the organic matrix. This is of important clinical interest because it helps to find therapeutic approaches directly targeting the primary etiological defects to correct the patients' BMDD towards normal BMDD.  相似文献   

12.
The anabolic effects of insulin-like growth factors (IGFs) are modulated by a family of IGF-binding proteins (IGFBPs). Among the six known IGFBPs, IGFBP-5 is considered to play a role in bone formation. To investigate the effects of IGFBP-5 on bone mineral and matrix properties, femurs from transgenic mice overexpressing IGFBP-5 under the control of the osteocalcin promoter were evaluated by Fourier Transform Infrared Imaging (FTIRI). Analyses were done at the time of maximal osteocalcin expression (5 weeks). The spectroscopic parameters monitored were mineral-to-matrix ratio (indicative of the relative amount of mineral present), mineral crystallinity (index of the mineral crystal size and perfection) and collagen maturity (reflecting the ratio of non-reducible and reducible collagen cross-links). Multiple fields were selected for each femur, ranging from epiphysis to diaphysis. Previously, we showed that these transgenic mice display decreased osteoblastic function and osteopenia. In the present work, FTIRI showed that transgenic mice as compared to wild types have a different pattern of bone mineralization and matrix maturation. Specifically, cortical bone, primary spongiosa, and secondary ossification centers had lower values for mineral-to-matrix ratio and collagen maturity. Differences were not statistically significant in all cases although the trends were consistent. The mineral crystallinity did not vary significantly between the two groups, implying that the crystal maturation of mineral was not affected by IGFBP-5 overexpression. This study demonstrates that femurs from transgenic mice over expressing IGFBP-5 under the control of the osteocalcin promoter have modest alterations in mineral and matrix distribution, consistent with a role of IGF in osteoblast maturation.  相似文献   

13.
In the present work we examined the effect of teriparatide administration following bisphosphonate treatment on bone compositional properties by Raman and Fourier Transform Infrared Imaging (FTIR) microspectroscopic analysis. Thirty two paired iliac crest biopsies (before and after 1 year teriparatide) from sixteen osteoporotic women previously treated with either Alendronate (ALN) or Risedronate (RIS) and subsequently treated 12 months with teriparatide (TPTD) were analyzed at anatomical areas of similar tissue age in bone forming areas (within the fluorescent double labels). The outcomes that were monitored and reported were mineral to matrix ratio (corresponding to ash weight), mineral maturity (indicative of the mineral crystallite chemistry and stoichiometry, and having a direct bearing on crystallite shape and size), relative proteoglycan content (regulating mineralization commencement), and the ratio of two of the major enzymatic collagen cross-links (pyridinoline/divalent). Significant differences in mineral/matrix, mineral maturity/crystallinity, and collagen cross-link ratio bone quality indices after TPTD treatment were observed, indicating a specific response of these patients to TPTD treatment. Moreover differences between ALN and RIS treated patients at baseline in the collagen cross-link ratio were observed. Since tissue areas of similar tissue age were analyzed, these differences may not be attributed to differences in bone turnover.  相似文献   

14.
Collagen cross-linking, a major post-translational modification of collagen, plays important roles in the biological and biomechanical features of bone. Collagen cross-links can be divided into lysyl hydroxylase and lysyl oxidase-mediated enzymatic immature divalent cross-links, mature trivalent pyridinoline and pyrrole cross-links, and glycation- or oxidation-induced non-enzymatic cross-links (advanced glycation end products) such as glucosepane and pentosidine. These types of cross-links differ in the mechanism of formation and in function. Material properties of newly synthesized collagen matrix may differ in tissue maturity and senescence from older matrix in terms of cross-link formation. Additionally, newly synthesized matrix in osteoporotic patients or diabetic patients may not necessarily be as well-made as age-matched healthy subjects. Data have accumulated that collagen cross-link formation affects not only the mineralization process but also microdamage formation. Consequently, collagen cross-linking is thought to affect the mechanical properties of bone. Furthermore, recent basic and clinical investigations of collagen cross-links seem to face a new era. For instance, serum or urine pentosidine levels are now being used to estimate future fracture risk in osteoporosis and diabetes. In this review, we describe age-related changes in collagen cross-links in bone and abnormalities of cross-links in osteoporosis and diabetes that have been reported in the literature.  相似文献   

15.
Fourier transform infrared microspectroscopy (FTIRM) and infrared imaging (FTIRI) are techniques utilized in the analysis of bone mineral and matrix properties in health and disease. Since the spatial arrangement of bone tissue is conserved using FTIRM and FTIRI, quantitative data can be obtained on bone mineral (hydroxyapatite) crystalline size and composition, and on matrix structure and composition at discrete anatomic locations with a spatial resolution from approximately 7 mm (FTIRI) to 10 mm (FTIRM). To section bone for FTIRM and FTIRI, it must be preserved ("fixed") to maintain its properties, and embedded in a hard supportive material. Since most of the embedding media have components that spectrally overlap the components of mineralized tissues, it is critical to define optimal embedding and fixation protocols that have the least effect on mineral and matrix spectra. In the current study, the spectra of mouse calvaria in seven different fixatives and six different commonly used embedding media were assessed by FTIRM and FTIRI. The fixatives evaluated were absolute ethanol, 70% ethanol, glycerol, formaldehyde, EM fixative, and formalin in cacodylate or phosphate-buffered saline. The embedding media tested were Araldite, Epon, JB-4, LR White, PMMA, and Spurr. Comparisons were made to FTIR spectra obtained from unprocessed ground calvaria and to spectra of cryosections of unfixed tissue, fast-frozen in polyvinyl alcohol (5% PVA). Non-aqueous fixatives and embedding in LR White, Spurr, Araldite, and PMMA had the least effect on the spectral parameters measured (mineral to matrix ratio, mineral crystallinity, and collagen maturity) compared with cryo-sectioned calvaria and non-fixed, non-embedded calvaria in KBr pellets.  相似文献   

16.
Young mice overexpressing Runx2 specifically in cells of the osteoblastic lineage failed to gain bone mass and exhibited a dramatic increase in bone resorption, leading to severe osteopenia and spontaneous vertebral fractures. The objective of the current study was to determine whether treatment with a bisphosphonate (risedronate, Ris), which reduces fractures in postmenopausal as well as in juvenile osteoporosis, was able to improve bone quality and reduce vertebral fractures in mice overexpressing Runx2. Four-week-old female Runx2 mice received Ris at 2 and 10 μg/kg subcutaneously twice a week for 12 weeks. Runx2 and wild-type mice received vehicle (Veh) as control. We measured the number of new fractures by X-ray and bone mineral density (BMD) by DEXA. We evaluated bone quality by histomorphometry, micro-CT, and Fourier transform infrared imaging (FTIRI). Ris at 20 μg/kg weekly significantly reduced the average number of new vertebral fractures compared to controls. This was accompanied by significantly increased BMD, increased trabecular bone volume, and reduced bone remodeling (seen in indices of bone resorption and formation) in the vertebrae and femoral metaphysis compared to Runx2 Veh. At the femur, Ris also increased cortical thickness. Changes in collagen cross-linking seen on FTIRI confirmed that Runx2 mice have accelerated bone turnover and showed that Ris affects the collagen cross-link ratio at both forming and resorbing sites. In conclusion, young mice overexpressing Runx2 have high bone turnover-induced osteopenia and spontaneous fractures. Ris at 20 μg/kg weekly induced an increase in bone mass, changes in bone microarchitecture, and decreased vertebral fractures.  相似文献   

17.
Bone mineralization density distribution in health and disease   总被引:5,自引:1,他引:4  
Human cortical and trabecular bones are formed by individual osteons and bone packets, respectively, which are produced at different time points during the (re)modeling cycle by the coupled activity of bone cells. This leads to a heterogeneously mineralized bone material with a characteristic bone mineralization density distribution (BMDD) reflecting bone turnover, mineralization kinetics and average bone matrix age. In contrast to BMD, which is an estimate of the total amount of mineral in a scanned area of whole bone, BMDD describes the local mineral content of the bone matrix throughout the sample. Moreover, the mineral content of the bone matrix is playing a pivotal role in tuning its stiffness, strength and toughness. BMDD of healthy individuals shows a remarkably small biological variance suggesting the existence of an evolutionary optimum with respect to its biomechanical performance. Hence, any deviations from normal BMDD due to either disease and/or treatment might be of significant biological and clinical relevance. The development of appropriate methods to sensitively measure the BMDD in bone biopsies led to numerous applications of BMDD in the evaluation of diagnosis and treatment of bone diseases, while advancing the understanding of the bone material, concomitantly. For example, transiliacal bone biopsies of postmenopausal osteoporotic women were found to have mostly lower mineralization densities than normal, which were partly associated by an increase of bone turnover, but also caused by calcium and Vit-D deficiency. Antiresorptive therapy causes an increase of degree and homogeneity of mineralization within three years of treatment, while normal mineralization levels are not exceeded. In contrast, anabolic therapy like PTH decreases the degree and homogeneity of matrix mineralization, at least transiently. Osteogenesis imperfecta is generally associated with increased matrix mineralization contributing to the brittleness of bone in this disease, though bone turnover is usually increased suggesting an alteration in the mineralization kinetics. Furthermore, BMDD measurements combined with other scanning techniques like nanoindentation, Fourier transform infrared spectroscopy and small angle X-ray scattering can provide important insights into the structure-function relation of the bone matrix, and ultimately a better prediction of fracture risk in diseases, and after treatment.  相似文献   

18.
Spectroscopic characterization of collagen cross-links in bone.   总被引:1,自引:0,他引:1  
Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.  相似文献   

19.
Transforming growth factor-beta 1 (TGF-β1) is a cytokine member of the TGF-β superfamily involved in the control of proliferation and differentiation of various cell types. TGF-β1 plays an important role in bone formation and resorption. To determine the effect of TGF-β1 deficiency on bone mineral and matrix, tibias from mice in which TGF-β1 expression had been ablated (TGF-β1 null) were analyzed and compared with background- and age-matched wild-type (WT) control animals by Fourier transform-infrared imaging (FTIRI) and histochemistry. FTIRI allows the characterization of nondemineralized thin tissue sections at the ultrastructural level with a spatial resolution of 7 μm. The spectroscopic parameters calculated were: mineral-to-matrix ratio (previously shown to correspond to ash weight); mineral crystallinity (related to the crystallographically determined crystallite size and perfection in the apatite c-axis direction); and collagen maturity (related to the ratio of pyridinoline:deH-DHLNL collagen cross-links). Several fields were selected to represent different stages of bone development within the same specimen from the secondary ossification center to the distal diaphysis. Anatomically equivalent areas were compared as a function of age and genotype. The spectroscopic results were expressed both as color-coded images and as pixel population distributions for each of the three parameters monitored. Based on comparisons of histochemistry and FTIRI, there were distinctive age and genotype variations. At all ages examined, in the TGF-β1 null mice growth plates, alkaline phosphatase (ALP) activity and collagen maturity were reduced, but no effect on mineral content or crystallinity was noted. In the TGF-β1 null mice metaphyses, there was a persistence of trabeculae, but no significant alterations in mineral content or crystallinity. In contrast, mineral content, mineral crystallinity, and collagen maturity were reduced in the secondary ossification center and cortical bone of the TGF-β1 null mice. These results, consistent with a mechanism of impaired bone maturation in the TGF-β1 null mice, may be directly related to TGF-β1 deficiency and indirectly to increased expression of inflammatory cytokines in the TGFβ1 null mice.  相似文献   

20.
Idiopathic osteoporosis (IOP) in premenopausal women is characterized by fragility fractures at low or normal bone mineral density (BMD) in otherwise healthy women with normal gonadal function. Histomorphometric analysis of transiliac bone biopsy samples has revealed microarchitectural deterioration of cancellous bone and thinner cortices. To examine bone material quality, we measured the bone mineralization density distribution (BMDD) in biopsy samples by quantitative backscattered electron imaging (qBEI), and mineral/matrix ratio, mineral crystallinity/maturity, relative proteoglycan content, and collagen cross‐link ratio at actively bone forming trabecular surfaces by Raman microspectroscopy and Fourier transform infrared microspectroscopy (FTIRM) techniques. The study groups included: premenopausal women with idiopathic fractures (IOP, n = 45), or idiopathic low BMD (Z‐score ≤ ?2.0 at spine and/or hip) but no fractures (ILBMD, n = 19), and healthy controls (CONTROL, n = 38). BMDD of cancellous bone showed slightly lower mineral content in IOP (both the average degree of mineralization of cancellous bone [Cn.CaMean] and mode calcium concentration [Cn.CaPeak] are 1.4% lower) and in ILBMD (both are 1.6% lower, p < 0.05) versus CONTROL, but no difference between IOP and ILBMD. Similar differences were found when affected groups were combined versus CONTROL. The differences remained significant after adjustment for cancellous mineralizing surface (MS/BS), suggesting that the reduced mineralization of bone matrix cannot be completely accounted for by differences in bone turnover. Raman microspectroscopy and FTIRM analysis at forming bone surfaces showed no differences between combined IOP/ILBMD groups versus CONTROL, with the exceptions of increased proteoglycan content per mineral content and increased collagen cross‐link ratio. When the two affected subgroups were considered individually, mineral/matrix ratio and collagen cross‐link ratio were higher in IOP than ILBMD. In conclusion, our findings suggest that bone material properties differ between premenopausal women with IOP/ILBMD and normal controls. In particular, the altered collagen properties at sites of active bone formation support the hypothesis that affected women have osteoblast dysfunction that may play a role in bone fragility. © 2012 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号